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Abstract: This study presents the synthesis, structural characterization, and in vitro evaluation of
anticancer activity of some newly benzo[f ]quinoline derivatives. The synthesis is facile and efficient,
involving two steps: quaternization of nitrogen heterocycle followed by a [3+2] dipolar cycloaddition
reaction. The synthesized compounds were characterized by FTIR, NMR, and X-ray diffraction
on monocrystal in the case of compounds 6c and 7c. An in vitro single-dose anticancer assay of
eighteen benzo[f ]quinoline compounds, quaternary salts, and cycloadducts, was performed. The
results showed that the most active compounds were quaternary salts 3d and 3f with aromatic R
substituents. Quaternary salt 3d revealed non-selective activity against all types of cancer cells, while
salt 3f exhibited a highly selective activity against leukemia cells. Compound 3d also presented
remarkable cytotoxic efficiency against four distinct types of cancer cells—namely, non-small cell
lung cancer HOP–92, melanoma LOX IMVI, melanoma SK–MEL–5, and breast cancer MDA–MB–468.
Compound 3f was selected for five-dose screening. The study also includes SAR correlations.

Keywords: anticancer; benzo[f ]quinoline derivatives; quaternary salts; cycloadducts

1. Introduction

Benzo[f ]quinoline is a polynuclear azaheterocycle with an extended π-π conjugation
of potential interest in medicine, opto-electronics, agriculture, etc. [1,2]. Although the
native heterocycle is known to be an environmental pollutant [3,4] and has been detected
in coal tar [5], petroleum distillate [6], and urban air particles with genetic effects [2,7],
recent research has shown that incorporating the benzo[f ]quinoline skeleton into the design
of certain compounds can be advantageous, resulting in new derivatives with biological
properties such as antimicrobial [8–10] and anticancer activity [11–13]. Additionally, some
derivatives have been designed and synthesized based on the fluorescent properties of
benzo[f ]quinoline [14,15], and some of these derivatives have been shown to have potential
for use in organic light-emitting devices (OLED) [16–19]. In Scheme 1, depictions of some
of the potential applications of benzo[f ]quinoline derivatives are shown.

Cancer is a highly lethal disease, with certain forms of the disease characterized by
rapid progression and systemic destruction of the body [20]. According to the World
Health Organization (WHO), cancer is the second leading cause of death globally, with
over 10 million deaths recorded in 2020 [21]. The treatment of various types of cancer is
difficult, being carried out surgically, either by radiotherapy or medication (chemotherapy),
hormone therapy, immunotherapy, stem cell transplant, but also by a combination of some
of them [22–25].

Chemotherapy is one of the anticancer therapies that can lead to an increase in life
expectancy. In 1949, when the first agent with anticancer activity appeared on the market,
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life expectancy worldwide was 46.8 years; in 2015, when about 160 anticancer drugs were
available for clinical use, life expectancy increased to 71.4 years [26,27]. However, the
efficiency of the existing drugs from the market is low and there are many drawbacks. As a
result, there is an urgent need for new anticancer drugs in therapy [28–31].

Scheme 1. Benzo[f ]quinoline derivatives: potential applications [8–11,13–15,17,18].

Considering the aforementioned factors, our research is aimed at developing novel
compounds with anticancer properties by utilizing different basic scaffolds, including
8-aminoquinoline, 2-aminopyridine, imidazole/benzimidazole, pyridine, phenanthroline,
phthalazine, or pyridazine, that could be potentially employed in chemotherapy for cancer
treatment [32–38]. In this regard, we have diversified the core structure by incorporating
benzo[f ]quinoline, which has led to the synthesis of new hybrid compounds exhibiting
anticancer activity.

2. Results and Discussion
2.1. Chemistry

In order to obtain the target benzo[f ]quinoline derivatives (HybB[f]Q) with anticancer
properties, we used a facile and efficient reaction pathway in two steps. The initial stage
consisted of the quaternization reactions of benzo[f ]quinoline 1 with variously reactive
halides of type 2 (such as amides, esters, and aromatic ketones) when the corresponding
quaternary salts 3a–g were obtained (the synthesis of salts was reported elsewhere [8]).
The second step consisted of a [3+2] dipolar cycloaddition reaction of ylides (generated
in situ from the corresponding quaternary salts 3a–g) with various dipolarophiles. In the
subsequent step, the reaction conditions were optimized to achieve maximum yields of the
targeted compound. The conditions were adapted based on the dipolarophile used, and
involved the use of two distinct bases and solvents, respectively.

Consequently, the [3+2] dipolar cycloaddition reactions were first carried out to acti-
vate symmetrically substituted alkyne (dimethyl acetylenedicarboxylate (DMAD) 4a) and
nonsymmetrically substituted alkyne (ethyl propiolate 4b), respectively, using quaternary
salts 3a–c as the starting materials. These reactions were performed in 1,2-butylene oxide,
which was used both as a solvent and as a base.

In addition, [3+2] dipolar cycloaddition reactions were conducted to 1,4-naphthoquinone
5 (an activated symmetrically substituted alkene) in the case of quaternary salts with aliphatic
salts 3a–c and 3f,g, respectively, with the solvent chloroform and by using triethylamine
as a base. The cycloaddition reactions occurred in the desired pyrrolo-benzo[f ]quinolines
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6a-f and isoindolo-benzo[f ]quinolines 7a–e, respectively. The synthetic route to obtain
HybB[f]Q derivatives is illustrated in Scheme 2.

Scheme 2. The synthetic route for compounds HybB[f]Q 6a–f and 7a–e.

The structures of newly HybB[f]Q compounds were proven by spectral analysis (FT–
IR, HR–MS,1H–NMR, 13C–NMR, and two–dimensional experiments 2D–COSY, HMQC,
HMBC), and single crystal X–ray diffraction in the case of compounds 6c and 7c. Table 1
displays the data obtained from the FT-IR and NMR spectral analyses.

In the 1H–NMR spectra of compounds HybB[f]Q with a pyrrolo–benzo[f ]quinoline
structure 6a–f, the most deshielded signals are provided by the protons H–10 and H–11
from the benzene and pyridine rings, respectively. The chemical shift for H-10 signal
is noted to be approximately 8.78 ppm in compounds 6a,b with amide structures. For
compounds 6c–f with esteric structures, this signal is observed at chemical shifts with
0.22 ppm lower. The difference of approximately 0.23 ppm is also evident in the chemical
shifts of the H-11 proton signals, which appears at 8.67 ppm for compounds 6a-b and at
8.44 ppm for compounds 6c-f, respectively. In the aliphatic region, the signals of the alkyl
residues are observed. For cycloadducts 6a, 6c, and 6e, formed by cycloaddition to DMAD,
specific chemical shifts are observed for the signals furnished by the methyl H-15a (δ~ 3.94
ppm) and H-14a (δ~ 3.90 ppm). Similarly, for compounds 6b, 6d, and 6f, obtained by the
cycloaddition to EP, the signals from the ethyl residues appear at specific chemical shifts
(δ~ 4.41 ppm for H-15 and δ~1.43 ppm for H-16).

In the 1H–NMR spectra of compounds HybB[f]Q 7a–e with an isoindolo–benzo[f ]qu-
inoline structure, the most downfielded signals belong to benzo[f ]quinoline protons H–6,
H–7 and H–8 within the chemical shift range of 8.80 ppm to 8.14 ppm.

The 13C-NMR spectra provide evidence for a completely aromatic structure in the case
of HybB[f]Q 6a–f compounds, as indicated by the higher chemical shift values (ranging
from 102.8 ppm to 139.4 ppm) of the carbon atoms in the pyrrolic cycle (C-1, C-2, C-3,
and C-13). Likewise, for the cycloadducts HybB[f]Q 7a–e, the appearance of carbon atom
signals (C-9, C-10, C-17, and C-19) from the pyrrolic cycle in the low-field region (as shown
in Table 1) serves as evidence of a fully aromatic structure.

The FT-IR spectra of compounds HybB[f]Q 6a–f and 7a–e reveal important absorption
bands attributed to carbonyl groups. Specifically, carbonyl ester groups are characterized
by absorption bands at 1722 cm−1 and 1690 cm−1 for 6a, 1649 cm−1 for 6b, 1716 cm−1

and 1693 cm−1 for 6c, 1687 cm−1 for 6d, 1700 cm−1 and 1690 cm-1 for 6e, 1688 cm−1 for
6f, 1723 cm−1 for 7b and 1720 cm−1 for 7c. For compounds 6a, 6b, and 7a, which contain
an amide group, the specific absorption band for the amide carbonyl group appears at
around 1641 cm−1. The cyclic carbonyl ketones groups in HybB[f]Q 7a-e are identified by
absorption bands ranging from 1673 cm−1 to 1661 cm−1 in the FT-IR spectra.
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Table 1. The IR and NMR data of pyrrolo–benzo[f ]quinolines HybB[f]Q 6a–f and isoindolo–
benzo[f ]quinolines 7a–e.

Compd. IR, cm−1(νC=O)
1H–NMR

13C–NMR
H–10 H–11 H–14a H–15a H–15 H–16

6a 1722, 1690, 1644 8.78 8.67 3.86 3.86 - - 102.8 (C–1), 122.7 (C–2), 124.3 (C–3), 133.8 (C–13)
6b 1694, 1638 8.78 8.67 - - 4.38 1.40 104.5 (C–1), 120.0 (C–2), 124.0 (C–3), 135.9 (C–13)
6c 1716, 1693 8.53 8.47 3.94 4.03 - - 104.5 (C–1), 117.0 (C–2), 132.0 (C–3), 138.0 (C–13)
6d 1687 8.54 8.44 - - 4.41 1.45 106.8 (C–1), 127.4 (C–2), 119.3 (C–3), 139.5 (C–13)
6e 1700, 1690 8.52 8.47 3.94 4.03 - - 104.5 (C–1), 117.2 (C–2), 131.9 (C–3), 137.9 (C–13)
6f 1688 8.56 8.46 - - 4.44 1.46 106.8 (C–1), 127.2 (C–2), 119.8 (C–3), 139.4 (C–13)

H–6 H–7 H–8 aliphatic region

7a 1663, 1639 8.53 8.69 8.60 - 137.9 (C–9), 112.2 (C–10), 121.8 (C–17), 126.8 (C–18)
7b 1723, 1673, 1670 8.62 8.65 8.56 4.25 (H–21) 134.6 (C–9), 111.6 (C–10), 120.3 (C–17), 124.8 (C–18)
7c 1720, 1670, 1663 8.24 8.31 8.14 4.75 (H–21), 1.55 (H–22) 135.4 (C–9), 110.5 (C–10), 121.4 (C–17), 123.9 (C–18)
7d 1661, 1633 8.63 8.79 8.69 - 137.4 (C–9), 111.5 (C–10), 125.7 (C–17), 128.0 (C–18)
7e 1662, 1634 8.65 8.80 8.71 - 137.4 (C–9), 111.6 (C–10), 125.9 (C–17), 127.3 (C–18)

X-ray diffraction was performed on HybB[f]Q compounds 6c and 7c that yielded
monocrystals, which were obtained as white or orange needles through crystallization from
absolute ethanol.

Both HybB[f]Q compounds 6c and 7c were found to crystallize in an anhydrous form,
with one molecule representing the asymmetric unit, as shown in Figure 1a,b, respectively.
The structures of these derivatives were resolved using direct methods and refined in
the P-1 space group type of the triclinic system. Compound 6c is anhydrous and lacks
typical intra- or inter-molecular interactions. In contrast, the molecules in compound 7c are
distributed in a planar configuration relative to each other, except for the ethyl carboxylic
group(s), and do not exhibit typical inter-molecular interactions.
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Figure 1. XRD structures of HybB[f]Q derivatives 6c (a) and 7c (b).

The Supplementary Material includes the NMR spectra of representative HybB[f]Q
derivatives (6b, 6e, 7b, 7d), as well as checkCIF files for the X-ray data of compounds 6c
and 7c.

2.2. Anticancer Activity

The anticancer potency of the synthesized compounds was evaluated at the National
Cancer Institute (NCI), USA, via their screening program for anticancer agents. This
program, known as the NCI 60 cell line screen, is a valuable tool for drug discovery
and development, as it provides a comprehensive assessment of the compounds’ activity
against different types of cancer cells. The in vitro anticancer assay, using the NCI 60 cell
line screening, includes 60 different human tumor cell lines representing various types
of cancers, such as leukemia, melanoma, and cancers of the lung, colon, brain, ovary,
breast, prostate, and kidney. The screening was performed in accordance with the NCI
protocol [39–41].
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The first step of the screening involves testing all selected compounds at a single dose
of 10 µM against 60 cell lines [39]. The outcome of this single-dose screen is depicted as a
mean graph, which is available for examination using the COMPARE program [42]. The
results are expressed as the Percentage Growth Inhibition (PGI), indicating growth relative
to the control with no drug and relative to the number of cells at time zero. This method
allows for the identification of growth inhibition (values ranging from 0 to 100) as well
as lethality (values less than 0). For instance, a value of 30 would indicate 70% growth
inhibition, while a value of -30 would indicate 30% lethality.

Eighteen synthesized compounds, comprising seven HybB[f]Q salts 3a–g and eleven
HybB[f]Q cycloadducts (6a–f, 7a–e), were subjected to a primary single-dose anticancer
assay (at a concentration of 10−5 M). From the obtained data, the most active com-
pounds were identified (the salts 3b, 3d, 3e, 3f, 3g, the cycloadducts 6a, 6d (with pyrrolo-
benzo[f]quinoline structure) and the cycloadducts 7b, 7e (with isoindolo-benzo[f]quinoline
structure)), and the obtained results are listed in Table 2. The obtained results for all tested
compounds can be found in the Supplementary Materials in Table S1 (for salts 3a–g) and
Table S2 (for cycloadducts 6a–f and 7a–e).

Table 2. Single-dose assay results of the most active compounds (salts 3b, 3d, 3e, 3f, 3g and cy-
cloadducts 6a, 6d, 7b, 7e) against NCI 60 human cancer cell lines, expressed as the percentage growth
inhibition (PGI%, µM) (selection).

Cell Type
Compound/Growth Inhibition Percent (PGI%) a

3b 3d 3e 3f 3g 6a 6d 7b 7e

Leukemia
CCRF–CEM 3 72 48 68 41 26 0 2 0
HL–60 (TB) 20 99 78 100(62) b 70 0 0 1 0

K–562 34 92 84 100(26) b 83 17 0 0 0
MOLT–4 33 86 68 100(3) b 67 10 3 0 0

RPMI–8226 40 95 75 93 67 33 13 0 0
SR 40 98 66 100(28) b 88 28 20 9 0

Non–small Cell Lung Cancer
A549/ATCC 9 76 62 59 43 0 0 0 0

EKVX 10 71 57 59 43 8 20 3 3
HOP–62 0 64 56 56 28 0 20 8 8
HOP–92 15 100(8) b 88 93 87 25 17 0 1

NCI–H226 22 64 41 - 32 32 22 8 0
NCI–H23 29 73 72 56 41 26 17 7 4

NCI–H322M 5 57 31 36 37 25 0 1 0
NCI–460 0 96 81 73 46 43 0 0 0

NCI–H522 11 78 71 64 25 6 1 4 7

Colon Cancer
COLO 205 7 94 74 75 53 19 1 0 0
HCC–2998 0 83 52 88 54 0 0 0 0
HCT–116 48 88 70 85 81 19 11 0 0
HCT–15 0 43 13 47 23 23 0 0 0

HT29 0 88 80 87 79 5 1 0 0
KM12 15 74 65 72 23 8 1 1 0

SW–620 3 81 64 72 51 11 8 1 0

CNS Cancer
SF–268 26 57 62 52 16 11 0 0 0
SF–295 5 77 70 66 53 15 16 3 1
SF–539 23 75 47 39 65 30 3 9 12
SNB–19 32 74 68 74 44 17 11 10 4
SNB–75 13 57 18 29 2 29 20 4 13

U251 40 82 72 70 46 2 8 0 0
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Table 2. Cont.

Cell Type
Compound/Growth Inhibition Percent (PGI%) a

3b 3d 3e 3f 3g 6a 6d 7b 7e

Melanoma
LOX IMVI 9 100(24) b 54 89 82 25 9 5 10

MALME–3M 32 87 66 57 35 26 5 12 0
M14 21 83 62 76 39 12 0 6 0

MDA–MB–435 33 87 63 61 38 7 1 0 0
SK–MEL–2 0 64 44 37 13 0 0 0 0

SK–MEL–28 6 56 33 26 21 10 0 0 0
SK–MEL–5 63 100(89) b 100(32) b 100(35) b 62 29 0 0 0
UACC–257 8 95 85 47 48 0 0 1 0
UACC–62 43 68 44 34 36 7 20 8 3

Ovarian Cancer
IGROV1 14 69 33 52 51 24 19 0 0

OVCAR–3 36 70 48 69 37 5 0 0 0
OVCAR–4 39 80 67 91 37 36 34 0 0
OVCAR–5 0 69 42 42 47 5 1 0 0
OVCAR–8 1 78 74 74 49 26 4 0 0

NCI/ADR–RES 0 19 2 14 13 21 8 2 0
SK–OV–3 12 66 50 47 27 0 10 7 5

Renal Cancer
786–0 13 66 33 46 48 11 4 0 0
A498 0 25 0 0 0 0 0 0 0

ACHN 0 50 21 44 33 28 41 0 18
CAKI–1 12 47 21 67 27 9 38 9 8
RXF 393 0 94 44 68 46 22 0 8 -
SN12C 15 85 83 74 46 17 22 0 0
TK–10 0 59 27 31 35 0 0 0 0
UO–31 16 70 44 71 68 37 45 26 30

Prostate Cancer
PC–3 29 81 73 86 64 23 19 0 5

DU–145 0 64 44 58 32 26 0 0 0

Breast Cancer
MCF7 39 88 82 90 61 36 10 14 7

MDA–MB–231/ATCC 21 76 60 58 48 42 11 4 10
HS 578T 12 73 41 56 32 9 19 2 7
BT–549 0 79 67 44 32 30 0 0 0
T–47D 10 56 62 64 35 21 3 10 0

MDA–MB–468 85 100(10) b 97 100(10) b 69 29 0 2 0
a The number reported for the one-dose assay, percentage growth inhibition (PGI), is growth relative to the
no-drug control, and relative to the time zero number of cells; b cytotoxic effect; lethality percent is represented in
brackets; the most active compounds are highlighted in bold and red.

Based on the results presented in Table 2, we noticed that the most effective compounds
are 3d and 3f, which are quaternary salts containing an aromatic chain. Compound 3d
displays a nearly nonselective activity against all cancer cell types (with the exception of
one ovarian cancer cell type and one renal cancer cell type), exhibiting excellent growth
inhibition of 50–100% and significant lethality against four different cancer cell types (non-
small cell lung cancer HOP-92, (8%), melanoma LOX IMVI (24%), SK-MEL-5 (89%) and
breast cancer MDA-MB-468 (10%).

Quaternary salt 3f demonstrates highly selective activity against leukemia, displaying
a 100% growth inhibition and cytotoxicity against four different cell types: HL-60 (TB)
(62% lethality); K-562 (26% lethality); MOLT-4 (3% lethality); SR, (28% lethality). Another
noteworthy quaternary salt activity is 3e, which exhibits a percentage growth inhibition of
80-100% against nine different cell types, including leukemia K-562 (PGI = 84%), non-small
cell lung cancer HOP-92 (PGI = 88%), non-small cell lung cancer NCI-460 (PGI = 81%),
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colon cancer HT29 (PGI = 80%), melanoma SK-MEL-5 (PGI = 100%, L = 32%), melanoma
UACC-257 (PGI = 85%), renal cancer SN12C (PGI = 83%), breast cancer MCF7 (PGI = 82%),
and breast cancer MDA-MB-468 (PGI = 97%). The quaternary salt 3b (with methyl esteric
structure) is the most active in the aliphatic series, displaying good anticancer activity
against the breast cancer MDA-MB-468 cell type (PGI = 85%). Among the cycloadducts, the
most promising results are obtained with cycloadduct 6a (with pyrrolo-benzo[f ]quinoline
structure), exhibiting a PGI of approximately 10-40% against the cancer cells.

The results in Table 2, as well as Table S1 and Table S2 from the Supplementary Materi-
als, demonstrate that quaternary salts exhibit greater anticancer activity than cycloadducts.
Considering the structure–activity relationship (SAR), certain observations could be carried
out regarding the tested compounds:

- Some compounds show high activity against multiple cancer cell lines, while others
have a more selective effect;

- The aromatic quaternary salts 3a–c have better activity than aliphatic salts 3d–g;
- The major factor that affects the biological activity is the existence of the substituent

from the para position of the benzoyl moiety. Thus, the compounds containing a
methyl or a phenyl group exhibit the highest activity. Furthermore, the presence of a
methoxy or chloro moiety seems to have a favorable effect on the activity;

- The activity of quaternary salts is superior to that of HybB[f]Q cycloadducts, which
could be attributed to the presence of a positively charged nitrogen atom in the
molecule;

- Cycloadducts of HybB[f]Q with a pyrrolo-benzo[f]quinoline structure exhibit greater
activity than those with an isoindolo-benzo[f]quinoline structure. This suggests that a
single fused cycle is preferable to two, for achieving anticancer activity.

It is noteworthy to mention that compound 3f has been selected for the NCI 5-
dose screening, which may provide valuable insights into its potential efficacy as an
anticancer agent.

Taking into account our previous research [8,33,37,38], a hypothesis for the mechanism
of action for quaternary salts may involve the interaction with ATP synthase or topoiso-
merase II. In addition, the ADMET parameters of the quaternary salts were previously
presented [8], revealing a low toxicity profile for these compounds.

3. Materials and Methods
3.1. General Information

The reagents and solvents were purchased from commercial sources, being used
without further purification. The melting points (uncorrected) of the new compounds
were determined in open capillary tubes, using a MEL-TEMP (Barnstead International,
Dubuque, IA, USA) Electrothermal apparatus. The nuclear magnetic experiments were
recorded using two different spectrometers, Bruker Avance III 500 MHz/Bruker Avance
DRX 400 MHz, operating at 500/400 MHz for 1H and 125/100 MHz for 13C nuclei (Bruker
Vienna, Austria). Chemical shifts were reported in delta (δ) units (ppm), relative to the
residual peak of solvents (ref: CDCl3/DMSO-d6, 1H: 7.26/2.50 ppm; 13C: 77.16/39.52 ppm)
and coupling constants (J) in Hz. To describe the multiplicity of the 1H–NMR spectra,
abbreviations were used: s = singlet, bs = broad singlet, as = apparent singlet, d = doublet,
ad = apparent doublet, dd = doublet of doublets, add = apparent doublet of doublets,
t = triplet, at = apparent triplet, td = triplet of doublets, atd = apparent triplet of doublets,
dt = doublet of triplets, q = quartet, dq = doublet of quartets, m = multiplet. The IR spectra
were recorded using a FTIR VERTEX 70 Bruker spectrometer (Bruker Optik, Leipzig,
Germania) with an ATR module. The silica gel plates (Merck silica gel 60 F254 plates) were
used for thin layer chromatography (TLC) visualization, carried out using a UV lamp
(λmax = 254 or 365 nm).

Single crystal X-ray diffraction analyses were carried out on a four-circle Rigaku
Supernova dual Cu/Mo micro-focused source diffractometer. The apparatus was equipped
with an EOS-CCD (charge-coupled device) detector with a cryo-system (OxfordCryosystem,
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London, UK), which allows samples to cool to −193.15 ◦C (80 K). The crystal samples
were fixed onto the sample holder using a viscous oil-based cryoprotectant (Paratone®

N). The crystals were investigated at a temperature of 293 K using Cu X-ray radiation
(CuKα = 1.5418 Å) with a 0.82 Å resolution limit. For data collection, cell refinement
and data reduction were carried out using CrysAlisPro171.41.110a software from Rigaku
OD. Structure determination, visualization, and analysis of the molecular crystal structure
were carried out in Olex2 v1.3-ac4 software [43] using ShelXT 2018/2 [44] and ShelXL-
2018/3 [45] to solve and refine the proposed structure models of the compounds through
direct methods.

HR-MS experiments were recorded on a HESI-OrbitrapExploris 120 Mass Spectrometer
(Thermo Fisher, Walthan, MA, USA) in positive mode.

3.2. General Procedure for the Synthesis of the HybB[f]Q 6a–f with pyrrolo–benzo[f]quinoline
Structure

To a solution of benzo[f ]quinolinium salts 3a–c (0.5 mmol) in 15 mLof 1,2–butylene
oxide, 1 mmol of dimethyl acetylenedicarboxylate (DMAD) 4a or 1 mmol of ethyl propiolate
4b was added. The mixture of reactions was refluxed during 3 h, and then stirred for 24 h
at room temperature. The progress of the reactions was monitored by performing thin
layer chromatography (TLC) using a mixture of CH2Cl2:CH3OH (5 mL:0.1 mL) as eluents.
After the reaction was complete, the solvent was removed by means of concentration using
a rotary evaporator, resulting in a crude oil. The desired HybB[f]Q 6a-f (Scheme 3) were
obtained by performing recrystallization from methanol.

Scheme 3. General chemical structure of pyrrolo–benzo[f ]quinolineHybB[f]Q 6a–f.

3.2.1. Dimethyl 3–carbamoylbenzo[f ]pyrrolo[1,2–a]quinoline–1,2–dicarboxylate (6a)

Yellowish powder; yield: 60%; mp 254–256 ◦C; IR, νmax3410, 3301, 3189, 2960, 1722,
1690, 1644, 1468, 1224, 1101 cm−1; 1H NMR (500 MHz, DMSO-d6) δ 8.78 (1H, ad, J = 7.5 Hz,
H–10), 8.67 (1H, ad, J = 9.0 Hz, H–11), 8.18 (6H, m, 2xNH, H–12, H–5, H–6, H–7), 7.77 (1H,
at, J = 6.5 Hz, H–9), 7.70 (1H, ad, J = 8.0 Hz, H–8), 3.86 (6H, s, 3xH–14a, 3xH–15a); 13C NMR
(125 MHz, DMSO-d6) δ 164.9 (C–15), 163.3 (C–16), 163.1 (C–14), 133.8 (C–13), 130.6 (C–4a),
130.2 (C–6a), 129.8 (C–5), 129.2 (C–10a), 128.6 (C–7), 128.0 (C–9),126.8 (C–8), 124.3 (C–3),
123.3 (C–10), 122.7 (C–2), 121.6 (C–11), 120.0 (C–10b), 117.4 (C–12), 116.6 (C–6), 102.8 (C–1),
52.4 (C–15a), 51.6 (C–14a); HESI–HRMS(+): m/z: calcd for [C21H16N2O5Na]+: 399.0956
[M+Na]+; found 399.0947.

3.2.2. Ethyl 3–carbamoylbenzo[f ]pyrrolo[1,2–a]quinoline–1–carboxylate (6b)

Cream powder; yield: 68%; mp 276–278 ◦C; IR, νmax3350, 3176, 2973, 2892, 1694, 1638,
1457, 1234, 1094cm−1; 1H NMR (400 MHz, DMSO-d6) δ 8.78 (1H, d, J = 8.40 Hz, H–10), 8.67
(1H, d, J = 9.6 Hz, H–11), 8.39 (1H, d, J = 9.6 Hz, H–12), 8.29 (1H, d, J = 9.2Hz, H–5),8.10
(2H, dd, J = 9.6 Hz, J = 8.0 Hz, H–6, H–7), 7.78 (1H, t, J = 7.6 Hz, H–9), 7.69 (4H, m, H–8,
H–2, 2xNH), 4.38 (2H, q, J = 7.2 Hz, 2xH–15), 1.40 (3H, t, J = 7.2 Hz, 3xH–16); 13C NMR (100
MHz, DMSO-d6) δ 163.4 (C–17), 163.0 (C–14), 135.9 (C–13), 130.8 (C–4a), 129.8 (C–6a), 128.9
(C–10a),128.4 (C–7), 128.0 (C–6), 127.2 (C–9), 126.0 (C–8), 124.0 (C–3), 122.8 (C–10), 120.8
(C–11), 120.0 (C–2), 119.3 (C–10b), 118.1 (C–5), 117.0 (C–12), 104.5 (C–1), 59.0 (C–15), 13.9
(C–16); HESI–HRMS (+): m/z: calcd for [C20H17N2O3]+: 333.1239 [M+H]+; found 333.1225.
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3.2.3. Trimethyl benzo[f ]pyrrolo[1,2–a]quinoline–1,2,3–tricarboxylate (6c)

Yellow powder; yield: 70%; mp 223–226 ◦C; IR, νmax2991, 2852, 1716, 1693, 1468,
1356, 1175, 1095 cm−1; 1H NMR (500 MHz, CDCl3) δ 8.53 (1H, d, J = 8.5 Hz, H–10), 8.47
(1H, d, J = 9.5 Hz, H–11), 8.39 (1H, d, J = 9.5 Hz, H–12), 7.97 (2H, m, H–5, H–6), 7.93 (1H,
d, J = 7.5 Hz, H–7), 7.70 (1H, atd, J = 8.5 Hz, J = 8.0 Hz, H–9), 7.62 (1H, atd, J = 8.0 Hz,
J = 7.5 Hz, H–8), 4.03 (3H, s, 3xH–15a), 3.98 (3H, s, 3xH–17), 3.94 (3H, s, 3xH–14a); 13C
NMR (125 MHz, CDCl3) δ 166.3 (C–15), 163.4 (C–14), 161.2 (C–16), 138.0 (C–13), 132.0 (C–3),
131.6 (C–4a), 130.9 (C–6a), 129.6 (C–10a), 129.4 (C–6), 128.8 (C–7), 127.9 (C–9), 126.9 (C–8),
123.5 (C–11), 122.9 (C–10), 121.4 (C–10b), 118.8 (C–5), 117.7 (C–12), 117.0 (C–2), 104.5 (C–1),
53.0 (C–15a), 52.5 (C–17), 51.9 (C–14a); HESI–HRMS (+): m/z: calcd for [C22H17NO6K]+:
430.0692 [M+K]+; found 430.0680.

3.2.4. 1–Ethyl 3–methyl benzo[f ]pyrrolo[1,2–a]quinoline–1,3–dicarboxylate (6d)

Yellow powder; yield: 50%; mp 159–161 ◦C; IR, νmax2991, 2838, 1687, 1434, 1347, 1234,
1167, 1068 cm−1; 1H NMR (500 MHz, CDCl3) δ 8.54 (1H, d, J = 8.0 Hz, H–10), 8.44(2H,
as, H–11, H–12), 8.25 (1H, d, J = 9.0 Hz, H–5), 8.04 (1H, s, H–2), 7.94 (2H, at, J = 10.0 Hz,
J = 8.5 Hz, H–6, H–7), 7.68 (1H, t, J = 7.5 Hz, H–9), 7.60 (1H, t, J = 7.5 Hz, J = 7.0 Hz, H–8),
4.41 (2H, q, J = 7.5 Hz, 2xH–15), 1.45 (3H, t, J = 7.5 Hz, 3xH–16); 13C NMR (125 MHz, CDCl3)
δ 164.2 (C–14), 162.3 (C–17), 139.5 (C–13), 132.0 (C–4a), 130.8 (C–6a), 129.7 (C–10a), 128.9
(C–7), 128.7 (C–6), 127.6 (C–9), 127.4 (C–2), 126.6 (C–8), 122.9 (C–10), 122.6 (C–11), 120.9
(C–10b), 119.4 (C–5),119.3 (C–3), 117.8 (C–12), 106.8 (C–1), 60.2 (C–15), 52.2 (C–18), 14.6
(C–16); HESI–HRMS (+): m/z: calcd for [C21H17NO4]+: 347.1157 [M]+; found 347.1145.

3.2.5. 3–Ethyl 1,2–dimethyl benzo[f ]pyrrolo[1,2–a]quinoline–1,2,3–tricarboxylate (6e)

Yellow powder; yield: 65%; mp 190–195 ◦C;IR, νmax 3001, 2830, 1700, 1690, 1462, 1354,
1183, 1071 cm−1; 1H NMR (500 MHz, CDCl3) δ 8.52 (1H, d, J = 8.5 Hz, H–10), 8.47 (1H, d,
J = 10.0 Hz, H–11), 8.39 (1H, d, J = 9.5 Hz, H–12), 7.99 (1H, d, J = 9.0 Hz, H–5), 7.94 (2H, m,
H–6, H–7), 7.69 (1H, t, J = 7.5 Hz, H–9), 7.61 (1H, t,J = 7.5 Hz, H–8), 4.45 (2H, q, J = 7.5 Hz,
2xH–17), 4.03 (3H, s, 3xH–15a), 3.94 (3H, s, 3xH–14a), 1.42 (3H, t, J = 7.5 Hz, 3xH–18);
13C NMR (125 MHz, CDCl3) δ 166.3 (C–15), 163.5 (C–14), 160.8 (C–16), 137.9 (C–13), 131.9
(C–3), 131.6 (C–4a), 130.8 (C–6a), 129.5 (C–10a), 129.3 (C–7), 128.7 (C–6), 127.8 (C–9), 126.9
(C–8), 123.4 (C–11), 122.9 (C–10), 121.3 (C–10b), 119.0 (C–5), 117.7 (C–12), 117.2 (C–2), 104.5
(C–1), 61.8 (C–17), 52.9 (C–15a), 51.9 (C–14a), 14.22 (C–18); HESI–HRMS (+): m/z: calcd for
[C23H19NO6]+: 405.1212 [M]+; found 405.1198.

3.2.6. Diethyl benzo[f ]pyrrolo[1,2–a]quinoline–1,3–dicarboxylate (6f)

Yellowish powder; yield: 55%; mp 179–182 ◦C; IR, νmax2994, 2840, 1688, 1430, 1352,
1233, 1169, 1053 cm−1; 1H NMR (500 MHz, CDCl3) δ 8.56 (1H, d, J = 8.5 Hz, H–10), 8.46
(2H, as, H–11, H–12), 8.26 (1H, d, J = 9.0 Hz, H–5), 8.05 (1H, s, H–2), 7.96 (2H, at, J = 10.0 Hz,
J = 9.0 Hz, H–6, H–7), 7.69 (1H, atd, J = 7.0 Hz, J = 8.5 Hz, H–9), 7.61 (1H, atd, J = 8.0 Hz,
J = 7.5 Hz, H–8), 4.44 (4H, dq, J = 7.0 Hz, 2xH–15, 2xH–18), 1.46 (6H, dt, J = 7.0 Hz, 3xH–16,
3xH–19); 13C NMR (125 MHz, CDCl3) δ 164.3 (C–14), 161.9 (C–17), 139.4 (C–13), 132.0
(C–4a), 130.8 (C–6a), 129.7 (C–10a), 128.9 (C–7), 128.7 (C–6), 127.6 (C–9), 127.2 (C–2),126.6
(C–8), 123.0 (C–10), 122.5 (C–11), 120.9 (C–10b), 119.8 (C–3), 119.5 (C–5), 117.8 (C–12), 106.8
(C–1), 61.2 (C–18), 60.2 (C–15), 14.7 (C–19), 14.5 (C–16); HESI–HRMS (+): m/z: calcd for
[C22H19NO4]+: 361.1314 [M]+; found 361.1307.

3.3. General procedure for the synthesis of the HybB[f]Q 7a–e with isoindolo–benzo[f]quinoline
structure

A solution of 1,4–napthoquinone 5 (0.55 mmol) and trimethylamine (0.75 mmol) in
15 mL of chloroform was added dropwise to a solution of benzo[f ]quinolinium salts 3a–c
(0.5 mmol) or 3f,g (0.5 mmol) in 15 mL chloroform. The obtained reaction mixtures were
refluxed for 10 h, and then stirred for 48 h at room temperature. The completion of
the reactions was monitored by performing thin layer chromatography (TLC) using a
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mixture of CH2Cl2: CH3OH (5 mL: 0.1 mL) as eluents. After completion of the reactions,
the workup was found to be different depending on the rest (R) of HybB[f]Q with an
isoindolo–benzo[f ]quinoline structure 7a–e (Scheme 4). Thus, in case of HybB[f]Q 7a–c
(R = amino or alkoxy moiety) the reaction mixtures were diluted with 40 mL of chloroform
and then extracted three times with water (50 mL). The organic layers were dried over
sodium sulphate, then filtered and evaporated. The obtained residues were crystallized
from methanol.

Scheme 4. General chemical structure of isoindolo–benzo[f ]quinolinesHybB[f]Q 7a–e.

In the case of HybB[f]Q 7d,e (R=4-phenylphenyl or 4-chlorophenyl moiety), the
obtained precipitates were filtered off. The purification was carried out by washing the
precipitate with 100 mL of a mixture of hot solvents (CHCl3: CH2Cl2 = 9: 1, v:v).

Due to the poor solubility of these compounds in chloroform, in order to obtain suitable
samples for the NMR experiments, the solutions of HybB[f]Q 7a and 7c–e in deuterated
chloroform were treated with 1–2 drops of deuterated trifluoroacetic acid (TFA–d).

3.3.1. 9,14–Dioxo–9,14-dihydrobenzo[f ]benzo[5,6]isoindolo[2,1–a]quinoline–15–
carboxamide (7a)

Dark orange powder; yield: 42%; mp > 300 ◦C; IR, νmax 3381, 3206, 3076, 2990, 1663,
1639, 1460, 1243 cm−1; 1H NMR (500 MHz, CDCl3, TFA–d) δ 8.69 (1H, d, J = 9.5 Hz, H–7),
8.60 (1H, d, J = 9.5 Hz, H–8), 8.53 (1H, d, J = 8.5 Hz, H–6), 8.19 (2H, atd, J = 7.5 Hz,
J = 8.5 Hz, H–15, H–12), 8.86(3H, ad, J = 8.5 Hz, 2xNH, H–2), 8.00 (1H, d, J = 8.0 Hz,
H–3),7.96 (1H, d, J = 9.0 Hz, H–1), 7.74 (4H, m, H–14, H–5, H–13, H–4); 13C NMR (125 MHz,
CDCl3, TFA-d) δ 183.2 (C–16), 181.1 (C–11), 167.4 (C–20), 137.9 (C–9), 135.4 (C–14), 134.9
(C–15a), 134.5 (C–11a), 134.4 (C–13), 131.4 (C–1a, C-6a), 130.1 (C–2), 129.4 (C–3), 129.1 (C–5),
128.8 (C–2a), 128.1 (C–12, C–4), 127.6 (C–7), 127.2 (C–15), 126.8 (C–18), 123.1 (C–6), 123.0
(C–6b), 121.8 (C–17), 118.1 (C–1), 117.8 (C–8), 112.2 (C–10); HESI–HRMS (+): m/z: calcd for
[C25H14N2O3Na]+: 413.0902 [M+Na]+; found 413.0892.

3.3.2. Methyl 9,14–dioxo–9,14–dihydrobenzo[f ]benzo[5,6]isoindolo[2,1–a]quinoline–15–
carboxylate (7b)

Dark yellow powder; yield: 62%; mp > 300 ◦C; IR, νmax 3047, 2945, 1723, 1673, 1670,
1548, 1466, 1242, 1213 cm−1; 1H NMR (500 MHz, CDCl3) δ 8.65 (1H, d, J = 9.5 Hz, H–7), 8.62
(1H, d, J = 8.5 Hz, H–6), 8.56 (1H, d, J = 9.5 Hz, H–8), 8.32 (1H, add, J = 9.0 Hz, J = 8.0 Hz,
H–15), 8.25 (1H, add, J = 9.0 Hz, J = 7.5 Hz, H–12), 8.06(1H, d, J = 9.0 Hz, H–2), 7.98 (1H,
d, J = 8.0 Hz, H–3), 7.93 (1H, d, J = 9.5 Hz, H–1), 7.77 (2H, t, J = 6.0 Hz, J = 7.5 Hz, H–5,
H–14),7.72 (1H, atd, J = 7.5 Hz, H–13),7.67 (1H, t, J = 8.0 Hz, J = 7.0 Hz, H–4), 4.25 (1H, s,
H–21); 13C NMR (125 MHz, CDCl3) δ 181.0 (C–11), 179.5 (C–16), 164.6 (C–20), 136.2 (C–15a),
134.9 (C–11a), 134.6 (C–9), 134.0 (C–14), 133,1 (C–13), 131.2 (C–2a), 131.1 (C–2), 131.1 (C–1a),
129.9 (C-6a),129.0 (C–3), 128.5 (C–5), 127.4 (C–4), 127.1 (C–12), 126.9 (C–15), 124.8 (C–18),
123.5 (C–8), 123.5 (C–6), 122.0 (C–6b), 120.3 (C–17), 119.0 (C–7), 115.5 (C–1), 111.6 (C–10),
54.1 (C–21); HESI–HRMS (+): m/z: calcd for [C26H15NO4Na]+: 428.0898 [M+Na]+; found
428.0890.
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3.3.3. Ethyl 9,14–dioxo–9,14–dihydrobenzo[f ]benzo[5,6]isoindolo[2,1–a]quinoline–15–
carboxylate (7c)

Orange powder; yield: 61%; mp > 300 ◦C; IR, νmax3040, 2938, 1720, 1670, 1663, 1540,
1468, 1253, 1200 cm−1; 1H NMR (500 MHz, CDCl3, TFA–d) δ 8.31 (1H, d, J = 9.5 Hz, H–7),
8.24 (1H, d, J = 8.5 Hz, H–6), 8.14 (1H, d, J = 9.5 Hz, H–8), 8.02 (1H, d, J = 7.0 Hz, H–15),
7.96 (1H, d, J = 7.0 Hz, H–12), 7.90(1H, d, J = 9.5 Hz, H–2), 7.65 (4H, m, H–3, H–1, H–13,
H–14), 7.44 (1H, t, J = 7.5 Hz, H–5), 7.30 (1H, t, J = 7.5 Hz, H–4), 4.75 (2H, q, J = 7.5 Hz,
H–21), 1.55 (3H, t, J = 7.5 Hz, H–22); 13C NMR (125 MHz, CDCl3, TFA-d) δ 182.1 (C–16),
180.2 (C–11), 164.5 (C–20), 135.4 (C–9), 135.3 (C–11a), 135.0 (C–13), 134.2 (C–15a), 134.0
(C–14), 131.9 (C–2), 130.9 (C–1a), 130.7 (C–6b), 129.2 (C-6a), 128.8 (C–3), 128.7 (C–5), 127.6
(C–4, C–15), 127.2 (C–12), 125.4 (C–7), 123.9 (C–18), 122.8 (C–6), 121.8 (C–2a), 121.4 (C–17),
117.9(C–8), 114.9 (C–1), 110.5 (C–10), 64.8 (C–21), 13.7 (C–22); HESI–HRMS (+): m/z: calcd
for [C27H17NO4K]+: 458.0794 [M+K]+; found 458.0781.

3.3.4. 15–([1,1’–Biphenyl]–4–carbonyl)benzo[f ]benzo[5,6]isoindolo[2,1–a]quinoline–9,14–
dione (7d)

Orange powder; yield: 40%; mp> 300 ◦C; IR, νmax2980, 1661, 1633, 1545, 1464, 1243,
1192 cm−1; 1H NMR (500 MHz, CDCl3, TFA–d) δ 8.79 (1H, d, J = 9.5 Hz, H–7), 8.69 (1H,
d, J = 9.5 Hz, H–8), 8.63 (1H, d, J = 8.5 Hz, H–6), 8.25 (1H, d, J = 7.5 Hz, H–15), 8.14 (2H,
d, J = 8.0 Hz, 2xH–22), 8.01 (1H, d, J = 7.0 Hz, H–12), 7.92 (2H, t, J = 9.5 Hz, J = 9.0 Hz,
H–2, H–4), 7.83 (1H, t, J = 7.5 Hz, H–14), 7.76 (5H, m, H–5, 2xH–23, H–1, H–13), 7.65 (1H,
d, J = 7.5 Hz, H–3), 7.64 (2H, d, J = 7.5 Hz, 2xH–26), 7.44 (2H, t, J = 7.5 Hz, J = 7.0 Hz,
2xH–27), 7.43 (1H, t, J = 7.5 Hz, H–28); 13C NMR (125 MHz, CDCl3, TFA-d) δ 193.0 (C–20),
183.0 (C–11), 181.6 (C–16), 149.6 (C–24), 139.3 (C–25), 137.4 (C–9), 135.9 (C–15a), 135.7
(C–14), 134.7 (C–1a), 134.6 (C–13), 134.5 (C–11a), 133.6 (C–21), 132.6 (C–4), 131.3 (2xC–22,
C–6b), 129.9 (C-2a), 129.3 (2xC–27, C–28), 129.2 (C–5, C–2), 128.5 (2xC–23), 128.3 (C–3),
128.2 (C–12), 128.0 (C–18), 127.7 (C–15), 127.6 (2xC–26), 126.8 (C–7), 125.7 (C–17), 123.2
(C–6), 122.8 (C–6a), 118.6 (C–8), 116.3 (C–1), 111.5 (C–10); HESI–HRMS (+): m/z: calcd for
[C37H21NO3K]+: 566.1158 [M+K]+; found 566.1142.

3.3.5. 15–(4–Chlorobenzoyl)benzo[f ]benzo[5,6]isoindolo[2,1–a]quinoline–9,14–dione (7e)

Orange powder; yield: 45%;mp> 300 ◦C; IR, νmax2991, 1662, 1634, 1543, 1460, 1245,
1182 cm−1; 1H NMR (500 MHz, CDCl3, TFA–d) δ 8.80 (1H, d, J = 9.5 Hz, H–7), 8.71 (1H, d,
J = 9.5 Hz, H–8), 8.65 (1H, d, J = 8.5 Hz, H–6), 8.27 (1H, d, J = 8.0 Hz, H–15), 8.07 (1H, d,
J = 8.5 Hz, H–12), 7.94 (4H, m, 2xH–22, H–3, H–2), 7.83 (2H, m, H–14, H–5), 7.75 (1H, d,
J = 7.5 Hz, H–13), 7.70 (3H, m, H–4, 2xH–23), 7.65 (1H, d, J = 9.0 Hz, H–1); 13C NMR (125
MHz, CDCl3, TFA-d) δ 191.6 (C–20), 182.6 (C–11), 181.6 (C–16), 137.4 (C–9), 135.8 (C–15a),
135,5 (C–14), 135.1 (C–21), 134.5 (C–13), 134.4 (C–11a), 133.3 (2xC–23), 132.4 (C–2), 132.2
(C–1a), 131.7 (2xC–22), 131.3 (C–6b), 131.2 (C–24), 129.9 (C-6a), 129.3 (C–3), 129.2 (C–5), 128.1
(C–4, C–12), 127.6 (C–15), 127.3 (C–18), 126.6 (C–7), 125.9 (C–17), 123.3 (C–6), 122.8 (C–2a),
118.6 (C–8), 116.1 (C–1), 111.6 (C–10); HESI–HRMS (+): m/z: calcd for [C31H16ClNO3Na]+:
508.0716 [M+Na]+; found 508.0703.

3.4. Cell Proliferation Assay

The in vitro biological tests were performed by the National Cancer Institute (NCI,
Bethesda, MD, USA), under the Developmental Therapeutics Program (DTP).

For over half a century, the Developmental Therapeutics Program (DTP) at NCI has
effectively led applications of late-stage preclinical drugs through the critical stages of
development. Thus, this program has succeeded in the discovery and development of over
70% of the anticancer drugs used in current therapy [46].

The operation of this screen utilizes 60 different human tumor cell lines, representing
leukemia, melanoma and cancers of the lung, colon, brain, ovary, breast, prostate, and
kidney [47]. The aim is to prioritize for further evaluation synthetic compounds or natural
product samples showing selective growth inhibition or cell killing of particular tumor cell
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lines. This screen is unique in that the complexity of a 60-cell line dose response produced
by a given compound results in a biological response pattern which can be utilized in
pattern recognition algorithms via COMPARE program [42].

The first screening step is the evaluation of all compounds against the 60 cell lines at a
single dose of 10–5 M. The output from the single-dose screen is reported as a mean graph
and is available for analysis using the COMPARE program.

The Standard NCI/DTP Methodology of the In Vitro Cancer Screen [48]

All 60 human tumor cell lines of cancer were grown in an RPMI (Roswell Park Memo-
rial Institute) 1640 medium consisting of 5% fetal bovine serum and 2 × 10−3 M L-glutamine.
For a usual screening test, the cancer cells are inoculated in 100 µL, and into 96 well mi-
crotiter plates (at different plating densities from 5000 to 40,000 cells/well based on the
duplication time of specific cell lines). After the inoculation of cells, incubation of the mi-
crotiter plates is performed 24 h prior to the addition of experimental drugs, under specific
conditions: 37◦ C, 5% of carbon dioxide, 95% of air and 100% of relative humidity. For each
cell line, after 24 h, two plates are fixed in situ with TCA, to establish measurements of each
cell population at the time of adding the testing compound (Tz). The testing compounds
are solubilized in DMSO (dimethyl sulfoxide) at 400–fold the desired final maximum test
concentration and stored in a freezer before use. After the addition of the testing com-
pound, a part of the frozen concentrate is defrosted and diluted 2-fold compared to the final
concentration, with a medium containing 50 µg/mL gentamicin. To the microtiter wells
containing 100 µL of the medium, 100 µL of the testing compound is also added, resulting
in the required final drug concentration (10–5 M). After adding the testing compound, the
microtiter plates are incubated for another 48 h under the conditions previously reported.
In the case of adherent cells, the test is finished by the addition of cold TCA. The cancer
cells are fixed in situ by adding 50 µL of cold 50% (w/v) TCA (final concentration, 10%
TCA), and then incubated at 4 ◦C for 60 min. The supernatant is discarded of, and the
plates are washed 5 times with tap water and air dried. After drying, 100 µL of a fluorescent
dye (sulforhodamine B) solution (0.4% (w/v) in 1% acetic acid) is added to each well, and
plates are incubated at 25 ◦C for 10 min. The unbound fluorescent dye is removed by
washing 5 times with an acetic acid solution of 1%, and then the plates are dried in air. The
bound fluorescent dye is solubilized with a 10 × 10−3 M trizma base, and the absorbance
is measured at a wavelength of 515 nm using an automated plate reader. The method is
identical for the suspension cells, except that the test is completed by fixing settled cells at
the base of the wells by adding 50 µL of TCA 80% solution (final concentration, 16% TCA).

Using the seven absorbance measurements, the percentage growth inhibition (PGI) is
calculated as: [(Ti – Tz)/(C – Tz)] × 100 (for concentrations for which Ti >/= Tz);

[(Ti – Tz)/Tz] × 100 (for concentrations for which Ti < Tz).
Where Tz = time zero, C = control growth, Ti = test growth in the presence of the drug

at the concentration level.
For each testing compound, three dose–response parameters are calculated.

4. Conclusions

In summary, we reported the synthesis and anticancer activity of some newly
benzo[f ]quinoline derivatives. A two-step synthesis was used to obtain the compounds,
involving a quaternization reaction followed by a [3+2] dipolar cycloaddition, resulting
in eleven novel HybB[f]Q cycloadducts. The HybB[f]Q compounds were characterized
by FTIR, NMR and X-ray diffraction with monocrystals. Eighteen benzo[f ]quinoline
compounds, including quaternary salts and cycloadducts, were selected and tested for
anticancer properties by the NCI in a single-dose assay (10–5 M). Compound 3f has been se-
lected for a further five-dose evaluation of its potential as an anticancer agent. Two aromatic
quaternary salts—3d, with an excellent PGI in the area of 50–100% and very good lethality
against four different cancer cell types: Non-small Cell Lung Cancer HOP-92, Melanoma
LOX IMVI, Melanoma SK-MEL-5 and Breast Cancer MDA-MB-468; and 3f, showing high
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selectivity against leukemia HL-60 (TB), K-562, MOLT-4 and SR—were the most active
compounds. The SAR correlations indicate that the presence of a positive nitrogen atom in
the molecule and an aromatic R residue are favorable for anticancer activity. Furthermore,
the substituent in the para position of the benzoyl residue is the major factor influencing
this activity, with methyl and phenyl groups showing the most interesting activity. The
synthesized compounds have promising anticancer activity, and quaternary salts 3d and 3f
are potential candidates for further drug development.
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