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Abstract: Abdominal aortic aneurysm (AAA) is a multifactorial cardiovascular disease with a high
risk of death, and it occurs in the infrarenal aorta with vascular dilatation. High blood pressure acts
on the aortic wall, resulting in rupture and causing life-threatening intra-abdominal hemorrhage.
Vascular smooth muscle cell (VSMC) dysregulation and extracellular matrix (ECM) degradation,
especially elastin breaks, contribute to structural changes in the aortic wall. The pathogenesis of AAA
includes the occurrence of oxidative stress, inflammatory cell infiltration, elastic fiber fragmentation,
VSMC apoptosis, and phenotypic transformation. Tributyrin (TB) is decomposed by intestinal lipase
and has a function similar to that of butyrate. Whether TB has a protective effect against AAA
remains uncertain. In the present study, we established an AAA murine model by angiotensin II
(AngII) induction in low-density lipoprotein receptor knockout (LDLR-/-) mice and investigated
the effects of orally administered TB on the AAA size, ratio of macrophage infiltration, levels of
matrix metalloproteinase (MMP) expression, and epigenetic regulation. TB attenuates AngII-induced
AAA size and decreases elastin fragmentation, macrophage infiltration, and MMP expression in the
medial layer of the aorta and reduces the levels of SBP (systolic blood pressure, p < 0.001) and MMP-2
(p < 0.02) in the serum. TB reduces the AngII-stimulated expression levels of MMP2 (p < 0.05), MMP9
(p < 0.05), MMP12, and MMP14 in human aortic smooth muscle cells (HASMCs). Moreover, TB and
valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, suppress AngII receptor type 1 (AT1R,
p < 0.05) activation and increase the expression of acetyl histone H3 by HDAC activity inhibition
(p < 0.05). Our findings suggest that TB exerts its protective effect by suppressing the activation of
HDAC to attenuate the AngII-induced AT1R signaling cascade.
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1. Introduction

Abdominal aortic aneurysm (AAA) is a potentially lethal cardiovascular disease. AAA
causes permanent and irreversible destruction of the abdominal aortic wall structure and
localized vascular dilatation [1]. Although the incidence of AAA has decreased in recent
years [2], aneurysm rupture has resulted in a high mortality rate [3], and the risk of rupture
increases with the aortic diameter. The occurrence and development of AAA is related to
several mechanisms; however, the specific pathogenic mechanism remains elusive [4–6].
There are some important risk factors for AAA, including sex, family history, high blood
pressure, and smoking [7–9]. Although the mortality rate of AAA has decreased with the
improvement of screening technology and the development of endovascular intervention,
this has not yet been fully attenuated [10–12]. Intervention for AAA is still surgically
dominated, and there is still no effective drug for prevention and treatment. To accelerate
the development of potent treatments, an in-depth exploration of the mechanisms under-
lying AAA occurrence and inhibition is needed. The pathological changes in the aortic
wall include destruction of the extracellular matrix (ECM), inflammation, and apoptosis
of vascular smooth muscle cells (VSMCs). The matrix metalloproteinase (MMP) family,
especially MMP-2 and MMP-9, is closely related to the destruction of ECM in aneurysm
formation [13–15]. The mechanical properties of the aorta are mainly determined by elastic
fibers and collagens [16,17]. Smooth muscle cell-associated elastic fibers are most abundant
in the media of the aortic wall and are responsible for the viscoelastic properties. Elastin
and associated proteins make up the elastic fibers, stabilized by crosslinks between the
molecules, and can be degraded by elastase [17]. The role of epigenetic modification in
several kinds of cells within pathogenic aortic aneurysm formation has been demonstrated.
For instance, epigenetic regulation of VSMCs has been shown to play key roles in a variety
of vascular diseases, including atherosclerosis, hypertension, restenosis after angioplasty,
and the development and progression of AAA [18–20]. Treatment with histone deacetylase
(HDAC) class I or class IIa inhibitors reduced AAA incidence, decreased macrophage
inflammation, and reduced proinflammatory mediators in a murine model [21]. Previous
studies have shown that HDAC inhibitors regulate the progression of AAA. MCT-1 de-
creased the expression and activity of MMP2 in VSMCs in vitro [22]. MCT-1, MS-275, and
MC-1568 reduced elastin degradation and macrophage infiltration [23]. Activation of AngII
receptor type 1 (AT1R) has been evaluated as an important mechanism in AAA [24]. HDAC
inhibitors reduce blood pressure and aortic wall thickness, increase vascular relaxation,
and attenuate inflammation by inhibiting AT1R activation [25–27].

Sodium butyrate and tributyrin (TB) are the most common butyrate derivatives; how-
ever, their beneficial effects on humans are different from those on animals. A previous
study demonstrated that TB was more effective than butyrate [28]. For example, TB can
be easily absorbed and increases the butyrate concentration in the systemic circulation.
Effective amounts of TB can be delivered to the target tissues or organs due to its long
metabolic half-life [29–31]. Moreover, TB might be a stable and rapidly absorbed pro-
drug of butyric acid [32]. According to recent research, butyrate significantly mitigated
AAA progression by inhibiting neutrophil infiltration and NET formation in the abdom-
inal aorta [33]. However, whether TB ameliorates pathological changes in AAA and the
effects of TB related to HASMCs was not investigated. In this study, we evaluated the
effects of TB on elastic fragmentation, macrophage infiltration, and MMP expression in
AAA. In addition, we found that TB regulates AT1R repression through the inhibition of
HDAC activation.

2. Results

2.1. Treatment with TB Attenuated AngII-Induced AAA in LDLR-/- Mice

The present study aimed to investigate the potential therapeutic effects of TB on
aortic aneurysm in LDLR-/- mice. To this end, mice were treated with TB throughout the
experimental period, and AAA was induced with AngII after 2 weeks of TB administration.
After 4 weeks, the mice were sacrificed, and the severity of AAA was evaluated. We also
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observed that treatment with TB resulted in an increase in HDL levels and a decrease
in MMP2 and SBP levels (Table 1). The reduction in MMP2 levels may contribute to the
protective effect of TB against AAA formation, as MMP2 is known to play a critical role in
the degradation of extracellular matrix components, including elastic fibers. Moreover, the
decrease in SBP levels may reflect an improvement in vascular function, as elevated blood
pressure is a risk factor for the development of AAA.

Table 1. Physiological and biochemical characteristics of TB treatment in AngII-induced HFD mice.

HFD+AngII
(N = 8)

HFD+AngII+TB
(N = 7)

Effect Size
(Hedges’ G) p-Value

Weight (g) 26.5 ± 4.2 26.5 ± 2.4 0.000 0.152
SBP (mmHg) 191 ± 14 122 ± 5 6.377 0.0003108 *
ALT (U/L) 25.8 ± 6.6 21.5 ± 6.4 0.661 0.1206

AST (mg/dL) 64.25 ± 17 70.4 ± 20 −0.333 0.2810
Glucose (mg/dL) 168 ± 23 154 ± 9.6 0.774 0.2890
T. CHOL (mg/dL) 1433 ± 282 1319 ± 162 0.486 0.09386
HDL-c (mg/dL) 14.75 ± 4.4 16.2 ± 2.5 −0.397 0.1206
LDL-c (mg/dL) 590 ± 442 395 ± 110 0.586 0.7789

TG (mg/dL) 99 ± 23 93 ± 22 0.266 0.1890
TNF-α (pg/mL) 1.75 ± 0.38 2 ± 0.77 −0.422 0.6126

IL-6 (pg/mL) 29.3 ± 12 25 ± 10 0.387 0.1894
CRP (pg/mL) 9588 ± 2293 9739 ± 3305 −0.054 0.9551

MMP9 (pg/mL) 74.2 ± 25 109 ± 93 −0.529 0.1893
MMP2 (pg/mL) 522 ± 102 388 ± 94 1.362 0.002176 *

* p < 0.05. Two groups were compared by Wilcoxon rank-sum test. SBP: Systolic blood pressure; ALT: Alanine
transaminase; AST: Aspartate aminotransferase; T. CHOL: Total cholesterol; HDL-c: High-density lipoprotein
cholesterol; LDL-c: Low-density lipoprotein cholesterol; TG: Triglyceride; TNF-α: Tumor Necrosis Factor-α; IL-6:
Interleukin 6; CRP: C-Reactive Protein.

It is worth noting that there were no significant differences in body weight, serum
triglycerides, total cholesterol, or low-density lipoprotein (LDL) levels between the TB
treatment group and the AngII-only group (Table 1). These results suggest that the bene-
ficial effects of TB treatment on AAA development are not mediated through changes in
these parameters.

The results showed that TB treatment had a significant impact on the development of
AAA. Specifically, mice treated with TB exhibited a reduction in AAA formation compared
to the AngII-only group (Figure 1B,C). In addition, VVG staining showed significantly less
degradation of elastic fibers in the TB treatment group than that in the AngII-only group
(Figure 1D). These findings indicate that TB treatment may have a protective effect against
the development of AAA.

2.2. Treatment with TB Decreased Macrophage Infiltration in the Aortic Wall

To investigate the anti-inflammatory effects of TB, the abdominal aorta was harvested
after sacrifice. IHC staining showed that treatment with TB significantly decreased the
expression of plasminogen. Similarly, CD11b-positive cells were significantly decreased
in the aorta. Moreover, CD36- and F4/80-positive cells observed in the aortic sections of
the HFD+AngII+TB treatment group were significantly decreased (Figure 2), especially in
the medial layer. These results suggest that TB treatment reduced the inflammation and
macrophage infiltration in the AngII-induced AAA model mice.
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Figure 1. Effects of TB on AAA formation in AngII-induced HFD mice. (A) Mice were separated 

into two groups and daily fed HFD or HFD supplemented with TB for 12 weeks. Mice were treated 

with AngII after 4 weeks of feeding. (B) Representative photographs show the features of aneurysms 

induced by AngII. TB was treated two days before AngII induction. The arrow indicates typical 

AAAs. Representative photographs show cross-sectional areas of the suprarenal aorta at 28 days 

after AngII induction. The sections were stained with (C) hematoxylin and eosin (H&E) stain, quan-

tification of AAA formation, (D) Verhoeff–Van Gieson (VVG) stain, and quantification of elastin 

fragmentation counts. Magnification of images: 40X. The two groups were compared by Wilcoxon 

rank-sum test. * p < 0.05 vs. HFD+AngII, HFD+AngII (n = 8), HFD+AngII+TB (n = 7).  
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Figure 1. Effects of TB on AAA formation in AngII-induced HFD mice. (A) Mice were separated
into two groups and daily fed HFD or HFD supplemented with TB for 12 weeks. Mice were treated
with AngII after 4 weeks of feeding. (B) Representative photographs show the features of aneurysms
induced by AngII. TB was treated two days before AngII induction. The arrow indicates typical
AAAs. Representative photographs show cross-sectional areas of the suprarenal aorta at 28 days
after AngII induction. The sections were stained with (C) hematoxylin and eosin (H & E) stain,
quantification of AAA formation, (D) Verhoeff–Van Gieson (VVG) stain, and quantification of elastin
fragmentation counts. Magnification of images: 40X. The two groups were compared by Wilcoxon
rank-sum test. * p < 0.05 vs. HFD+AngII, HFD+AngII (n = 8), HFD+AngII+TB (n = 7).
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Figure 2. TB ameliorated AngII-induced morphological changes and inflammation in the aortic wall.
Representative photographs show aortic sections of the suprarenal aorta stained with H&E stain and
immunostained with CD11b, CD36, and F4/80, a specific marker of mature M1 macrophages, and
plasminogen. Magnification of images: 200×. The two groups were compared by Wilcoxon rank-sum
test. * p < 0.05 vs. HFD+AngII, HFD+AngII (n = 8), HFD+AngII+TB (n = 7).

2.3. Treatment with TB Suppressed MMP Expression

MMPs degrade ECM, specifically elastin, and play a vital role in the development
of AAA [34–36]. They are secreted by inflammatory cells that infiltrate the aneurysmal
aorta [37]. The IHC results showed a significant amount of MMP-2, MMP-9, MMP-12, and
MMP-14 in the HFD+AngII-treated aortic sections from the media of the aorta. These levels
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were significantly decreased in the TB treatment group (Figure 3). These results indicate
that the systemic delivery of TB for 4 weeks decreases MMP levels, especially those of
MMP-2, MMP-9, MMP-12, and MMP-14.
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Figure 3. TB ameliorated AngII-induced morphological changes and inflammation in the aortic wall.
Representative photographs show aortic sections of the suprarenal aorta stained with H&E stain
and immunostained with MMP-2, MMP-9, MMP-12, and MMP-14. Magnification of images: 200×.
The two groups were compared by Wilcoxon rank-sum test. * p < 0.05 vs. HFD+AngII, HFD+AngII
(n = 8), HFD+AngII+TB (n = 7).
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2.4. Administration of TB Decreased MMP Expression in HASMCs

We investigated the protein expression levels of MMP-2, MMP-9, MMP-12, and MMP-
14 in response to AngII in HASMCs. Untreated HASMCs showed low protein expression
of MMPs, which was significantly upregulated in response to 1 µM AngII stimulation for
24 h (Figure 4A). Treatment with TB reduced the AngII-induced protein expression levels
of MMP-2 and MMP-9. However, the protein expression levels of MMP-12 and MMP-14
did not change significantly after TB treatment (Figure 4A).
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Figure 4. TB suppressed the expression of MMP and AT1R via HDAC inhibition in human aortic
smooth muscle cells. Typical Western blotting of (A) MMP2, MMP9, MMP12, and MMP14 and
(B) AT1R and acetyl histone H3 in 24 h treatment of TB normalized for β-actin in HASMCs.
(C) The effects of TB on HASMC proliferation were analyzed by MTT assay. Results expressed
as mean ± SD of five separate experiments run in triplicate. The Kruskal–Wallis test was used to com-
pare variables among multiple independent groups. If the p-value < 0.05, the Dunn test was performed
for multiple comparison of two separate groups as post hoc analysis. * p < 0.05 vs. AngII. (D) Treat-
ment with TB decreased the expression of AT1R by HDAC inhibition and resulted in the reduction of
AAA formation.
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2.5. Administration of TB Decreased the Expression of AT1R in HASMCs by Epigenetic Regulation

In VSMCs, AngII signals through AT1R to activate cascades of intracellular events,
which can alter contraction, cell growth, migration, ECM deposition, and production of
inflammatory cytokines [24]. To investigate the effects of TB on epigenetic regulation in
HASMCs, western blotting was performed to detect the expression levels of AT1R and
acetyl histone H3. As shown in Figure 4B, treatment with TB reduced the expression
of AT1R in a dose-dependent manner. Furthermore, treatment with TB increased the
expression of acetyl histone H3, similar to the effects of the HDAC inhibitor VPA. These
results suggest that TB may modulate the epigenetic regulation of genes involved in AngII-
induced AAA.

To further investigate the effects of TB on HASMCs, we examined the impact of TB
treatment on AngII-induced HASMC proliferation. As shown in Figure 4C, treatment
with TB did not significantly alter the proliferation of HASMCs induced by AngII. These
results suggest that TB may have beneficial effects on AAA development by regulating
epigenetic mechanisms and modulating the expression of genes involved in AngII-induced
inflammation and ECM remodeling, without affecting HASMC proliferation.

3. Discussion

In the present study, we demonstrated that TB treatment protects against AngII-
induced AAA in mice. Aortic section staining showed that TB administration protected
against inflammation by reducing macrophage marker expression. In addition, treatment
with TB decreased the expression of MMPs. Moreover, TB did not alter cell proliferation,
and AngII-induced MMP2 and MMP9 expression was decreased by TB treatment. Fur-
thermore, TB treatment reduced AngII-induced AT1R expression by inhibiting the activity
of HDAC. Taken together, our results provide a novel perspective on the mechanism by
which TB protects against AAA.

Butyrate is a naturally occurring short-chain fatty acid that can lead to the differentia-
tion of numerous cell types [38–40]. Butyrate inhibited HDAC activity [41], which protects
against AAA by modulating the expression of genes or their products that regulate cell
function, matrix construction, and vascular remodeling. However, butyric acid’s short
half-life limits its potential clinical utility; concentrations of butyric acid in plasma decrease
below the concentration needed for effects in vitro within minutes [42]. TB is an ester
composed of butyric acid and glycerol. Intracellular lipases cleave TB into three molecules
of butyric acid. It has been shown that TB can inhibit vascular remodeling [43,44], modulate
VSMC migration [45], and reduce oxidative stress [46]. Compared with the aorta of healthy
individuals or patients with atherosclerosis, the aorta in patients with AAA displays struc-
tural alterations in the aortic wall and matrix protein degradation. MMPs are connective
tissue-degrading enzymes that participate in a variety of physiologic remodeling processes
and in many diseases associated with excessive tissue degradation. Increased levels of
MMP-9 and MMP-2 are responsible for aneurysm formation [47,48]. MMP9 and MMP2
activity might be regulated by MAPK, ERK, JNK [49], p38 [50], and AMPK [51]. MMP2 and
MMP9 express a broad spectrum of activity and have been shown to display significant
elastase activity. Neutrophil gelatinase-associated lipocalin (NGAL) is involved in the
regulation of MMP9 activity in aneurysmal disease patients [52]. We demonstrated that
treatment with TB decreased the expression levels of MMP2 and MMP9 in the aortic wall
of AAA model mice. MMP2 is the predominant MMP in the aortic wall [35], whereas
MMP9 is secreted by neutrophils, macrophages, and macrophage-derived osteoclasts and
participates in the inflammatory response. The higher levels of MMP9 and MMP2 in
AAA might be related to the presence of inflammatory cells [14,34]. There is a differen-
tial expression with MMP-9 increased and TIMP-1 and -2 reduced in the most common
forms of thoracic aortic aneurysms [53]. Tributyrin and butyrate appear to be involved
in the regulation of oxidative stress through different mechanisms. Tributyrin was ob-
served to decrease the level of mitochondrial reactive oxygen species (ROS) [54], as well as
lower the levels of NADPH oxidase 1 (NOX1), while increasing the expression of various
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anti-oxidative genes, such as heme oxygenase 1 (HO-1), superoxide dismutase 2 (SOD2),
and thioredoxin (TRX1) [46]. Conversely, butyrate was found to increase mitochondrial
ROS levels [55,56]. Butyric acid activates the GPR109A/AMPK/NRF2 signaling pathway,
leading to the upregulation of various antioxidant enzymes and proteins. It also regu-
lates epigenetic modifications through histone acetylation, protecting cells from oxidative
stress-induced damage [57]. Researchers have investigated the epigenetic mechanisms
associated with the CPT-1A promoter and found that butyrate, a dietary HDAC inhibitor,
can protect against the ethanol-driven epigenetic deregulation of CPT-1A expression and
reduce hepatic steatosis [58]. Tributyrin supplementation has been found to protect against
ethanol-induced gut dysbiosis and subsequent liver injury, possibly by regulating luminal
SCFA concentrations, promoting butyrate production by gut bacteria, modulating the
gut microbiota composition, and regulating the host immune response [59]. Additionally,
tributyrin can directly reduce lipid accumulation, inflammation, and oxidative stress in
the liver. In a study on Wistar rats with lipopolysaccharide (LPS)-induced liver injury,
tributyrin administration was found to attenuate liver injury by reducing the production
of the pro-inflammatory eicosanoid leukotriene B4 (LTB4) and oxidative stress levels in
the liver [60]. Tributyrin also reduced the nuclear translocation of 5-lipoxygenase (LOX)
in response to LPS, suggesting a possible mechanism for the LTB4 reduction. However,
LPS-induced changes in other lipid mediators were not significantly affected by tributyrin
treatment up to 24 h after LPS injection.

We found that tributyrin reduced inflammation and macrophage infiltration in the
aortic wall of AAA model mice, as evidenced by the decreased expression of plasminogen,
CD11b-positive cells, CD36-positive cells, and F4/80-positive cells. This is consistent with
previous studies indicating that butyrate has anti-inflammatory effects due to inhibiting
the activation of nuclear factor kappa B (NF-κB) and suppressing the production of pro-
inflammatory cytokines, such as tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6),
and monocyte chemoattractant protein-1 (MCP-1) [61–65]. A variety of inflammatory cell
processes occur during aortic wall inflammation, including mononuclear cell infiltration,
immunoglobulin secretion, and cytokine production, suggesting that both innate and adap-
tive immune responses are involved [66]. Macrophages are involved in the pathogenesis
of AAA, and circulating monocytes are the major origin of accumulated macrophages in
the aortic walls [67]. Circulating monocytes originating from bone marrow play a critical
role in encoding antimicrobial and phagocytosis-related proteins [68]. When the local
environment undergoes inflammatory changes, monocytes circulating in the blood can
be recruited to the tissue and differentiate into macrophages. In response to different
inflammatory stimuli, blood monocytes migrate to the tissue and differentiate into distinct
macrophage subgroups, including classically activated macrophages (M1 macrophages)
and alternatively activated macrophages (M2 macrophages) [69]; this process is termed
macrophage polarization. Interestingly, these two subgroups of macrophages play almost
opposite roles in the pathogenesis of AAA. M1 macrophages are preferentially located
in the tunica adventitia of the aortic wall [67]. They can be activated by stimuli, such as
LPS and IFN-γ [70]. By upregulating massive inflammatory cytokines, including TNF-α,
IL-6, IL-12, IL-1β, chemokine ligand 2, and nitric oxide (NO) [71], M1 macrophages ag-
gravate local inflammation and promote aortic dilation, as well as vascular remodeling.
Conversely, M2 macrophage polarization is typically induced by Th2 cytokines, such as IL-4
and IL-13 [70,72]. M2 macrophages regulate angiogenesis, cell recruitment, and collagen
deposition by cooperating with mast cells and NK cells [73]. A previous study showed an
increase in M2 macrophages and regulatory T cells in aortic tissue after TB treatment in
wild-type mice. In this study, we observed that treatment with TB reduced inflammation
by decreasing macrophage infiltration. There is evidence that suggests that tributyrin
or butyrate can regulate macrophage differentiation. Butyrate is a short-chain fatty acid
produced by the fermentation of dietary fibers in the gut and can have an effect on immune
function, including macrophage differentiation. Butyrate was shown to promote the dif-
ferentiation of M2 macrophages from monocytes in vitro and in vivo, while inhibiting the
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differentiation of M1 macrophages [74]. Another study found that butyrate treatment de-
creased the expression of M1 markers and increased the expression of M2 markers in mouse
macrophages in vitro [75]. Furthermore, butyrate can enhance macrophage phagocytic
activity [46,76]. Thus, tributyrin might regulate macrophage differentiation in a similar
manner, promoting the differentiation of M2 macrophages and inhibiting the differentia-
tion of M1 macrophages. However, the expression of inflammatory markers regulated by
tributyrin in AngII-induced HASMCs should be considered in further investigations.

In our study, we observed that the expression of AT1R in HASMCs was significantly
decreased by TB in a dose-dependent manner. This effect was accompanied by an increase in
acetyl histone H3 levels, indicating that an epigenetic mechanism might be involved in the
regulation of AT1R expression. Previous studies have suggested that butyrate can influence
histone acetylation levels, which in turn can alter gene expression [77–79]. Additionally,
previous studies have demonstrated that pro-inflammatory signaling pathways, such
as the NF-κB and MAPK pathways, are involved in the regulation of AT1R expression
induced by AngII [80,81]. Therefore, it is possible that butyrate modulates inflammation by
regulating AT1R expression. Some evidence highlights the importance of epigenetics in the
development of cardiovascular diseases. Among epigenetic mechanisms, those governed
by HDACs strongly affect gene transcription [82,83]. HDACs regulate the expression
of genes involved in key events in AAA, including VSMC differentiation, contractility,
proliferation, inflammation, and ECM deposition [84]. Interestingly, HDAC inhibitors
have been proven effective in several types of cancer [85–88] and represent a promising
therapy for non-oncological diseases, including neurodegeneration, inflammation, and
cardiovascular diseases [84,89]. Butyrate is a potent and broad-spectrum inhibitor of
HDACs that has been shown to be beneficial in treating models of muscle pathology [90,91].
Dietary butyrate, along with TB, has shown positive effects on growth performance in
mice [92–94], but these findings have been attributed to improved intestinal and digestive
functions [95]. While the favorable use of dietary butyrate seems clear, investigating
whether it could be used as a promoter of muscle growth would have profound impacts on
human health and animal production.

Several studies showed the potential therapeutic effects of tributyrin in various dis-
eases, including cancer [96], inflammation [97], and cardiovascular diseases [43]. While TB
has shown potential therapeutic effects, the safety and potential side effects of TB treatment
in humans are not yet fully understood. Some studies have reported that high doses of TB
can induce cytotoxicity and apoptosis in cancer cells in vitro [98]. Tributyrin supplements
did not revert the colon cancer-affected parameters, and butyrate worsened adipose tissue
inflammation [99]. It is worth noting that the safety and efficacy of TB treatment in humans
has not been extensively studied, and more research is needed to determine the optimal
dosage and duration of TB treatment for different diseases and to assess the long-term
safety of TB.

4. Materials and Methods
4.1. Animal Study

Male low-density lipoprotein receptor knockout (LDLR-/-) mice (Jackson Labs, Bar
Harbor, ME, USA, #002207; C57BL/6J background) were fed a high-fat diet (HFD) (Harlan
Teklad, Diet TD88137 (21% milk fat (42% fat calories), 34% sucrose, and 0.15% cholesterol)).
Power analysis was assessed by G*power software (version 3.1.9.7, Heinrich Heine Uni-
versity, Düsseldorf, Germany), which provided a required sample size of 7 mice for each
group to achieve an α of 0.05 and β of 0.8. The animals were randomized into 3 groups:
(1) Normal diet; (2) HFD+AngII group (N = 8); and (3) HFD+AngII+TB group (N = 7).
Animals in group 3 were given 500 mg−1kg−1/day of TB by gavage (Figure 1A). All mice
were kept in microisolator cages under a 12 h day/night cycle. All animals were given free
access to chow and water. No inclusion or exclusion criteria were set, and confounders
were not controlled. The Institutional Animal Care and Use Committee of Taipei Veter-
ans General Hospital approved the experiments (IACUC no. 2022-182), including any
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relevant details. All animal study experiments were performed in accordance with the
Guide for the Institutional Animal Care and Use Committee of Taipei Veterans General
Hospital and the Guide for the Care and Use of Laboratory Animals of the US National
Institutes of Health (8th edition, 2011). Osmotic minipumps (model 2004, Alzet Scientific
Products, Mountain View, CA, USA) were implanted into the mice at 14–16 weeks of age.
The pumps were filled with AngII buffer (A9525, Sigma-Aldrich, St. Louis, MO, USA), and
1000 ng/kg/min AngII was administered for 28 days. The body weight of the animals was
monitored during treatment to assess side effects. The LDLR-/- mice were sacrificed after
28 days of treatment by exsanguination under anesthesia (100 mg−1kg−1 ketamine–HCl and
20 mg−1kg−1 xylazine via intraperitoneal (IP) injection) after 6 h of fasting. The animals
were considered adequately anesthetized when no attempt to withdraw the limb after
pressure could be observed. Blood was collected from the right ventricle for further analysis.
After careful removal of the periaortic soft tissue, the entire aorta was perfused with saline
and excised. The aorta was then subjected to formalin fixation and paraffin embedding.

4.2. Histology and Immunohistochemistry (IHC)

Aorta samples were cut into 4 sections and processed for histological staining. Paraffin
sections (5 µm) from the dissenting aorta were stained with hematoxylin and eosin (H&E)
and Verhoeff–Van Gieson (VVG, HT25A, Sigma-Aldrich, St. Louis, MO, USA). Immunohis-
tochemical (IHC) staining of macrophage-related proteins and MMPs was performed as
previously described [100].

4.3. Cell Culture and Cell Proliferation

HASMCs were purchased from Life Technology (Grand Island, NY, USA; catalog
number C0075C). The cells were grown and passaged as described previously [101]. Briefly,
HASMCs were grown in M231 medium (Gibco, Thermo Fisher Scientific, Waltham, MA,
USA) containing SMC growth supplement and a 1% antibiotic–antimycotic mixture in an
atmosphere of 95% air and 5% CO2 at 37 ◦C in plastic flasks. At confluence, the cells were
subcultured at a ratio of 1:3, and passages 3 through 8 were used. The impacts of TB on
HASMC proliferation were measured with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl
tetrazolium bromide (MTT) assay.

4.4. Immunoblotting

Western blotting was performed as previously described [101]. In brief, HASMC
lysates were prepared in lysis buffer (20 mM Tris-HCl, 150 mM NaCl, 1 mM EDTA,
1 mM ethylene glycol tetraacetic acid, 1% Triton, 2.5 mM sodium pyrophosphate, 1 mM
β-glycerophosphate, 1 mM Na3VO4, 1 µg/mL leupeptin, and 1 mM PMSF; pH 7.5). The
supernatants were obtained by centrifugation of the lysates at 12,000× g for 15 min at
4 ◦C. The protein concentrations were determined with the Bio-Rad Protein Assay (Bio-Rad,
Hercules, CA, USA), and the samples were stored at −80 ◦C. Proteins of interest were
isolated by SDS polyacrylamide gel (20 µg/lane) and transferred to polyvinylidene fluoride
membranes (PVDF, Merck Millipore, Bedford, MA, USA). The PVDF membranes were
blocked with a 5% milk solution (skimmed instant milk powder with PBS-T) and then
probed with anti-MMP2 (NB200-193, Novus Biologicals, Centennial, CO, USA), anti-MMP9
(sc-6841, Santa Cruz Biotechnology, Santa Cruz, CA, USA), anti-MMP12 (sc-390863, Santa
Cruz Biotechnology, Santa Cruz, CA, USA), anti-MMP14 (ab51074, Abcam, Burlingame,
CA, USA), anti-AT1R (orb382444, Biorbyt, Durham, NC, USA), or acetyl histone H3 (06-599,
Merck Millipore, Bedford, MA, USA) (1:1000) antibodies. Then, they were incubated with
horseradish peroxidase-conjugated secondary antibodies. The proteins were visualized
using an enhanced chemiluminescence detection kit (Amersham Biosciences, Piscataway,
NJ, USA). Anti-β-actin (sc-47778, Santa Cruz Biotechnology, Santa Cruz, CA, USA) (1:5000)
was used as a loading control. Protein expression levels were quantified as optical densities
using ImageQuant software (version 8.1, GE Healthcare Biosciences, Chicago, IL, USA)
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4.5. Statistical Analysis

All experiments were performed independently at least 3 times, and all continuous
variables are presented as the mean ± standard deviation (SD). G*Power version 3.1.9.7
was used for the power analysis. The sample size of the murine experiments was calculated
based on effect sizes. The power analysis using an F test suggested a power of 0.8 with an
alpha of 0.05 and an effect size of 0.8. Comparisons between two groups were analyzed
using the Wilcoxon rank-sum test [102]. Effect sizes were calculated by Hedges’ g. We also
conducted the Kruskal–Wallis test (non-parametric alternative to the one-way ANOVA) for
variable comparisons among multiple independent samples [103]. For multiple compar-
isons, the data were analyzed using the Dunn test [104]. Statistical significance was defined
as p < 0.05. Analyses were performed using a statistical software package (SPSS version
16.0 for Windows; SPSS, Chicago, IL, USA).

5. Conclusions

In conclusion, treatment with tributyrin was found to attenuate AngII-induced ab-
dominal aortic aneurysm in LDLR-/- mice by reducing MMP expression and macrophage
infiltration in the aortic wall. Furthermore, tributyrin decreased the expression of AT1R in
HASMCs through HDAC inhibition (Figure 4D). These findings provide new insights into
the potential use of tributyrin in the treatment of AAA.
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