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Abstract: Skin cancer is a severe and potentially lethal disease, and early detection is critical for
successful treatment. Traditional procedures for diagnosing skin cancer are expensive, time-intensive,
and necessitate the expertise of a medical practitioner. In recent years, many researchers have
developed artificial intelligence (AI) tools, including shallow and deep machine learning-based
approaches, to diagnose skin cancer. However, AI-based skin cancer diagnosis faces challenges
in complexity, low reproducibility, and explainability. To address these problems, we propose a
novel Grid-Based Structural and Dimensional Explainable Deep Convolutional Neural Network for
accurate and interpretable skin cancer classification. This model employs adaptive thresholding
for extracting the region of interest (ROI), using its dynamic capabilities to enhance the accuracy of
identifying cancerous regions. The VGG-16 architecture extracts the hierarchical characteristics of
skin lesion images, leveraging its recognized capabilities for deep feature extraction. Our proposed
model leverages a grid structure to capture spatial relationships within lesions, while the dimensional
features extract relevant information from various image channels. An Adaptive Intelligent Coney
Optimization (AICO) algorithm is employed for self-feature selected optimization and fine-tuning
the hyperparameters, which dynamically adapts the model architecture to optimize feature extraction
and classification. The model was trained and tested using the ISIC dataset of 10,015 dermascope
images and the MNIST dataset of 2357 images of malignant and benign oncological diseases. The
experimental results demonstrated that the model achieved accuracy and CSI values of 0.96 and 0.97
for TP 80 using the ISIC dataset, which is 17.70% and 16.49% more than lightweight CNN, 20.83%
and 19.59% more than DenseNet, 18.75% and 17.53% more than CNN, 6.25% and 6.18% more than
Efficient Net-B0, 5.21% and 5.15% over ECNN, 2.08% and 2.06% over COA-CAN, and 5.21% and
5.15% more than ARO-ECNN. Additionally, the AICO self-feature selected ECNN model exhibited
minimal FPR and FNR of 0.03 and 0.02, respectively. The model attained a loss of 0.09 for ISIC and
0.18 for the MNIST dataset, indicating that the model proposed in this research outperforms existing
techniques. The proposed model improves accuracy, interpretability, and robustness for skin cancer
classification, ultimately aiding clinicians in early diagnosis and treatment.

Keywords: explainable convolutional neural network; skin cancer; grid-based structural pattern;
VGG-16; adaptive intelligent coney optimization algorithm

1. Introduction

Skin cancer is a prominent form of cancer that significantly impacts patient survival.
Early detection of skin cancer margins is essential to prevent cancer progression to advanced
stages and reduce cancer-related fatalities [1]. According to the cancer data provided by the
American Cancer Society, the mortality rate for skin cancer is 75%, making it a significant
global cancer [2]. Moreover, the World Health Organization (WHO) reports that the
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diagnosis of skin cancers worldwide affects one-third of the world population [3]. Also,
skin cancers have been increasing constantly over the past few decades. The medical
statistics in 2020 stated that 1.5 million patients were diagnosed with skin cancer, 325,000
were diagnosed with melanoma, and 57,000 deaths were reported worldwide due to this
condition [3,4]. In 2022, the United States reported 97,920 melanoma cases [4]. As per
the scientific reports, dangerous UV rays from the sun damage skin cells, resulting in
melanoma, thereby increasing the chances of skin cancer. Other factors influencing the
development of malignant cells include smoking, alcohol, infections, and the surrounding
environment [5].

Skin cancer occurs by the development of tumors in the epidermis, which can be
classified as either benign or malignant. Among the types of skin cancers, malignant tumors
and pre-malignant tumors are dangerous, resulting in the fatality of affected patients [6].
Malignancy leads to the rapid proliferation of malignant cells, impacting nearby tissues [7].
Furthermore, malignant tumors can divide themselves and travel to other body parts
through the lymphatic system, which can lead to the formation of a new tumor in another
organ. Unlike malignant tumors, benign tumors never invade or affect nearby tissues [7].
When malignant tumors are left untreated, the tumor will spread all over the body, leading
to the death of the patient. One of the most commonly prevailing skin cancers is basal
cell carcinoma, which, though slower in growth, badly affects the tissues around it and
destroys them [8].

For skin cancer screening, dermatologists use macroscopic and dermascopic images
with good resolution that visualize the skin features, which assists in diagnosing skin can-
cer [9]. Furthermore, to support the visual features, MetaNet, a multiplication method that
generates coefficients of the skin from a one-dimensional convolution sequence, promotes
the accuracy of skin cancer classification due to the finely refined visual features [10]. The
accuracy of skin cancer detection using computer vision technology and machine learning
methods is worth investigating [11]. Such advanced technologies concentrate on lesion
detection, lesion segmentation, and the detection of skin diseases [12]. Moreover, the meth-
ods of feature extraction and feature representation support the accuracy of detection [13].
Advances in machine and deep learning methods increase the accuracy of skin cancer
detection [14].

Additionally, focusing on the patient’s history and genetic background impacts the
detection accuracy and learning from the skin features, promoting accurate detection [15].
Despite these significant advancements and achievements, existing approaches often suffer
from challenges. For example, Ahmed Magdy [14] developed two methods, which are a
pre-trained deep neural network with K-nearest neighbor (PDNN-KNN) and Alexnet grey
wolf optimization (AlexGWO). Both models achieved a very high performance compared
to most existing methods. However, the time taken for the classification was very high.
Lisheng Wei et al. [16] introduced a lightweight CNN model using segmentation and
feature extraction to improve the accuracy of skin cancer classification. However, the
model’s limited efficiency stems from its reliance on data; a sizable dataset is required for
model training.

A model’s efficacy is diminished if the segmentation image size is excessively huge.
Andre et al. [17] implemented a MetaBlock attention-based framework for skin cancer
classification that utilizes metadata to improve the feature map extracted from the images.
However, metadata only has an advantage in the training phase for data available in the
domain. Combining metadata and the CNN model increases the model’s size, increasing
the system’s complexity. Shancheng Jiang et al. [18] utilized a DRANet model that leverages
an attention mechanism and a deep learning model. This model performed better than the
other former approaches with less parameter size and computational complexity. However,
data augmentation has increased the computational cost of deep learning models. The
attention mechanism utilized in that research raises the model’s complexity and instability,
producing errors.
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Azhar Imran et al. [19] employed an ensemble approach for skin cancer that inte-
grates the VGG, ResNet, and Caps Net models, and demonstrated that the ensemble
model performed better than the individual learners in decision-making and perceptive
issues. However, ensemble methods have limitations, such as large data requirements and
computational complexity.

Adekanmi A. Adegun and Serestina Viriri [20] utilized a CAD framework that com-
bines an encoder-decoder segmentation network and the FCN-based DenseNet classifica-
tion network, which enhanced the model’s performance and identified complex features.
However, DenseNet has a complex architecture that increases computational costs and
processing times. Krishna Mridha et al. [21] introduced an optimized CNN model with
Grad CAM; the model deals with typical skin cancer problems and helps doctors diagnose
skin cancer early. However, the interpretability score of the model is low; to increase the
interpretability score, additional transformers are needed. Lubna Riaz et al. [22] designed
CNN and LBP architecture to extract an image’s high-level features, enhancing the model’s
classification accuracy. However, that model requires a large amount of training data;
more dimensionality reduction algorithms are needed for better results. Karar Ali et al. [9]
modeled an Efficient B0 and transfer learning-enabled CNN model, showcasing better
performance than other existing approaches. That model has more complexity and is prone
to overfitting. SBXception, a shallower and broader version of the Xception network, was
developed by Abid Mehmood et al. [23] for classifying skin cancer. Decreasing the depth
and increasing the width of the architecture improved the performance of Xception with
high accuracy. However, that model only considers seven different kinds of skin lesions,
and there might be problems with generalizability.

Yonis Gulzar and Sumeer Ahmad Khan [24] provided a detailed comparison research
of U-Net and attention-based algorithms for image lesion picture segmentation, which
will assist in identifying skin lesions. TransUNet’s hybrid architecture performs better
than previous benchmarking techniques in both qualitative and quantitative aspects. The
TransUNet technique is resilient to noise and low contrast, but there may be interpretability
issues. Sumeer Ahmad Khan et al. [25] developed hand-crafted HSIFT features to classify
medical images. In terms of the ability to discriminate between features while displaying
category labels, the developed HSIFT feature performs better than CNN’s feature, but
there are still some misclassifications. Shahnawaz Ayoub et al. [26] developed a model to
augment the dataset using GAN, solving the imbalanced dataset issue. However, the GAN
model has difficulties regarding non-convergence and mode collapse. Hardik Nahata and
Satya P. Singh [27] developed a CNN model for skin cancer classification. That model shows
efficient performance with a reduced cost, but the requirement for computational resources
is high. Nadia Smaoui Zghal and Nabil Derbel [28] created an automated approach for
detecting pigmented skin lesions. Although that model’s excellent accuracy indicates its
dependability, generalizability problems could arise. V. Srividhya et al. [29] created a CNN
model for the classification of skin lesions. Despite the method’s compelling performance
in classification, misclassification still occurred. Therefore, this research proposes a deep
learning model to solve the high computational time issues.

Additionally, traditional CNNs primarily focus on extracting local features, neglecting
the crucial spatial relationships within the lesions. Mostly, these models rely on manually
designed features, which are time-consuming and subjective and limit the model’s ability to
learn complex patterns. Also, the intricate internal mechanisms of deep models frequently
remain obscure, impeding trust and hindering clinical application.

We propose a novel Grid-Based Structural and Dimensional (GBSD) Explainable Deep
CNN architecture to address these challenges for accurate and interpretable skin cancer
classification. A systematic diagram of the proposed framework is shown in Figure 1.
GBSD leverages the following key innovations of this study:

1. Develop a novel Grid-Based Structural Feature Extraction approach that captures the
spatial relationships between lesion pixels within a grid structure, enabling the model
to learn complex patterns and context-aware features. The grid-based structural
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patterns contain nine gray level values, which reduce the intensity variations and
improve the model’s performance.

2. Construct a Dimensional Feature Learning to extract relevant features from different
image channels, such as color and texture, enriching the model’s lesion representation
and improving discrimination between cancer types.

3. Construct a Self-Featured Optimized Explainability technique that dynamically ad-
justs the network architecture by selecting the most informative features for each
image, leading to a more interpretable model and improved classification accuracy.
The self-feature selected ECNN model detects and classifies skin cancer; the model’s
hyperparameters are tuned by the novel AICO optimization algorithm, which aims to
detect skin cancer accurately.

4. Develop an adaptive intelligent coney optimization algorithm (AICO) by combining
the adaptive intelligent hunt characteristics of coyotes with the intelligent survival
trait characteristics of coneys to improve convergence speed and enhance classifica-
tion accuracy.

5. The utilization of the adaptive intelligent coney optimization algorithm enables the
self-feature selected ECNN to adjust the classifier parameters effectively. The self-
feature selected ECNN leverages the AICO algorithm. It leads to an improved capabil-
ity of the classifier in detecting skin cancer; the system can handle a wide range of skin
cancer manifestations and improve diagnostic accuracy by using the AICO algorithm.
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The remaining sections of this manuscript are structured as follows: the experimental
results and discussion for the skin cancer classification are presented in Sections 2 and 3,
the AICO self-feature selected ECNN model’s methodology is discussed in Section 4, and
Section 5 contains the conclusion and future scope of the research.

2. Results

Our proposed novel Grid-Based Structural and Dimensional Deep CNN (GBSD)
architecture demonstrated remarkable performance in the classification of skin cancer,
outperforming current techniques and providing a crucial understanding of lesion charac-
teristics. This section explains the experimental results obtained from the proposed model
for skin cancer classification.

2.1. Experimental Setup

This section presents the empirical findings of the proposed AICO self-featured se-
lected ECNN. The proposed model is evaluated at each stage using qualitative and proce-
dural methodologies. The experimental tests in this study were conducted using Python
3.7 on a 4 GHz Intel Core i7 CPU running at a rate of 1.80 GHz, with 2304 MHz, four cores,
and eight logical processors. The testing also utilized an NVIDIA K80 GPU with 12 GB of
RAM and a speed of 4.1 TFLOPS.

2.2. Dataset Description

The experiments were performed on two datasets, HAM10000 and ISIC, obtained from
the ISIC repository. The images in the datasets have been classified as benign and malignant.

(a) Skin Care MNIST; HAM1000 [30]: The dataset comprises 10,015 dermascope images,
encompassing a comprehensive range of significant diagnostic categories.

(b) The skin cancer ISIC dataset [31] comprises 2357 images of malignant and benign
oncological diseases from The International Skin Imaging Collaboration (ISIC). The
images were categorized based on the ISIC classification, and each subset contains
an equal number of images, except for melanomas and moles, which have a slightly
higher representation.

2.3. Performance Metrics

This study’s skin lesion classification model was evaluated for effectiveness using
performance indicators, including accuracy, the critical success index (CSI), false positive
rate (FPR), and false negative rate (FNR) [32].

(a) Accuracy

Accuracy is the proportion of correctly identified skin cancer lesions to the total
number of predictions made by the model:

accuracy =
tp + tn

tp + tn + f p + f n
(1)

(b) Critical Success Index (CSI)

CSI is also known as the threat score. It is the verification measure of the total number
of correctly predicted skin cancers (hits) to the total number of predictions made by the
model, including false predictions:

CSI =
tp

tp + f p + f n
(2)

(c) False Positive Rate (FPR)
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FRP is defined as the proportion of negative cases incorrectly identified as positive
cases in the data, which is mathematically represented as:

FPR =
f p

f p + tn
(3)

(d) False Negative Rate (FNR)

FNR is defined as the proportion of positive cases incorrectly predicted to be negative
cases in the data, which is mathematically calculated as:

FNR =
f n

tp + f n
(4)

2.4. Experimental Outcomes

The primary objective of this study was to develop a model for classifying skin cancer
using dermascope images. Firstly, skin lesion images were collected from the publicly
available datasets MNIST HAM10000 and ISIC, consisting of dermascope images from
distinct populations. Next, in the pre-processing phase, adaptive threshold ROI extraction
was performed for image quality enhancement. The pre-processed image was fed as input
to the feature extraction module, which consisted of a grid-based structural pattern, grid-
based directional pattern, statistical features, and VGG16 for extracting the valuable features
from the image. The extracted features were fed into the self-feature selected optimized
explainable deep convolutional neural network model for skin cancer classification. The
model’s performance was optimized by the novel coyote coney optimization algorithm
inspired by coyotes’ and coneys’ adaptive and hunting traits. The optimization algorithm
fine-tunes the classifier’s hyperparameters and improves the model’s classification accuracy.

The experimental results of the GBSD-EDCNN self-feature selected optimizer are
depicted in Figure 2, which illustrates the original image, adaptive region of interest
(ROI) extracted image, local binary pattern (LBP), local directional pattern (LDP), VGG 16,
statistical feature extracted images, Grad CAM++, Full Grad, and the fusion output images.
The LBP and LDP features were extracted with a grid-based structural pattern. Here, the
grid-based structural pattern takes every 3 × 3 matrix, which helps classify skin cancer
using the skin lesion images. LBP has a high tolerance regarding illumination changes,
and LDP is robust in noisy situations. The extraction of statistical features helps accurately
classify images since the mean, median, and mode of the images are evaluated, and the
images with the same values can be classified as the same class. The features extracted
from VGG 16, a deep architecture, are more representative of the image content than those
extracted from shallower architectures. So, the extraction of these features helps to improve
the image classification of the model.
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2.5. Feature Extraction Phase Using VGG 16

The feature extraction step is essential for the effectiveness of convolutional neural net-
works (CNNs) in image classification applications. In this stage, the network can recognize
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and isolate significant characteristics from the input image, such as edges, textures, and
forms. These features are subsequently employed by the subsequent layers for classification.
We have performed feature extraction using three pre-trained models, namely, ResNet101,
AlexNet, and VGG16. VGG16 performed higher in accuracy, with a level of 0.95, compared
to the other models. VGG16 uses deeper convolutional neural networks (CNNs) with
stacked layers of small filters (3 × 3). These enable them to extract complex features and
achieve high accuracy on tasks like image classification.

VGG16’s deep architecture, while demanding in terms of energy, has proven to be
highly effective in image classification tasks. Its accuracy and superior feature extraction
capabilities make it a more suitable choice for our specific objective of skin cancer classifica-
tion. The features extracted by VGG16 capture intricate patterns and subtle characteristics
within skin lesion images, contributing to improved classification accuracy.

While more energy-efficient models such as MobileNetV2 and Xception exist, the
trade-off between computational efficiency and the representative power of the extracted
features led us to choose VGG16. The depth of the architecture allows it to capture complex
hierarchical features crucial for accurate skin cancer classification. Table 1 depicts the
performance accuracy at the feature extraction phase. All models demonstrated a gradual
increase in accuracy as the number of epochs rose, and the models achieved higher accuracy
on the MNIST dataset than the ISIC. This is due to MNIST images being more standardized
than ISIC images. Table 1 depicts that VGG16 consistently achieved higher accuracy when
compared to the other models.

Table 1. Accuracy Comparison of pre-trained models at the Feature Extraction Phase for ISIC
and MNIST.

Epochs
ISIC MNIST

ResNet101 AlexNet MobileNetV2 Xception VGG16 ResNet101 AlexNet MobileNetV2 Xception VGG16

40 0.82 0.73 0.79 0.81 0.86 0.83 0.72 0.81 0.84 0.84

50 0.83 0.74 0.80 0.82 0.87 0.84 0.73 0.82 0.85 0.85

60 0.84 0.76 0.81 0.83 0.88 0.85 0.74 0.82 0.86 0.86

70 0.85 0.78 0.82 0.84 0.89 0.86 0.77 0.83 0.87 0.87

80 0.86 0.80 0.83 0.85 0.92 0.86 0.78 0.84 0.87 0.90

100 0.87 0.81 0.84 0.86 0.95 0.87 0.79 0.84 0.88 0.95

2.6. Performance Analysis of AICO Self-Feature Selected ECNN Model with TP

The performance analysis of the AICO self-feature selected ECNN model with TP 80
concerning the accuracy, CSI, FPR, and FNR for the datasets ISIC and MNIST is illustrated
in Table 2. Figure 3a,b show the confusion matrixes for the ISIC and MNIST datasets.

Table 2. Performance analysis of TP for the ISIC dataset.

Datasets Methods
TP 80

Accuracy CSI FPR FNR

ISIC

AICO self-feature selected ECNN with Epoch = 20 0.91 0.92 0.09 0.07

AICO self-feature selected ECNN with Epoch = 40 0.92 0.93 0.07 0.06

AICO self-feature selected ECNN with Epoch = 60 0.94 0.95 0.06 0.04

AICO self-feature selected ECNN with Epoch = 80 0.95 0.96 0.05 0.03

AICO self-feature selected ECNN with Epoch = 100 0.96 0.97 0.03 0.02
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Table 2. Cont.

Datasets Methods
TP 80

Accuracy CSI FPR FNR

Skin Cancer
MNIST

AICO self-feature selected ECNN with Epoch = 20 0.90 0.91 0.09 0.08

AICO self-feature selected ECNN with Epoch = 40 0.92 0.93 0.08 0.06

AICO self-feature selected ECNN with Epoch = 60 0.93 0.94 0.06 0.05

AICO self-feature selected ECNN with Epoch = 80 0.95 0.96 0.05 0.03

AICO self-feature selected ECNN with Epoch = 100 0.96 0.97 0.04 0.02
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For the ISIC dataset, the AICO self-feature selected ECNN model attained an accuracy
of 0.91 for epoch 20, 0.92 for epoch 40, 0.94 for epoch 60, 0.95 for epoch 80, and 0.96 for
epoch 100. The CSI value attained by the AICO self-feature selected ECNN model for
epoch 20 was 0.92, for epoch 40 was 0.93, for epoch 60 was 0.95, for epoch 80 was 0.96, and
for epoch 100 was 0.97. The AICO self-feature selected ECNN model attained minimal FPR
values such as 0.09, 0.07, 0.06, 0.05, and 0.03 for the respective epochs 20, 40, 60, 80, and 100.
The FNR value of the AICO self-feature selected ECNN model for epoch 20 was 0.07, for
epoch 40 was 0.06, for epoch 60 was 0.04, for epoch 80 was 0.03, and for epoch 100 was 0.02,
as shown in Figure 4.
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The AICO self-feature selected ECNN model’s performance assessment using the
MNIST dataset attained valuable results, showing that the accuracy of the model for the
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epochs 20, 40, 60, 80, and 100 were 0.90, 0.92, 0.93, 0.95, and 0.96 respectively. The CSI
value attained by the AICO self-feature selected ECNN model for epoch 20 was 0.91, for
epoch 40 was 0.93, for epoch 60 was 0.94, for epoch 80 was 0.96, and for epoch 100 was 0.97.
For epochs 20, 40, 60, 80, and 100, the AICO self-feature selected ECNN model yielded a
minimal FPR value, such as 0.09, 0.08, 0.06, 0.05, and 0.04, respectively. The FNR value
of the AICO self-feature selected ECNN model for epoch 20 was 0.08, for epoch 40 was
0.06, for epoch 60 was 0.05, for epoch 80 was 0.03, and for epoch 100 was 0.02, as shown in
Figure 5.
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2.7. Comparative Analysis with the Current State-of-the-Art Methods

Traditional approaches such as EfficientNet-B0 [9], lightweight CNN [16], DenseNet [20],
CNN [21], ECNN, COA-ECNN, and ARO-ECNN were used for comparative analysis.

2.7.1. Comparative Analysis with TP for the ISIC Dataset

The comparative assessment of the AICO self-feature selected ECNN with the tradi-
tional approaches in terms of accuracy, FPR, and FNR for the ISIC dataset is depicted in
Figure 6. The accuracy attained by the AICO self-feature selected ECNN model was 0.96,
which was improved by 18.26% over lightweight CNN, 21.51% over DenseNet, 19.52% over
CNN, 6.86% over EfficientNet-B0, 5.49% over ECNN, 2.43% over COA-ECNN, and 5.17%
over ARO-ECNN. The AICO self-feature selected ECNN model achieved 0.97 CSI, which
showed improvements of 16.54%, 19.76%, 17.8%, 6.79%, 5.43%, 2.40%, and 5.12% over the
existing methods lightweight CNN, DenseNet, CNN, EfficientNet-B0, ECNN, COA-ECNN,
and ARO-ECNN, respectively. The FPR value of the AICO self-feature selected ECNN
model was 0.03; when compared with the conventional approaches, the FPR value was
reduced due to the increased TP value. Similarly, when compared with traditional ap-
proaches such as lightweight CNN, DenseNet, CNN, Efficient Net B0, ECNN, COA-ECNN,
ARO-ECNN, and AICO-ECNN, the novel AICO self-feature selected ECNN model attained
an FNR value of 0.02 with TP 80, which shows that the proposed model minimizes the FPR
and FNR rates with increasing TP values and thus its lower FPR and FNR values enhance
the model’s classification accuracy.

2.7.2. Comparative Analysis with K-Fold for the ISIC Dataset

Figure 7 displays the comparative analysis of the AICO self-feature selected ECNN
model with the ISIC dataset concerning the accuracy, CSI, FPR, and FNR with k-fold
value 10. When compared with the conventional techniques like lightweight CNN, DenseNet,
CNN, Efficient Net-B0, ECNN, COA-ECNN, and ARO-ECNN, the accuracy improvement
of the AICO self-feature selected ECNN model was 17.65%, 20.46%, 18.79%, 5.98%, 5.8%,
and 4.3% respectively. The CSI value attained by the AICO self-feature selected ECNN
model was 0.96, which is far better than the conventional techniques. The CSI improvement
percentage over lightweight CNN was 16.05%, DenseNet was 18.84%, CNN was 17.18%,
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Efficient Net-B0 was 5.96%, ECNN was 5.78%, COA-ECNN was 4.28, and ARO-ECNN was
5.69%. The respective FPR and FNR values of the AICO self-feature selected ECNN model
were 0.044 and 0.04, which shows that the proposed model produces more minimum FPR
and FNR values than the existing research. The minimum FPR and FNR values indicate
that the AICO self-feature selected ECNN model accurately classifies skin cancer better
than conventional methods.
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2.7.3. Comparative Analysis with TP for the MNIST Dataset

Figure 8 shows the comparative analysis of the AICO self-feature selected ECNN
model using the MNIST dataset with TP values concerning the accuracy, CSI, FPR, and FNR.
For the increasing TP value, the model attained an accuracy of 0.96, which is comparably
greater than the existing technique lightweight CNN by 17.4%, DenseNet by 21.13%, CNN
by 18.86%, Efficient Net-B0 6.36%, ECNN by 5.81%, COA-ECNN by 2.82%, and ARO-ECNN
by 4.24%. The AICO self-feature selected ECNN model with TP 80 achieved 0.97 CSI, which
showed improvements of 16.54%, 19.76%, 17.8%, 6.79%, 5.43%, 2.40%, and 5.12% over the
existing methods lightweight CNN, DenseNet, CNN, EfficientNet-B0, ECNN, COA-ECNN,
and ARO-ECNN, respectively. The FPR and FNR values attained by the AICO self-feature
selected ECNN model were 0.4 and 0.2, comparably less than the conventional approaches.
The reduced FPR and FNR due to the increased TP demonstrated that the AICO self-feature
selected ECNN classification model enhances skin cancer detection accuracy and reliability.
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2.7.4. Comparative Analysis with k-Fold for the MNIST Dataset

Figure 9 displays the comparative analysis of the AICO self-feature selected ECNN
model with the ISIC dataset concerning the accuracy, CSI, FPR, and FNR with k-fold
value 10. The percentage improvement for accuracy with k-fold 10 over the conventional
techniques showed that the AICO self-feature selected ECNN improved the accuracy of the
classification model. The AICO self-feature selected ECNN attained 0.95 accuracy, which
showed an improvement over lightweight CNN, DenseNet, CNN, EfficientNet-B0, ECNN,
COA-ECNN, and ARO-ECNN by 17.29%, 20.24%, 18.79%, 5.76%, 4.28%, 4.12%, and 4.28%,
respectively. The CSI value attained by the AICO self-feature selected ECNN model was
0.95, which is far better than the conventional techniques. The CSI improvement percentage
over lightweight CNN was 15.67%, DenseNet was 18.62%, CNN was 17.08%, Efficient
Net-B0 was 5.74%, ECNN was 4.27%, COA-ECNN was 4.11, and ARO-ECNN was 4.27%.
The respective FPR and FNR values of the AICO self-feature selected ECNN model were
0.044 and 0.048, which shows that the proposed model produces more minimum FPR and
FNR values than the existing methods.
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2.8. Ablation Study
2.8.1. Ablation Study on VGG-16 Model with ISIC and MNIST Dataset

Figure 10 depicts the ablation study of the pre-trained VGG-16 model with other
feature extraction techniques for accuracy with the ISIC and MNIST datasets. For the
ISIC dataset, the accuracy rate attained by ECNN with VGG 16 was 0.91 with TP 80 when
compared with the conventional ResNet 101 and AlexNet models. The VGG 16 feature
extraction models improved by 9.24% and 15.00%, respectively. Similarly, for the MNIST
dataset, the ECNN with VGG 16 model achieved a 0.90 accuracy rate, which showed a
7.66% improvement over ResNet 101 and 15.01% over the AlexNet feature extraction model.

2.8.2. Ablation Study on the AICO Self-Feature Selected ECNN with and without
Feature Extraction

Figure 11 depicts the ablation study on the AICO self-feature selected ECNN with
and without feature extraction in terms of accuracy for the ISIC and MNIST datasets. For
the ISIC dataset, the accuracy attained by the proposed model with feature extraction
was 0.96 with TP 80. When compared with the AICO self-feature selected ECNN without
feature extraction, the proposed model with feature extraction obtained an improvement
of 5.35%. Similarly, for the MNIST dataset, the AICO self-feature selected ECNN with
feature extraction achieved a 0.96 accuracy, showing a 4.41% improvement over the AICO
self-feature selected ECNN without a feature extraction model.
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2.9. Time Complexity Analysis

Figure 12 depicts the time complexity analysis of the AICO self-feature selected
ECNN with existing methods like KNN-PDNN [14], lightweight CNN [16], AlexGWO [14],
DenseNet [20], CNN [21], EfficientNet-B0 [9], ECNN, COA-ECNN, and ARO-ECNN.
Figure 12 shows the proposed model was substantially faster than all other comparative
methods, with the lowest computational time of 0.55 s at the 100th iteration. The other
existing methods take a computational time of 0.99 s for KNN-PDNN [14], 0.99 s for
lightweight CNN [16], 0.94 s for AlexGWO [14], 0.87 s for DenseNet [20], 0.80 s for CNN [21],
0.78 s for EfficientNet-B0 [9], 0.78 s for ECNN, 0.58 s for COA-ECNN, and 0.56 s for ARO-
ECNN for the 100th iteration, which requires more time than the proposed method. Even
though KNN-PDNN [14] and AlexGWO [14] attain a higher performance than the proposed
method, these models require more computational time than the proposed method. So,
it can be concluded that the proposed AICO self-feature selected ECNN method is more
efficient than most existing methods in terms of both performance and computational time.
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3. Discussion

The existing techniques employed for skin cancer classification, such as lightweight
CNN, DenseNet, CNN, EfficientNet-B0, and ECNN, have some limitations. Errors in the
datasets affect the reliability of the model. In lightweight CNN, integrating CNN with
metadata increases the size and system complexity. EfficientNet-B0 model overfitting issues
impact classification accuracy. The DenseNet model may produce lower interpretability
scores, limiting the performance of conventional approaches in skin cancer classification
tasks. In response to these shortcomings, the current study presented an AICO self-feature
selected ECNN model that achieves better accuracy while avoiding the abovementioned
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issues. The use of AICO in the model helps to improve the performance of the model by
tuning the parameters of the classifier, and the self-feature selected ECNN used in the
model solves the overfitting issue because of the incorporation of Grad-CAM++, which
does not require re-training or architectural changes for its visual explanation. As a result of
fast convergence in AICO, the model helps attain effective results with low computational
time, which solves the complexity issues in the model. Table 3 depicts the comparative
discussion of the AICO self-feature selected ECNN model with the traditional approaches.

Table 3. A comparative discussion of the AICO self-feature selected ECNN model with existing
approaches.

Methods/Analysis Lightweight
CNN DenseNet CNN Efficient Net-B0 ECNN COA-CAN ARO-ECNN

AICO
Self-Feature

Selected ECNN

ISIC
dataset

TP 80

Accuracy 0.79 0.76 0.78 0.90 0.91 0.94 0.91 0.96

CSI 0.81 0.78 0.80 0.91 0.92 0.95 0.92 0.97

FPR 0.21 0.24 0.22 0.10 0.08 0.05 0.08 0.03

FNR 0.18 0.21 0.19 0.08 0.07 0.04 0.07 0.02

K-fold 10

Accuracy 0.78 0.76 0.77 0.90 0.90 0.91 0.90 0.95

CSI 0.21 0.24 0.22 0.10 0.09 0.08 0.09 0.96

FPR 0.21 0.24 0.22 0.10 0.09 0.08 0.09 0.04

FNR 0.19 0.22 0.20 0.09 0.09 0.08 0.09 0.04

MNIST
dataset

TP 80

Accuracy 0.79 0.75 0.78 0.90 0.90 0.93 0.92 0.96

CSI 0.82 0.78 0.80 0.91 0.91 0.94 0.93 0.97

FPR 0.21 0.25 0.22 0.10 0.09 0.06 0.08 0.04

FNR 0.17 0.21 0.19 0.08 0.08 0.05 0.06 0.02

K-fold 10

Accuracy 0.78 0.75 0.77 0.89 0.91 0.91 0.91 0.95

CSI 0.80 0.77 0.79 0.90 0.91 0.91 0.91 0.95

FPR 0.21 0.24 0.23 0.10 0.08 0.08 0.08 0.04

FNR 0.19 0.22 0.20 0.09 0.08 0.08 0.08 0.04

4. Materials and Methods

This study proposes a novel approach for skin lesion classification using a grid-based
structural and dimensional AICO self-feature selected ECNN. The methodology for this
study is discussed in the subsequent sections below.

4.1. AICO Self-Feature Selected ECNN

Skin cancer is a prominent cancer worldwide; early detection of skin cancer margins
is essential to prevent cancer progression to advanced stages and reduce cancer-related
fatalities. The former approaches employed for skin cancer have some limitations, such as
system complexity and data requirements. The feature extraction and selection methods
utilized in the existing research rely on hand-crafted features and do not extract high-level
features from the images. To overcome these issues, the AICO self-feature selected ECNN
was developed in this research. In this research, the skin cancer images were initially
collected from the publicly available datasets of skin cancer, the MNIST HAM10000 [30]
and ISIC [31] datasets. The skin cancer data were initially exposed to the pre-processing
stage, and Adaptive Thresholding ROI Extraction was performed for image quality en-
hancement. The pre-processed image was fed as input to the feature extraction module,
which consisted of a grid-based structural pattern, grid-based directional pattern, statistical
features, and VGG16 for extracting the valuable features from the image. The extracted
features were fed into the self-feature selected optimized explainable CNN model for
skin cancer classification. The model’s performance was optimized by the novel coyote
coney optimization algorithm inspired by coyotes’ and coneys’ adaptive and hunting traits.
The optimization algorithm fine-tunes the classifier’s hyperparameters and improves the
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model’s classification accuracy. A schematic diagram of the proposed framework is shown
in Figure 1.

4.2. Image Input

The images collected from the ISIC and MNIST datasets were fed as input to the AICO
self-feature selected ECNN model, which is mathematically represented as:

Q = {I1 . . . . . . . . . . . . Iz} (5)

where Q represents the dataset and {I1 . . . . . . . . . . . . Iz} represents the total number of
images in the dataset from 1 to z.

4.3. Pre-Processing: Adaptive Thresholding-Based ROI Extraction

Pre-processing was applied to the input images to remove their noise and artifacts.
Here, a morphological filter and a blur filter were used for pre-processing. The morpholog-
ical filter removes the hair artifacts in the dermascope images, and the blur filter is used to
smooth the images and their surfaces. Thus, using these filters, the noise and artifacts of
the images were removed.

An ROI-based approach was used as a pre-processing step to locate the lesion area
in the images accurately. In skin cancer classification, adaptive thresholding can separate
the affected regions from the surrounding healthy skin tissue in dermascope images. The
adaptive thresholding mechanism utilizes a local threshold value for each pixel in the
image based on neighborhood characteristics, allowing better ROI extraction. For each
pixel in the image, a local neighborhood or window around that pixel is defined. The size
of this window can vary based on the application and the expected size of the objects to be
segmented [33]. The pixel’s mean (average) intensity value is calculated within each local
window. The pre-processed image is represented as I∗.

4.4. Feature Extraction

Feature extraction is a critical step in skin cancer classification from dermoscopy
images that involves selecting relevant features from the images that can be used as input
for the self-feature selected optimized Explainable CNN model. The choice of features can
significantly impact the accuracy and effectiveness of skin cancer classification.

4.4.1. Grid-Based Structural Pattern-LBP Shape-Based Descriptors

Local binary pattern (LBP) is one of the most powerful texture descriptors. It is
calculated by comparing the gray level values of the central and the local neighborhood
pictures [34]. The LBP operator is described as 3 × 3 window, and the central pixel of
the window is taken as a threshold. The difference between the central pixel and the
neighborhood pixels is calculated, and then the neighbor pixels’ values are assigned to 0
or 1 based on the difference. A central pixel in the 3 × 3 block contains eight neighboring
pixels [35]. The LBP descriptor can be calculated as [36,37]:

LBPS,D(I∗o) =
D−1

∑
d=0

U(I∗d − I∗o )2
d (6)

where I∗o = I∗d (u, v) is the central pixel of an image I∗d at position (u, v) and I∗d = I∗(ud, vd)
represents the neighboring pixel surrounding I∗o .

U(t) =
{

1, i f t ≥ 0
0, otherwise

(7)

ud = u + Dcos
(

2π
d
D

)
(8)
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vd = v − Dcos
(

2π
d
D

)
(9)

where D denotes the number of neighboring pixels I∗d and S represents the distance between
I∗d and I∗o . In traditional LBP descriptors, only the central pixel values are compared with
neighboring pixels, which leads to intensity variations. To address the intensity variation,
this research introduced a feature extraction model that calculates a gray level value by
considering each pixel as a central pixel, which provides nine gray level values. Finally, the
mean value is calculated for all gray values, improving the model’s performance.

4.4.2. Grid-Based Directional Pattern-Local Directional Pattern

The local directional pattern (LDP) feature generates an eight-bit binary code for
each pixel in an input image. This code is computed by comparing the pixel’s relative
edge response values in different directions using edge detectors like Kirsch, Prewitt, or
Sobel [36]. The Kirsch edge detector is remarkably accurate, considering responses in all
eight neighboring directions. For a central pixel, the eight directional response values
Ni = (0, 1, 2 . . . . . . 7) are calculated using Kirsch masks in eight orientations. Not all
response values in different directions are equally significant; high responses often indicate
the presence of corners or edges in particular directions [37]. To create the LDP, the top mth

directional bit responses Bi are set to 1, while the remaining bits of the 8-bit LDP pattern are
set to 0 [38]. The LDP value of pixel orientation (pc, qc) with different directional responses
is given as:

LDP =
7

∑
n=0

B(Nn − Nm)·2n (10)

where B is the binary word, which is represented as:

B(c) =
{

1, i f c ≥ 0
0, otherwise

(11)

where Nm represents the mth significant directional response and Nn denotes the response
of the Kirsch mask. Here, the grid-based structural pattern takes every 3 × 3 matrix, which
helps classify skin cancer using the skin lesion images.

4.4.3. Statistical Features

In image processing, statistical features are quantitative measurements calculated from
the pixel intensities in an image [39].

(a) Mean: The mean represents the average intensity value of the pixels within an image.

µSc =
g

∑
u=1

h

∑
v=1

J(u, v)
gh

(12)

where J(u, v) denotes the pixel’s intensity value at position (u, v) and the image is g
by h size.

(b) Median (Mmed): The median is a statistical measure that represents the mid-value in a
dataset when the data are organized in ascending or descending order. When there is
an even number of values in the dataset, the median is calculated as the average of
the two middle values.

(c) Mode (Mmod): mode is defined as the value that occurs in a pixel the maximum
number of times.

The statistical features are concatenated as Fs = [µSc||Mmed||Mmod[]]. The feature
dimension of the statistical features is denoted as (1 × 128 × 128).
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4.4.4. VGG 16

The VGG 16 feature extraction model can extract large amounts of data from the
image, resulting in better accuracy. The VGG architecture is a small feature extraction
model consisting of convolutional, pooling, and fully connected layers [40], as illustrated
in Figure 13. In skin cancer image analysis, the VGG16 model is a deep CNN with 16 layers
and is renowned for its performance. VGG16 utilizes a 224 × 224 input image and is
divided into five blocks. The initial blocks include 3 × 3 convolutional layers and 2 × 2
max pooling layers with 62 and 128 filters, respectively. The subsequent blocks consist of
three convolutional layers with 256, 512, and 512 filters, followed by a 2 × 2 max pooling
layer [41]. Even though VGG 16 is known for its high energy consumption, the VGG 16
model is more suitable for feature extraction in image classification tasks than other efficient
methods because of its ability to extract high-level features, which leads to high accuracy.
The features extracted from VGG 16, a deep architecture, are more representative of the
image content than those extracted from shallower architectures.
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self-feature selected optimized explainable CNN model.

4.5. Self-Feature Selected Optimized Explainable CNN

The self-feature selected explainable CNN is designed to visualize the decisions made
by the CNN model, which makes them more explainable and transparent. The traditional
CNN techniques have limitations, such as overfitting issues and increasing error probability,
and the hybrid approaches enhance system complexity. To overcome these limitations,
this research leverages the self-feature selected optimized Explainable CNN model, which
incorporates the Grad CAM++ and Full Grad modules. The class discriminative localization
technique known as gradient-weighted class activation mapping (Grad CAM++) generates
visual explanations for any CNN network without requiring architectural changes or
re-training, and the Full Grad calculates the gradient of the biases and sums up [42].

Initially, the input image with the dimension [1 × 128 × 128] is fed into the explainable
CNN model, which consists of Grad CAM++ and Full Grad. The architecture of the
explainable CNN model is shown in Figure 8. The Grad CAM++ module produces the
Grad CAM image and the guided propagation image, which are used to produce the
guided propagation (GP) CAM image. Similarly, the Full Grad module generates two
images known as Full Grad and GP, which produces the guided progression Full Grad
image [42]. The images generated from the CAM++ and Full Grad modules are fused using
Equations (13) and (14).
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In Grad CAM++, the saliency map for the given image is calculated using the following
Equation [42]:

Hq
i,j = relu

(
∑

l
wq

l .Al
i,j

)
(13)

where the saliency map for Grad CAM++ is represented as Hq, and they are the iterators
over the pixels in the map, Al represents the visualization of lth feature map and q repre-
sents the class. The guided propagation represents the saliency map and the pixel space
visualization generated by the GP.

The saliency map from the Full Grad generated image is calculated as [42]:

P(I∗) =


wT

o I∗f + bs0 I∗f ∈ Y0
...

...
wT

n I∗f + bsn I∗f ∈ Yn

(14)

where P
(

I∗f
)

represents the saliency map for the input image
(

I∗f
)

from Full Grad, the

weights are denoted as wT , and the bias terms are denoted as bs.
Thus, the guided propagation of Grad CAM++ and Full Grad [43] is concatenated

using Equation (15):

OH =
1
2

(
Hq

i,j + P(I∗)
)

(15)

OH =



1
2 (relu

(
∑
l

wq
l .Al

i,j

)
+ wT

o I∗f + bs0 I∗f ∈ Y0

...
...

1
2 (relu

(
∑
l

wq
l .Al

i,j

)
wT

n I∗f + bsn I∗f ∈ Yn

(16)

The fused image OH with the dimension of [1 × 128 × 128] is provided as input for
the convolutional layers, followed by the max-pooling layers of the CNN model. The
convolutional layers extract the meaningful and prominent features from the input image,
which generates convolved maps; these maps are fed forward into the ReLU activation
function, which generates rectified feature maps. The pooling layers reduce the dimen-
sionality of the feature maps. This study utilized three pooling layers in the explainable
CNN model. The dropout layer reduces the overfitting issues by disregarding the nodes
present in the layer. The fully connected (FC) layer produces the logistics vector, and the
SoftMax function classifies the logistics into the probability of having skin cancer. The
tunable parameters, such as weights and biases, are optimized by the AICO algorithm,
enhancing the classification accuracy and producing high-quality solutions. Figure 14
depicts the architecture of the self-featured selected ECNN.

4.6. Adaptive Intelligent Coney Optimization Algorithm

The AICO algorithm is inspired by the survival traits of coneys and the adaptive
and social behavior of coyotes. The algorithm fine-tunes the classifier’s hyperparameters,
enhancing the classification accuracy of the Explainable CNN model [44]. Integrating the
survival and social behavior of nature-inspired algorithms allows models to prioritize the
essential features and reduce the system complexity.

Coneys, also called rabbits [45], are members of the Leporid family. The AICO algo-
rithm considers that rabbits build burrows around their nests and use a random hiding
method to hide from predators and hunters. These natural survival strategies are the source
of inspiration. To avoid being discovered by predators, these animals avoid proximity to
their nests and feed primarily on vegetation such as grass and leafy weeds. We call this
kind of foraging approach “exploration.”
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Moreover, coneys build several nests and select one randomly for protection to reduce
the chance of predators finding them. Exploitation is the term used to describe this random
selection technique. Because of their lower trophic level, these animals must alternate
between exploration and exploitation depending on their energy situation. The coyote
species Canis latrans is a North American mammal [46]. The algorithm considers how
coyotes organize their social structure and adapt to their surroundings, emphasizing how
they share experiences and work together to assault their prey [47]. The AICO algorithm
fine-tunes the classifier parameters, such as weights and biases, which enhance the detection
and classification accuracy of the skin cancer classification model [48].

4.6.1. Solution Initialization

Based on fitness, the best solution is assigned for predation. In this case, the solution
is set up as Rt+1.

4.6.2. Fitness Evaluation

A higher fitness value denotes a better solution in terms of the goals being pursued.
On the other hand, lower fitness values indicate subpar performance. The fitness function
for this algorithm is:

Ft
(

Rt+1
)
= accuracy

(
Rt+1

)
(17)

4.6.3. Primary Predation Phase

In the primary predation phase, the predator searches for the solution by using the
following equation:

Rt+1 = Rt + r1

(
Rt

g − Rt

)
+ r2

(
Rt

mean − Rt
)

(18)
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where Rt
g represents the global best solution and Rt

mean denotes the average value.

Deviated Search Phase: (ρs > 0.5)

In this phase, the search agent searches beyond the search space if the probability of
searching for a solution is greater than 0.5. To avoid searching in the local area, it starts to
search for the location of features in all possible directions, so it makes a deviated search
toward the search spaces of every other solution:

Rt+1 = Rt + P(Rt − Rmean) + round(0.5(0.05 + r3)).n1 + Vt+1 (19)

ρs = ay, where y represents the probability of having environmental barriers y ∈ [0, 1]
and a denotes the constant number.

P = L.C (20)

L =

(
e − e(

t−1
tmax )

2
)

. sin(2πr4) (21)

C =

{
1 i f k == x(l)
0 otherwise

(22)

where L denotes running length, which ranges from 0 to 1, represents the rounding to the
nearest integer, and is the dimension size of the specific problem.

x = randperm(d) (23)

where x is the random permutation of the integers from 1 to d, and the search space is
represented as d.

k = 1, . . . . . . , d (24)

The next iteration’s velocity is updated using Equation (25):

Vt+1 = Vt + r7

∣∣∣Rt+1 − Rt
∣∣∣ r7 ∈ [0, 1] (25)

where Vt represents the previously followed velocity during the search and
∣∣Rt+1 − Rt

∣∣
represents distance.

Stashing Phase

After finding the best position for acquiring a solution, the search agent obtains the
solution from the selected search space. Depending on the value of the energy factor,
the predator changes between a deviated search or random hiding. The energy factor
is decreased with the increase in iterations, which can strengthen each individual in the
population to switch between detour foraging behavior and random hiding behavior:

Rt+1 = Rt + P
(
r6
(

Rt + M.x(k)Rt)− Rt) (26)

x(k) =
{

1 i f k = [r7, d]
0 else

(27)

where M denotes the hiding parameter and the random numbers are depicted as:

r1 = b1 ∗ t2
max ∗ sin(πt)

r2 = b1 ∗ (1 − t)2 ∗ sin(πt)

}
b ∈ (0, 4) (28)

where b2 ∈ (0, 1), which is represented as a velocity improving parameter, the hiding
parameter is described as follows:

M =
tmax − t + 1

tmax
.r6 (29)
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The random number r6 is denoted as r6 =

{
1 i f ρp > 0.5
0 else

, where the probability

of the solutions potion is denoted as ρp, which is described as:

ρp =
Rt − Rt

min
Rt

max − Rt
min

(30)

where Rt represents the position at tth iteration, the maximum and minimum position of
tth iteration is denoted as Rt

max and Rt
min respectively, and r5, r7 are the random numbers 1

or 2.
Rt+1 = Rt + P

(
r6
(

Rt + M.x(k)Rt)− Rt) (31)

Rt+1 = Rt(1 + P(r6(1 + M.x(k))− 1)) (32)

The Taylor series equation is written as enhanced TS, and the updated solution is
calculated as:

Rt+1 = 0.5Rt + 1.359 Rt−1 − 1.359 Rt−2 + 0.6795 Rt−3 (33)

Equate the Equations (32) and (33):

0.5Rt + 1.359( Rt−1 − Rt−2) + 0.6795 Rt−3 = Rt(1 + P(r6 + M.x(k)r6 − 1)) (34)

Rt(0.5 + P(r6 + M.x(k).r6 − 1)) = Rt(1 + P(r6 + M.x(k)r6 − 1)) (35)

Rt =
1

Pr M.x(k)
(1.359 ( Rt−1 − Rt−2) + 0.6795 Rt−3) (36)

Rt+1 = Rt(1 − r1 − r2) + r1Rt
global + r2Rt

mean (37)

Substitute (36) in (37), then the equation for a position update is calculated as:

Rt+1 =

[
1

Pr M.x(k)
(1.359 ( Rt−1 − Rt−2) + 0.6795 Rt−3)

]
(1 − r1 − r2) + r1Rt

global + r2Rmean (38)

Assume Pr M.x(k) for (0.5 + P(r6 + M.x(k).r6 − 1)) .
Consider that Rt

mean is the current position of the solution at tth iteration, which is also
represented as Rt

mean = Rt. The best solution is updated using the following equation:

Rt+1 =

[
1

Pr M.x(k)
(1.359 ( Rt−1 − Rt−2) + 0.6795 Rt−3)

]
(1 − r1 − r2) + r1Rt

global + r2Rt (39)

Thus, the optimization algorithm increases the convergence because the fittest search
agent makes the search and stashing phases step-by-step. The algorithm enhances the skin
cancer classification ability of the explainable CNN model. The flowchart of the algorithm
is depicted in Figure 15.
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5. Conclusions

Skin cancer continues to be a significant worldwide health issue. The AICO self-
feature selected ECNN model shows potential for improving the diagnostic precision of
the skin cancer classification model. The proposed approach combines the capabilities of
the AICO algorithm and the self-feature selected ECNN, resulting in improved efficiency.
The ROI extraction approach exhibits exceptional efficacy in detecting the malignant area
and improving lesion localization. Utilizing a grid-based structural pattern and statistical
features reduces redundancy and aids the models in prioritizing significant features. In-
corporating the AICO algorithm optimizes the hyperparameters of the explainable CNN
model, resulting in exceptional performance in the classification of skin cancer. This study
signifies significant progress in computer-assisted dermatological diagnostics, providing
an essential tool for timely skin cancer identification. The model’s performance on the ISIC
dataset with TP 80 was evaluated based on accuracy, CSI, FPR, and FNR. The accuracy
was measured at 0.96, CSI at 0.97, FPR at 0.03, and FNR at 0.02. The model attained a low
computational time of 0.55 s, much less than other existing methods.

Even though the model attains higher accuracy than most existing methods, this high
performance is only limited to specific classes in the dataset. If the model is tested under
real-time data or any other dataset, there may be deviations in the model’s performance.

In addition, more advancements in deep learning algorithms will be made to enhance
the therapeutic outcomes and provide clear explanations, hence promoting trust and
acceptance of advanced technologies in medical practice. In future works, we aim to focus
on testing this model on real datasets with varying quality, lesion types, and ethnicities to
ensure accurate diagnosis in practice and explore interactive explainable frameworks that
can foster trust and understanding.



Int. J. Mol. Sci. 2024, 25, 1546 24 of 26

Author Contributions: The authors planned the study and contributed to the idea and field of
information. Conceptualization, K.B.; methodology, K.B.; software, K.B.; validation, K.B., E.B., and
J.T.A.; formal analysis, K.B.; investigation, K.B.; resources, K.B.; data curation, K.B.; writing—original
draft preparation, K.B.; writing—review and editing, E.B. and J.T.A.; visualization, E.B. and J.T.A.;
supervision, E.B. and J.T.A.; project administration, E.B.; funding acquisition, E.B. and J.T.A. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The experimental datasets used to support this study are publicly
available data repositories at https://challenge2020.isic-archive.com (accessed on 10 December 2023).

Acknowledgments: The data presented in this study are openly available in the reference list. I
would like to sincerely thank and express my appreciation to my supervisor, Bhero, and co-supervisor,
Agee, for their excellent supervision and assistance in paying attention to detail. Moreover, I wish to
thank my family for their continuous support and countless sacrifices.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Behara, K.; Bhero, E.; Agee, J.T. Skin Lesion Synthesis and Classification Using an Improved DCGAN Classifier. Diagnostics 2023,

13, 2635. [CrossRef]
2. International Agency for Research on Cancer. 2022. Available online: https://www.iarc.who.int/cancer-type/skin-cancer/

(accessed on 10 December 2023).
3. Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [CrossRef] [PubMed]
4. Waseh, S.; Lee, J.B. Advances in melanoma: Epidemiology, diagnosis, and prognosis. Front. Med. 2023, 10, 1268479. [CrossRef]

[PubMed]
5. Viknesh, C.K.; Kumar, P.N.; Seetharaman, R.; Anitha, D. Detection and Classification of Melanoma Skin Cancer Using Image

Processing Technique. Diagnostics 2023, 13, 3313. [CrossRef] [PubMed]
6. Melarkode, N.; Srinivasan, K.; Qaisar, S.M.; Plawiak, P. AI-Powered Diagnosis of Skin Cancer: A Contemporary Review, Open

Challenges and Future Research Directions. Cancers 2023, 15, 1183. [CrossRef] [PubMed]
7. Nisal, P.; Michelle, R. A comprehensive review of dermoscopy in melasma. Clin. Exp. Dermatol. 2023, 266, llad266. [CrossRef]
8. Ankad, B.; Sakhare, P.; Prabhu, M. Dermoscopy of non-melanocytic and pink tumors in Brown skin: A descriptive study. Indian J.

Dermatopathol. Diagn. Dermatol. 2017, 4, 41. [CrossRef]
9. Ali, K.; Shaikh, Z.A.; Khan, A.A.; Laghari, A.A. Multiclass skin cancer classification using EfficientNets—A first step towards

preventing skin cancer. Neurosci. Inform. 2022, 2, 100034. [CrossRef]
10. Li, W.; Zhuang, J.; Wang, R.; Zhang, J.; Zheng, W.S. Fusing metadata and dermoscopy images for skin disease diagnosis. In

Proceedings of the 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), Iowa City, IA, USA, 3–7 April 2020;
pp. 1996–2000.

11. Garrison, Z.R.; Hall, C.M.; Fey, R.M.; Clister, T.; Khan, N.; Nichols, R.; Kulkarni, R.P. Advances in Early Detection of Melanoma
and the Future of At-Home Testing. Life 2023, 13, 974. [CrossRef]

12. Babino, G.; Lallas, A.; Agozzino, M.; Alfano, R.; Apalla, Z.; Brancaccio, G.; Giorgio, C.M.; Fulgione, E.; Kittler, H.; Kyrgidis, A.;
et al. Melanoma diagnosed on digital dermoscopy monitoring: A side-by-side image comparison is needed to improve early
detection. J. Am. Acad. Dermatol. 2021, 85, 619–625. [CrossRef]

13. Khater, T.; Sam, A.; Soliman, M.; Abir, H.; Hissam, T. Skin cancer classification using explainable artificial intelligence on
pre-extracted image features. Intell. Syst. Appl. 2023, 20, 200275. [CrossRef]

14. Magdy, A.; Hadeer, H.; Rehab, F.; Abdel-Kader; Khaled, A.E.S. Performance Enhancement of Skin Cancer Classification using
Computer Vision. IEEE Access 2023, 11, 72120–72133. [CrossRef]

15. Dildar, M.; Akram, S.; Irfan, M.; Khan, H.U.; Ramzan, M.; Mahmood, A.R.; Alsaiari, S.A.; Saeed, A.H.M.; Alraddadi, M.O.;
Mahnashi, M.H. Skin cancer detection: A review using deep learning techniques. Int. J. Environ. Res. Public Health 2021, 18, 5479.
[CrossRef]

16. Wei, L.; Ding, K.; Hu, H. Automatic skin cancer detection in dermoscopy images based on ensemble lightweight deep learning
network. IEEE Access 2020, 8, 99633–99647. [CrossRef]

17. Pacheco, A.G.; Krohling, R.A. An attention-based mechanism to combine images and metadata in deep learning models applied
to skin cancer classification. IEEE J. Biomed. Health Inform. 2021, 25, 3554–3563. [CrossRef] [PubMed]

18. Jiang, S.; Li, H.; Jin, Z. A visually interpretable deep learning framework for histopathological image-based skin cancer diagnosis.
IEEE J. Biomed. Health Inform. 2021, 25, 1483–1494. [CrossRef] [PubMed]

19. Imran, A.; Nasir, A.; Bilal, M.; Sun, G.; Alzahrani, A.; Almuhaimeed, A. Skin cancer detection using a combined decision of deep
learners. IEEE Access 2022, 10, 118198–118212. [CrossRef]

https://challenge2020.isic-archive.com
https://doi.org/10.3390/diagnostics13162635
https://www.iarc.who.int/cancer-type/skin-cancer/
https://doi.org/10.3322/caac.21708
https://www.ncbi.nlm.nih.gov/pubmed/35020204
https://doi.org/10.3389/fmed.2023.1268479
https://www.ncbi.nlm.nih.gov/pubmed/38076247
https://doi.org/10.3390/diagnostics13213313
https://www.ncbi.nlm.nih.gov/pubmed/37958209
https://doi.org/10.3390/cancers15041183
https://www.ncbi.nlm.nih.gov/pubmed/36831525
https://doi.org/10.1093/ced/llad266
https://doi.org/10.4103/ijdpdd.ijdpdd_10_17
https://doi.org/10.1016/j.neuri.2021.100034
https://doi.org/10.3390/life13040974
https://doi.org/10.1016/j.jaad.2020.07.013
https://doi.org/10.1016/j.iswa.2023.200275
https://doi.org/10.1109/ACCESS.2023.3294974
https://doi.org/10.3390/ijerph18105479
https://doi.org/10.1109/ACCESS.2020.2997710
https://doi.org/10.1109/JBHI.2021.3062002
https://www.ncbi.nlm.nih.gov/pubmed/33635800
https://doi.org/10.1109/JBHI.2021.3052044
https://www.ncbi.nlm.nih.gov/pubmed/33449890
https://doi.org/10.1109/ACCESS.2022.3220329


Int. J. Mol. Sci. 2024, 25, 1546 25 of 26

20. Adegun, A.A.; Viriri, S. FCN-based DenseNet framework for automated detection and classification of skin lesions in dermoscopy
images. IEEE Access 2020, 8, 150377–150396. [CrossRef]

21. Mridha, K.; Uddin, M.M.; Shin, J.; Khadka, S.; Mridha, M.F. An Interpretable Skin Cancer Classification Using Optimized
Convolutional Neural Network for a Smart Healthcare System. IEEE Access 2023, 11, 41003–41018. [CrossRef]

22. Riaz, L.; Qadir, H.M.; Ali, G.; Ali, M.; Raza, M.A.; Jurcut, A.D.; Ali, J. A Comprehensive Joint Learning System to Detect Skin
Cancer. IEEE Access 2023, 11, 79434–79444. [CrossRef]

23. Mehmood, A.; Gulzar, Y.; Ilyas, Q.M.; Jabbari, A.; Ahmad, M.; Iqbal, S. SBXception: A Shallower and Broader Xception
Architecture for Efficient Classification of Skin Lesions. Cancers 2023, 15, 3604. [CrossRef]

24. Gulzar, Y.; Khan, S.A. Skin Lesion Segmentation Based on Vision Transformers and Convolutional Neural Networks—A
Comparative Study. Appl. Sci. 2022, 12, 5990. [CrossRef]

25. Khan, S.A.; Gulzar, Y.; Turaev, S.; Peng, Y.S. A Modified HSIFT Descriptor for Medical Image Classification of Anatomy Objects.
Symmetry 2021, 13, 1987. [CrossRef]

26. Ayoub, S.; Gulzar, Y.; Rustamov, J.; Jabbari, A.; Reegu, F.A.; Turaev, S. Adversarial Approaches to Tackle Imbalanced Data in
Machine Learning. Sustainability 2023, 15, 7097. [CrossRef]

27. Nahata, H.; Singh, S.P. Deep Learning Solutions for Skin Cancer Detection and Diagnosis. In Machine Learning with Health Care
Perspective. Learning and Analytics in Intelligent Systems; Jain, V., Chatterjee, J., Eds.; Springer: Cham, Switzerland, 2020; Volume 13.
[CrossRef]

28. Zghal, N.S.; Derbel, N. Melanoma Skin Cancer Detection based on Image Processing. Curr. Med. Imaging 2020, 16, 50–58.
[CrossRef]

29. Srividhya, V.; Sujatha, K.; Ponmagal, R.S.; Durgadevi, G.; Madheshwaran, L. Vision-based Detection and Categorization of Skin
lesions using Deep Learning Neural networks. Procedia Comput. Sci. 2020, 171, 1726–1735. [CrossRef]

30. Skin Cancer MNIST: HAM10000. Available online: https://www.kaggle.com/code/mohamedkhaledidris/skin-cancer-
classification-cnn-tensorflow/input (accessed on 16 November 2023).

31. Skin Cancer ISIC Dataset. Available online: https://www.kaggle.com/datasets/nodoubttome/skin-cancer9-classesisic (accessed
on 16 November 2023).

32. Behara, K.; Bhero, E.; Agee, J.T.; Gonela, V. Artificial Intelligence in Medical Diagnostics: A Review from a South African Context.
Sci. Afr. 2022, 17, e01360. [CrossRef]

33. Rehman, M.; Ali, M.; Obayya, M.; Asghar, J.; Hussain, L.K.; Nour, M.; Negm, N.; Mustafa, H.A. Machine learning based skin
lesion segmentation method with novel borders and hair removal techniques. PLoS ONE 2022, 17, e0275781. [CrossRef]

34. Kou, Q.; Cheng, D.; Chen, L.; Zhao, K. A Multiresolution Gray-Scale and Rotation Invariant Descriptor for Texture Classification.
IEEE Access 2018, 6, 30691–30701. [CrossRef]

35. Gudigar, A.; Raghavendra, U.; Samanth, J.; Dharmik, C.; Gangavarapu, M.R.; Nayak, K.; Ciaccio, E.J.; Tan, R.S.; Molinari, F.;
Acharya, U.R. Novel hypertrophic cardiomyopathy diagnosis index using deep features and local directional pattern techniques.
J. Imaging 2022, 8, 102. [CrossRef]

36. Sukanya, S.; Jerine, S. Deep Learning-Based Melanoma Detection with Optimized Features via Hybrid Algorithm. Int. J. Image
Graph. 2022, 23, 2350056. [CrossRef]

37. Jabid, T.; Kabir, M.H.; Chae, O. Local directional pattern (LDP)—A robust image descriptor for object recognition. In Proceedings
of the 2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance, Boston, MA, USA, 29 August
2010–1 September 2010; pp. 482–487.

38. Rahman, M.M.; Nasir, M.K.; Nur-A-Alam, M.; Khan, M.S.I. Proposing a hybrid technique of feature fusion and convolutional
neural network for melanoma skin cancer detection. J. Pathol. Inform. 2023, 14, 100341. [CrossRef]

39. Mutlag, W.; Ali, S.; Mosad, Z.; Ghrabat, B.H. Feature Extraction Methods: A Review. J. Phys. Conf. Ser. 2020, 1591, 012028.
[CrossRef]

40. Sharma, S.; Guleria, K.; Tiwari, S.; Kumar, S. A deep learning-based convolutional neural network model with VGG16 feature
extractor for the detection of Alzheimer Disease using MRI scans. Meas. Sens. 2022, 24, 100506. [CrossRef]

41. Tammina, S. Transfer learning using vgg-16 with deep convolutional neural network for classifying images. Int. J. Sci. Res. Publ.
(IJSRP) 2019, 9, 143–150. [CrossRef]

42. Chattopadhay, A.; Sarkar, A.; Howlader, P.; Balasubramanian, V.N. Grad-cam++: Generalized gradient-based visual explanations
for deep convolutional networks. In Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision
(WACV), Lake Tahoe, NV, USA, 12–15 March 2018; pp. 839–847.

43. Srinivas, S.; Fleuret, F. Full-gradient representation for neural network visualization. Adv. Neural Inf. Process. Syst. 2019, 32,
4124–4133.

44. Kusuma, P.; Kallista, M. Adaptive Cone Algorithm. Int. J. Adv. Sci. Eng. Inf. Technol. 2023, 13, 1605. [CrossRef]
45. Khalil, A.E.; Boghdady, T.A.; Alham, M.H.; Ibrahim, D.K. Enhancing the conventional controllers for load frequency control of

isolated microgrids using proposed multi-objective formulation via artificial rabbits optimization algorithm. IEEE Access 2023, 11,
3472–3493. [CrossRef]

46. Yuan, Z.; Wang, W.; Wang, H.; Yildizbasi, A. Developed coyote optimization algorithm and its application to optimal parameters
estimation of PEMFC model. Energy Rep. 2020, 6, 1106–1117. [CrossRef]

https://doi.org/10.1109/ACCESS.2020.3016651
https://doi.org/10.1109/ACCESS.2023.3269694
https://doi.org/10.1109/ACCESS.2023.3297644
https://doi.org/10.3390/cancers15143604
https://doi.org/10.3390/app12125990
https://doi.org/10.3390/sym13111987
https://doi.org/10.3390/su15097097
https://doi.org/10.1007/978-3-030-40850-3_8
https://doi.org/10.2174/1573405614666180911120546
https://doi.org/10.1016/j.procs.2020.04.185
https://www.kaggle.com/code/mohamedkhaledidris/skin-cancer-classification-cnn-tensorflow/input
https://www.kaggle.com/code/mohamedkhaledidris/skin-cancer-classification-cnn-tensorflow/input
https://www.kaggle.com/datasets/nodoubttome/skin-cancer9-classesisic
https://doi.org/10.1016/j.sciaf.2022.e01360
https://doi.org/10.1371/journal.pone.0275781
https://doi.org/10.1109/ACCESS.2018.2842078
https://doi.org/10.3390/jimaging8040102
https://doi.org/10.1142/S0219467823500560
https://doi.org/10.1016/j.jpi.2023.100341
https://doi.org/10.1088/1742-6596/1591/1/012028
https://doi.org/10.1016/j.measen.2022.100506
https://doi.org/10.29322/IJSRP.9.10.2019.p9420
https://doi.org/10.18517/ijaseit.13.5.18284
https://doi.org/10.1109/ACCESS.2023.3234043
https://doi.org/10.1016/j.egyr.2020.04.032


Int. J. Mol. Sci. 2024, 25, 1546 26 of 26

47. Pierezan, J.; Leandro, D.S.C. Coyote optimization algorithm: A new metaheuristic for global optimization problems. In Proceed-
ings of the 2018 IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8.

48. Elshahed, M.; Tolba, M.A.; El-Rifaie, A.M.; Ginidi, A.; Shaheen, A.; Mohamed, S.A. An Artificial Rabbits’ Optimization to Allocate
PVSTATCOM for Ancillary Service Provision in Distribution. Systems. Mathematics 2023, 11, 339. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/math11020339

	Introduction 
	Results 
	Experimental Setup 
	Dataset Description 
	Performance Metrics 
	Experimental Outcomes 
	Feature Extraction Phase Using VGG 16 
	Performance Analysis of AICO Self-Feature Selected ECNN Model with TP 
	Comparative Analysis with the Current State-of-the-Art Methods 
	Comparative Analysis with TP for the ISIC Dataset 
	Comparative Analysis with K-Fold for the ISIC Dataset 
	Comparative Analysis with TP for the MNIST Dataset 
	Comparative Analysis with k-Fold for the MNIST Dataset 

	Ablation Study 
	Ablation Study on VGG-16 Model with ISIC and MNIST Dataset 
	Ablation Study on the AICO Self-Feature Selected ECNN with and without Feature Extraction 

	Time Complexity Analysis 

	Discussion 
	Materials and Methods 
	AICO Self-Feature Selected ECNN 
	Image Input 
	Pre-Processing: Adaptive Thresholding-Based ROI Extraction 
	Feature Extraction 
	Grid-Based Structural Pattern-LBP Shape-Based Descriptors 
	Grid-Based Directional Pattern-Local Directional Pattern 
	Statistical Features 
	VGG 16 

	Self-Feature Selected Optimized Explainable CNN 
	Adaptive Intelligent Coney Optimization Algorithm 
	Solution Initialization 
	Fitness Evaluation 
	Primary Predation Phase 


	Conclusions 
	References

