
Citation: Tojo, T.; Yamaoka-Tojo, M.

Molecular Mechanisms Underlying

the Progression of Aortic Valve

Stenosis: Bioinformatic Analysis of

Signal Pathways and Hub Genes. Int.

J. Mol. Sci. 2023, 24, 7964. https://

doi.org/10.3390/ijms24097964

Academic Editors: Inna

P. Gladysheva and Ryan D. Sullivan

Received: 29 March 2023

Revised: 24 April 2023

Accepted: 26 April 2023

Published: 27 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Molecular Mechanisms Underlying the Progression of Aortic
Valve Stenosis: Bioinformatic Analysis of Signal Pathways
and Hub Genes
Taiki Tojo 1 and Minako Yamaoka-Tojo 1,2,*

1 Department of Cardiovascular Medicine, Kitasato University School of Medicine, Sagamihara 252-0374, Japan
2 Department of Rehabilitation, Kitasato University School of Allied Health Sciences,

Sagamihara 252-0373, Japan
* Correspondence: myamaoka@med.kitasato-u.ac.jp; Tel.: +81-42-778-8111

Abstract: The calcification of the aortic valve causes increased leaflet stiffness and leads to the
development and progression of stenotic aortic valve disease. However, the molecular and cellular
mechanisms underlying stenotic calcification remain poorly understood. Herein, we examined the
gene expression associated with valve calcification and the progression of calcific aortic valve stenosis.
We downloaded two publicly available gene expression profiles (GSE83453 and GSE51472) from NCBI-
Gene Expression Omnibus database for the combined analysis of samples from human aortic stenosis
and normal aortic valve tissue. After identifying the differentially expressed genes (DEGs) using the
GEO2R online tool, we performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes
pathway enrichment analyses. We also analyzed the protein–protein interactions (PPIs) of the DEGs
using the NetworkAnalyst online tool. We identified 4603 upregulated and 6272 downregulated
DEGs, which were enriched in the positive regulation of cell adhesion, leukocyte-mediated immunity,
response to hormones, cytokine signaling in the immune system, lymphocyte activation, and growth
hormone receptor signaling. PPI network analysis identified 10 hub genes: VCAM1, FHL2, RUNX1,
TNFSF10, PLAU, SPOCK1, CD74, SIPA1L2, TRIB1, and CXCL12. Through bioinformatic analysis, we
identified potential biomarkers and therapeutic targets for aortic stenosis, providing a theoretical
basis for future studies.

Keywords: expression profiling; adhesion molecules; inflammation; endothelial cells; signaling

1. Introduction

Severe aortic valve stenosis (AS) is a common valvular heart disease that affects
millions of individuals worldwide, particularly those aged 75 years and above [1]. It
is characterized by a narrowing of the aortic valve orifice, resulting in the obstruction
of blood flow from the left ventricle to the aorta [2]. The pathogenesis of AS involves
an interplay of genetic and environmental factors leading to the progressive fibrocalcific
degeneration of the aortic valve leaflets [3,4]. Inflammatory cells, including macrophages,
leukocytes, dendritic cells, mast cells, and platelets, have been identified in stenotic aortic
valve specimens [5,6]. Osteogenically differentiated valve endothelial cells secrete adhesion
factors and participate in immunomodulatory functions [7].

Recent advances in transcatheter aortic valve implantation (TAVI) and surgical aortic
valve replacement (SAVR) have improved the prognosis of patients with severe AS. Al-
though the optimal timing of intervention and choice of valve replacement strategy remain
contentious issues [8], the timing currently depends mostly on clinical data, especially the
development of symptoms and echocardiographic changes in the left ventricle. However,
this determination of timing is notoriously difficult in patients with comorbid conditions,
such as chronic obstructive pulmonary disease, which could result in similar symptoms.
The choice of valve replacement, whether it be biological versus mechanical or SAVR
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versus TAVI, depends on the patient’s age, comorbidities, and life expectancy. However,
there is a need to better understand the molecular pathogenesis of AS in order to develop
personalized treatment strategies.

Array-based expression profiling is a powerful technique that allows researchers
to measure the activity of thousands of genes in a single experiment [9]. By analyzing
the gene expression patterns in diseased tissue samples, researchers can gain insight
into the molecular mechanisms underlying the disease and identify potential therapeutic
targets [10,11]. A large number of microarray data are freely available from the open
access NCBI-Gene Expression Omnibus (GEO) database. In this study, we searched and
screened the transcriptome microarray data of aortic stenosis from the GEO Expression
Omnibus (GSE) series studies and used bioinformatic analysis to identify differentially
expressed genes (DEGs) between patients with AS and controls. Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses
were performed to detect statistically significant signaling pathways in the DEGs. A
protein–protein interaction (PPI) network was also established to identify hub genes. As
shown in Table 1, several relevant and novel techniques exist for quantitative analysis using
the genes differentially expressed in a disease condition or disease-related exposure [12].

Table 1. Overview of the informatic pipeline to analyze various omic datasets generated from
biological experiments.

Identification of Differentially Expressed Genes

Bioinformatic data warehousing
Public annotations and datasets + Combined datasets

Regulatory network analysis Data integration/Pathway
mapping

Machine-learning-based methods
for marker identification Deep learning methods

Multiomic data analysis

In this study, we aimed to identify the genetic factors and pathways that contribute
to the development and progression of severe AS, with a focus on aortic valve tissue. We
performed a comprehensive genetic profiling of aortic valve tissue from patients with
severe AS undergoing TAVI or SAVR and compared the results with those obtained with
tissue samples from control subjects. Our findings provide insight into the mechanisms
underlying AS, a direction for the discovery of diagnostic biomarkers and targeted thera-
peutic strategies for AS, and guide the development of new therapeutic strategies for this
prevalent valvular heart disease.

2. Results
2.1. Microarray Data Information

We selected two gene expression profiles, GSE83453 and GSE51472, to identify the
DEGs in aortic stenosis patients compared with those in healthy individuals. Raw data
were downloaded and processed using the Affy package. The boxplots of the data, shown
in Figure 1A, allowed us to perform subsequent genetic difference analyses. We utilized
uniform manifold approximation and projection (UMAP), a dimension reduction technique,
to visualize how the samples were related to each other. The UMAP results showed that
the data for the aortic stenosis and control groups were relatively distinguishable, as shown
in Figure 1B.
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Figure 1. Gene expression and UMAP for each sample: (A) Gene expression data from GSE83453
and GSE51472, with the sample list on the horizontal axis and the log2-converted gene expression
values on the vertical axis. Green bars represent tissue samples from patients with aortic stenosis,
and purple bars represent control samples. (B) UMAP analysis was performed on each sample from
the GSE83453 and GSE51472 datasets. Data from aortic stenosis and control subjects were relatively
distinct, with green dots representing tissue samples from patients with aortic stenosis and purple
dots representing control samples. UMAP, uniform manifold approximation and projection.

2.2. DEG Analysis in AS

The DEGs between AS and control tissue identified from GSE83453 and GSE51472 were
analyzed using the “limma” package. Differential gene expression analysis was performed
for 10,875 genes, 4603 of which were upregulated and 6272 were downregulated. Of
these, 1127 genes were upregulated and 1255 were downregulated in GSE83453 (Figure 2A,
left), whereas 3476 genes were upregulated and 5017 were downregulated in GSE51472
(Figure 2A, right).
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Figure 2. Volcano plots, cluster heatmaps, and DEG Venn diagrams for the GSE83453 and GSE51427
datasets: (A) Volcano plots for the GSE83453 (left panel) and GSE51427 (right panel) datasets. Red
dots represent upregulated genes based on an adjusted p-value < 0.05 and log2FC ≥ 1. Blue dots
represent downregulated genes based on an adjusted p-value < 0.05 and log2FC ≥ −1. Black dots
represent genes with no significant difference. (B) Cluster heatmap of the top 20 significant genes of
the GSE83453 (left) and GSE51427 (right) datasets. Yellow indicates upregulated gene expression,
blue indicates downregulated gene expression, and green indicates no significant change in gene
expression. (C) Venn diagram of DEGs in the highly expressed upregulated or downregulated top
300 genes in each dataset (GSE83453 and GSE51427): (left panel) five overlapping DEGs upregulated
in the two datasets; (right panel) eight overlapping DEGs downregulated in the two datasets.
GSE83453 had 258 DEGs, comprising 138 upregulated and 120 downregulated genes, while GSE51427
included 236 DEGs, comprising 113 upregulated and 123 downregulated genes. DEG, differentially
expressed gene; AS, aortic valve stenosis; log2FC; log2 fold change.

The top 20 genes in GSE83453 (Figure 2B, left) and GSE51472 (Figure 2B, right) are
shown in the heatmap. Among the significantly highly expressed top 100 genes extracted
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from the top 300 upregulated or downregulated genes in each dataset (GSE83453 and
GSE51472), GSE83453 had 267 DEGs, comprising 142 upregulated and 125 downregulated
genes, and GSE51427 had 245 DEGs, comprising 117 upregulated and 128 downregulated
genes. A Venn diagram was constructed to obtain the final set of the DEGs (Figure 2C).
Finally, 22 DEGs were identified, comprising 9 upregulated and 13 downregulated genes
(Figure 2C). Table 2 shows the upregulated and downregulated DEGs from the top 100 genes
sorted by the average log2 fold change (log2FC) value for the two datasets.

Table 2. DEGs from the top 100 genes from each dataset (GSE83453 and GSE51472), sorted by the
average log2FC size. DEGs, differentially expressed genes; log2FC, log2 fold change.

DEGs Gene Title (Gene Symbol)

Upregulated
secreted phosphoprotein 1 (SPP1), matrix metallopeptidase 9 (MMP9), joining chain of multimeric IgA and IgM (JCHAIN),
stathmin 2 (STMN2), matrix metallopeptidase 12 (MMP12), CD52 molecule (CD52), Fc fragment of IgG receptor 1B
(FCGR1B), lysozyme (LYZ), hematopoietic cell signal transducer (HCST)

Downregulated

collagen type VI alpha 6 chain (COL6A6), immunoglobulin superfamily member 10 (IGSF10), ATPase Na+/K+
transporting subunit alpha 2 (ATP1A2), angiopoietin like 7 (ANGPTL7), microtubule associated protein tau (MAPT)m
neuron specific gene family member 1 (NSG1), immunoglobulin superfamily member 10 (IGSF10), HAND2 antisense
RNA 1 (HAND2-AS1), complement C6 (C6), plasmolipin (PLLP), sclerostin (SOST), lamin subunit gamma 3 (LAMC3),
solute carrier family 6 member 4 (SLC6A4)

Among the combined data of GSE83453 and GSE51472, which included 10,875 genes
for both analyses, the top DEGs were analyzed using GEOexplorer (Table 3). Among them,
4361 genes were identified as common DEGs (Figure 3A). The top 20 most significant genes
were analyzed using a heatmap plot generated with GEOexplorer using the combined
GSE83453 and GSE51472 datasets (Figure 3B).
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Figure 3. Differential gene expression analysis and functional enrichment analysis of DEGs using
Metascape: (A) Venn diagram plot of differential gene expression analysis using GEOexplorer. A total
of 10,875 genes were identified from a combined dataset of GSE83453 and GSE51472. Among these
genes, 4361 genes were identified as common DEGs. (B) Heatmap plot generated by GEOexplorer
using the combined GSE83453 and GSE51472 dataset. The top 20 most significant genes were analyzed.
(C) Bar graph of enriched terms across the top 100 genes list from the GSE83453 and GSE51472
datasets, colored according to p-values. (D) Network of the top 20 clusters of enriched terms in
Metascape. Cluster identification is represented by color, and the similarity score is represented by
the thickness of the edge. DEGs, differentially expressed genes.
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Table 3. Top 30 differentially highly expressed genes.

Gene ID David Gene Name

1564381_S_AT 100505876 CEBPZ opposite strand (CEBPZOS)
1558121_AT 80034 cysteine and serine rich nuclear protein 3 (CSRNP3)
227462_AT 64167 endoplasmic reticulum aminopeptidase 2 (ERAP2)
236608_AT 165082 adhesion G protein-coupled receptor F3 (ADGRF3)
1561094_A_AT 387601 solute carrier family 22 member 25 (SLC22A25)
224224_S_AT 50940 phosphodiesterase 11A (PDE11A)
1564758_AT 26074 cilia and flagella associated protein 61 (CFAP61)
219850_S_AT 26298 ETS homologous factor (EHF)
236597_AT 133688 UDP glycosyltransferase family 3 member A1 (UGT3A1)
220752_AT 51145 PBX3 divergent transcript (PBX3-DT)
1566889_AT 63892 THADA armadillo repeat containing (THADA)
226281_AT 92737 delta/notch like EGF repeat containing (DNER)
210814_AT 7222 transient receptor potential cation channel subfamily C member 3 (TRPC3)
206601_S_AT 3232 homeobox D3 (HOXD3)
223131_S_AT 81603 tripartite motif containing 8 (TRIM8)
229706_AT 10915 transcription elongation regulator 1 (TCERG1)
1558653_AT 339751 MAP3K20 antisense RNA 1 (MAP3K20-AS1)
1559826_A_AT 105379476 uncharacterized LOC105379476 (LOC105379476)
1553907_A_AT 161829 exonuclease 3′-5′ domain containing 1 (EXD1)
1569183_A_AT 1121 CHM Rab escort protein (CHM)
205700_AT 8630 hydroxysteroid 17-beta dehydrogenase 6 (HSD17B6)
1559270_AT 79776 zinc finger homeobox 4 (ZFHX4)
213456_AT 25928 sclerostin domain containing 1 (SOSTDC1)
1552280_AT 91937 T cell immunoglobulin and mucin domain containing 4 (TIMD4)
1565939_AT 55322 chromosome 5 open reading frame 22 (C5orf22)
219759_AT 64167 endoplasmic reticulum aminopeptidase 2 (ERAP2)
1562736_AT 56956 LIM homeobox 9 (LHX9)
1553513_AT 55350 vanin 3, pseudogene (VNN3P)
1563680_AT 284950 uncharacterized LOC284950 (LOC284950)
235104_AT 64167 endoplasmic reticulum aminopeptidase 2 (ERAP2)

2.3. Functional Enrichment Analysis

Functional enrichment analysis was performed using Metascape to annotate and inte-
grate the GO and KEGG pathway enrichment analyses, and the results are presented in
Figure 3C,D. We identified statistically enriched terms and calculated cumulative hyperge-
ometric p-values and enrichment factors. KEGG pathway enrichment analysis revealed
important pathways, including the positive regulation of cell adhesion, leukocyte-mediated
immunity, response to hormones, cytokine signaling in the immune system, lymphocyte
activation, growth hormone receptor signaling, antigen processing, and the presentation of
exogenous peptide antigen via major histocompatibility complex class II, the regulation
of tissue remodeling, amine metabolic process, B-cell receptor signaling pathway, and
NF-kB signaling pathway (Figure 3C). The relationships between the enriched terms are
illustrated in a 3D network of the top 20 clusters of enriched terms in Metascape, where
cluster identification is represented by color, and the similarity score is represented by edge
thickness (Figure 3D). The analysis showed that these DEGs were mainly enriched in the
positive regulation of cell adhesion, leukocyte-mediated immunity, response to hormones,
cytokine signaling in the immune system, lymphocyte activation, and growth hormone
receptor signaling.

2.4. PPI Network Analysis and Hub Gene Identification

We performed a PPI network analysis of DEGs in patients with aortic stenosis using the
NetworkAnalyst tool. To construct a tissue-specific network, we used the DifferentialNet
database and selected the top 52 known genes from the top 100 DEGs identified in the
combined GSE83453 and GSE51472 datasets. We identified the hub genes for aortic stenosis
by choosing a minimal connectivity network. The resulting 3D-PPI network consisted of
786 nodes and 842 edges (Figure 4). Based on their connectivity in the PPI network, we
evaluated the top 10 hub genes: VCAM1, FHL2, RUNX1, TNFSF10, PLAU, SPOCK1, CD74,
SIPA1L2, TRIB1, and CXCL12 (Table 4). All the identified hub genes were upregulated in
patients with aortic stenosis.
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Table 4. Top 10 hub genes. 

Hub Gene Description Degree 

Figure 4. PPI network analysis of DEGs in patients with aortic sclerosis datasets (GSE83453 and
GSE51472). The 3D-PPI network analysis was performed using NetworkAnalyst, with DEGs high-
lighted in orange. The top 10 hub genes with the highest number of connections are listed (Table 4).
PPIs, protein–protein interactions; DEGs, differently expressed genes; VCAM1, vascular cell adhesion
molecule 1; FHL2, four-and-a-half LIM domain protein 2; RUNX1, runt-related transcription factor 1;
TNFSF10, TNF superfamily member 10; PLAU, plasminogen activator, urokinase receptor; SPOCK1,
sparc/osteonectin, cwcv, and kazal-like domains proteoglycan (testican) 1; CD74, cluster of differen-
tiation 74; SIPA1L2, signal-induced proliferation-associated 1 like 2; TRIB1, Tribbles pseudokinase
1; CXCL12, C-X-C motif chemokine ligand 12; YWHA, tyrosine 3-monooxygenase/tryptophan 5-
monooxygenase activation protein zeta; PARP1, poly(ADR-Ribose) polymerase 1; TJP, tight junction
protein; IRS2, insulin receptor substrate; BMX, BMX non-receptor tyrosine kinase; SOCS2, suppressor
of cytokine signaling 2; PRDX6, peroxiredoxin 6; ARID3A, AT-rich interaction domain 3; TSHZ3,
teashirt zinc finger homeobox 3; RGS16, regulator of G-protein signaling 16; ELAVL1, ELAV-like
protein 1; FN1, fibronectin 1.

Table 4. Top 10 hub genes.

Hub Gene Description Degree

VCAM1 Vascular cell adhesion molecule 1 472
FHL2 Four and a half LIM domains 2 76
RUNX1 RUNX family transcription factor 1 69
TNFSF10 TNF superfamily member 10 14
PLAU Plasminogen activator, urokinase receptor 10

SPOCK1 sparc/osteonectin, cwcv and kazal-like domains
proteoglycan (testican) 1 9

CD74 CD74 moleculeS 8
SIPA1L2 Signal induced proliferation associated 1 like 2 7
TRIB1 Tribbles pseudokinase 1 6
CXCL12 C-X-C motif chemokine ligand 12 5

3. Discussion

Our analysis of DEGs in patients with AS and healthy individuals sheds light on
the mechanisms underlying this disease. Overall, our findings suggest that the pathways
involved in the positive regulation of cell adhesion, leukocyte-mediated immunity, re-
sponse to hormones, and cytokine signaling in the immune system may be implicated.
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Additionally, the identification of ten hub genes, namely VCAM1, FHL2, RUNX1, TNFSF10,
PLAU, SPOCK1, CD74, SIPA1L2, TRIB1, and CXCL12, provides potential targets for future
therapeutic interventions in AS.

In this study, we obtained four microarray datasets (GSE83453, GSE51472, GSE115119,
and GSE77287) from the Gene Expression Omnibus (GEO) database and conducted in-
dividual bioinformatic analyses to identify DEGs. After data screening, we selected two
datasets (GSE83453 and GSE51472) because the remaining two did not show any significant
differences between the AS and control samples. The top 300 upregulated or downreg-
ulated genes from each selected dataset were separately extracted and intersected using
the Venn diagram web tool to obtain a combined set of 490 integrated DEGs, including
250 upregulated and 240 downregulated genes. Although we conducted GEO2R analyses
and identified 7 upregulated and 13 downregulated genes with significantly high expres-
sion, we could not identify any significant PPI network or hub genes among these hits.
Thus, to identify more prominent factors, we integrated all the DEGs from both datasets
(GSE83453 and GSE51472) and subjected them to GO and KEGG pathway enrichment
analyses as well as tissue-specific PPI network analysis.

Inflammation plays a crucial role in the occurrence and progression of AS and calcifi-
cation [7]. A previous study has reported the presence of inflammation in 95% of calcified
aortic valve tissues [13]. Moreover, leukocyte density has been found to be associated with
the progression of AS, with inflammatory cells observed around calcific nodules and areas
of angiogenesis [14]. Additionally, the platelet-to-lymphocyte ratio is associated with the
progression of AS [15]. Gene expression patterns in the tissue samples obtained from the
aortic valves of patients with severe aortic stenosis have been compared with samples from
healthy controls in previous studies [11,16]. However, one major difference between our
study and previous reports is our focus on clinical-practice-oriented grouping. Specifi-
cally, the aortic valve specimens from patients with AS who require invasive surgery were
defined as “AS”, while the specimens from patients with calcified aortic valves without
stenosis were included in the control group. Consequently, a different set of hub genes was
identified compared with that from previous studies [7,13,17,18].

In the present study, the differentially expressed gene vascular cell adhesion molecule
(VCAM1) was found to be highly expressed in the stenotic aortic valves of patients with
AS. A previous study has shown that VCAM1 is highly expressed in the aortic valves
of diabetic/atherosclerotic ApoE-deficient mice and is considered a potential target for
nanocarriers developed to block the progression of AS [19]. VCAM1 is a transmembrane
sialoglycoprotein that is often used for targeted drug delivery to endothelial cells due to its
inducible expression on the cell surface in pathological conditions [20–23]. Moreover, there
is an increased expression of VCAM1 in aortic valve interstitial cells after exposure to IFN-
γ-and lipopolysaccharide [24]. Efficient drug delivery systems for AS using nanomedicine
are currently being examined, with a particular focus on VCAM1-targeted PEGylated
lipopolyplexes as a potential encapsulating drug delivery system [23]. However, translating
this technology into clinical practice is difficult and may have serious limitations.

After VCAM1, the next most highly expressed gene was four-and-a-half LIM do-
main protein 2 (FHL2). FHL2 is believed to act as a specific adaptor protein that couples
metabolic enzymes to sites of high energy consumption in the sarcomeres by interacting
with titin/connectin [25]. FHL2 is highly expressed in vascular cells, including endothelial
and smooth muscle cells, where it functions as a scaffolding protein that modulates the sig-
nal transduction pathways crucial for the vasculature [26,27]. Several LIM domain proteins
play a role in the development and maintenance of cellular architecture by adhering to the
myofibrils of the cytoskeleton. Altered FHL2 expression in heart failure is associated with
the disruption of the normal subcellular localization of phosphofructokinase 2, adenylate
kinase, and creatine kinase M isoform, as well as the reduced activity of phosphofruc-
tokinase 2 and adenylate kinase [28]. In mouse aortic endothelial cells exposed to PM2.5,
autophagy-induced FHL2 upregulation promotes IL-6 production via the activation of the
NF-kB pathway [29].
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Additionally, runt-related transcription factor 1 (RUNX1) was identified as a highly
expressed gene in the stenotic aortic valves of patients with AS. RUNX1 is a transcription
factor that plays a crucial role in cardiovascular development and homeostasis [30,31]. It
regulates the expression of the genes involved in cell proliferation, differentiation, and
apoptosis and has been shown to be involved in the pathogenesis of cardiovascular dis-
ease [32,33]. Furthermore, a previous study reported that RUNX1 is involved in the
development of calcific aortic valve disease and is upregulated in human aortic valve
interstitial cells treated with calcifying media [34]. The overexpression of RUNX1 has been
shown to promote calcification and osteogenic differentiation of aortic valve interstitial
cells through the BMP2 and Wnt/beta-catenin signaling pathways [35]. RUNX1 interacts
with NOTCH1, a key regulator of cardiovascular development and calcification, to regulate
valve calcification [36]. Valvular calcification is the result of an active process involving
endothelial dysfunction, subendothelial lipid (oxidized LDL) deposition, inflammation,
and bone formation (expression of osteocalcin, osteonectin, and osteopontin). Polymor-
phisms, such as mutations in the gene encoding the vitamin D receptor, or those affecting
the synthesis of apolipoprotein or the transcription factor NOTCH 1, have been shown to
be involved.

Network analysis is a powerful approach that can aid in the identification of hub genes
and the discovery of potential therapeutic targets [37]. In the present study, we constructed
a PPI network of DEGs and identified 10 hub genes based on their degrees of association.

4. Materials and Methods
4.1. Microarray Data Source and Screening

GEO is a public database that contains microarray, next-generation sequencing, and
other high-throughput sequencing data (https://www.ncbi.nlm.nih.gov/, accessed on
22 April 2023). We used the search terms “aortic valve stenosis” and “microarray” and
identified four transcriptomic datasets after filtering by “Homo sapiens” and “expression
profiling by array”: GSE83453, GSE51472, GSE115119, and GSE77287. Next, we selected
human transcriptome datasets that utilized the same GEO platform and analyzed aortic
valve tissue; the resulting datasets were GSE83453 and GSE51472. These data showed
significant differences between stenotic and control aortic valves. The GSE83453 dataset
was based on the GPL10558 platform (Illumina HumanHT-12 V4.0, expression bead chip),
whereas the GSE51472 dataset was based on the GPL570 platform (Affymetrix Human
Genome U133 Plus 2.0 Array). The survey information is presented in Table 5.

Table 5. Details of microarray studies on sclerotic aortic valves.

Reference Country Dataset Platform Control AS

Bosse Y. [38] Canada GSE83453 GPL10558 7 20
Rysa J. [14,16] Finland GSE51472 GPL570 10 5
Wang Y., Han D. China GSE155119 GPL26192 3 3
Choi B., Chang E., Song J. South Korea GSE77287 GPL16686 3 3

AS, aortic valve stenosis.

GSE83453 [8] contains 7 normal valve tissue samples and 20 stenotic aortic valve tissue
samples (10 bicuspid aortic valves and 10 tricuspid aortic valves) from Canada, while
GSE51472 [9] contains 10 control aortic samples (5 normal aortic valves and 5 calcified
aortic valves without aortic stenosis) and 5 aortic stenosis samples from Finland. All aortic
samples were obtained from patients with AS undergoing aortic replacement surgery.
Normal control valves were obtained from heart transplant patients or from patients with
ascending aortic disease who required aortic valve replacement [39].

4.2. Screening and Integration of DEGs

The “limma” package was used for DEG analysis [14]. Gene expression values were
log2-transformed and normalized after modified range migration algorithm processing and
fitted to a linear model using the weighted least squares method. Differential expression

https://www.ncbi.nlm.nih.gov/
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analysis was performed between the data from patients with aortic stenosis and controls.
The “limma” package calculated log2FC and the false discovery rate (FDR)-adjusted values
for each gene. The FDR corrects values using the Benjamini–Hochberg method to control
the number of false positives for multiple tests. Adjusted values < 0.05 and |log2FC|
≥ 1.0 were considered significant DEGs. Due to a significant batch effect between the
GSE83453 and GSE51472 datasets, the DEGs for each dataset were analyzed and obtained
separately. The final list of DEGs was generated by integrating the two datasets using
the Venn diagram tool (https://bioinformatics.psb.ugent.be/webtools/Venn accessed on
22 April 2023).

4.3. Differential Gene Expression Analysis

Differential gene expression analyses were performed using the combined data from
the two datasets (GSE83453 and GSE51472) through Venn diagram plot analysis and
heatmap plot visualization using online GEOexplorer (https://geoexplorer.rosalind.kcl.ac.
uk accessed on 22 April 2023).

4.4. Pathway Enrichment Analysis

We performed GO and KEGG pathway enrichment analyses using the “ClusterProfiler”
and “org.Hs.eg.db” packages with adjusted p-value cutoffs set to 0.05. To visualize the
relationships between the enriched terms, Metascape (https://metascape.org/ accessed on
22 April 2023) was used to annotate and integrate the GO and KEGG analysis results. The
adjusted p-value cutoff for GSEA was set to <0.05, and the Benjamini–Hochberg method was
used to adjust the raw values. Additionally, we performed the KEGG pathway enrichment
analysis of integrated DEGs using the DAVID webtool (https://david.ncifcrf.gov/ accessed
on 22 April 2023), with statistical significance set at p < 0.05. To visualize the relationships
between the enriched terms, we used Metascape (https://metascape.org/ accessed on
22 April 2023) to annotate and integrate the GO and KEGG analyses.

4.5. Tissue-Specific PPI Network Analysis and Hub Gene Identification

We performed aortic tissue-specific PPI network analysis using various gene lists and
NetworkAnalyst [16], an online bioinformatic tool with powerful features and an easy-to-
use interface (https://www.networkanalyst.ca/ accessed on 22 April 2023). The PPI data
for human tissues (aorta and coronary arteries) were obtained from the DifferentialNet
database (https://netbio.bgu.ac.il/diffnet/ accessed on 22 April 2023) [18]. Hub genes
were identified through selected minimal connectivity networks, where each node repre-
sents a protein encoded by a gene, and the connections between nodes represent protein
interactions. The nodes with the greatest connectivity were considered core proteins or hub
genes with essential biological regulatory functions in aortic stenosis. However, further
validation studies are required to explore the therapeutic potential of these targets in this
patient group.

5. Conclusions

In conclusion, our analysis of DEGs in patients with AS and healthy individuals
suggest pathways involved in the positive regulation of cell adhesion, leukocyte-mediated
immunity, hormone responses, and cytokine signaling in the immune system may be
implicated in the mechanisms underlying disease. Additionally, the identification of ten
hub genes, including VCAM1, FHL2, RUNX1, TNFSF10, PLAU, SPOCK1, CD74, SIPA1L2,
TRIB1, and CXCL12, may provide potential targets for future therapeutic interventions in
aortic stenosis.
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