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Abstract: Advancing the domain of biomedical investigation, integrated multi-omics data have
shown exceptional performance in elucidating complex human diseases. However, as the variety
of omics information expands, precisely perceiving the informativeness of intra- and inter-omics
becomes challenging due to the intricate interrelations, thus presenting significant challenges in
the integration of multi-omics data. To address this, we introduce a novel multi-omics integration
approach, referred to as TEMINET. This approach enhances diagnostic prediction by leveraging
an intra-omics co-informative representation module and a trustworthy learning strategy used to
address inter-omics fusion. Considering the multifactorial nature of complex diseases, TEMINET
utilizes intra-omics features to construct disease-specific networks; then, it applies graph attention
networks and a multi-level framework to capture more collective informativeness than pairwise
relations. To perceive the contribution of co-informative representations within intra-omics, we
designed a trustworthy learning strategy to identify the reliability of each omics in integration. To
integrate inter-omics information, a combined-beliefs fusion approach is deployed to harmonize the
trustworthy representations of different omics types effectively. Our experiments across four different
diseases using mRNA, methylation, and miRNA data demonstrate that TEMINET achieves advanced
performance and robustness in classification tasks.

Keywords: multi-omics; graph-based neural network; trustworthy; disease diagnosis; biomarker
identification

1. Introduction

In light of recent advancements in the acquisition of high-throughput omics data,
multi-omics integration is rapidly expanding as a research field with the aim of providing a
more comprehensive understanding of the underlying biological processes and molecular
mechanisms involved in complex diseases [1,2]. Compared to single-omics studies, inte-
grating multiple types of omics data enables the capture of complementary information
across various molecular layers, leading to a more holistic view of biological systems [3].
Traditional approaches often involve statistical tools, which may have a limited capacity
to fully capture the complex, non-linear relationships present in multi-omics datasets. In
recent years, the application of artificial neural networks (ANNs) to multi-omics studies has
emerged as a promising avenue to address these limitations [4–6]. ANN approaches can
learn intricate patterns within data, enabling more accurate predictions and classifications,
as well as the identification of previously unexplored relationships between molecular
entities. These methods have shown great potential in various biomedical applications,
such as disease prediction, patient stratification, and the discovery of novel biomarkers [7].

Despite significant achievements, the stability and biological explainability of many
existing multi-omics integration approaches remain underdeveloped, primarily because
of the insufficient exploration of both intra- and inter-omics interaction information. The
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existing multi-omics integration strategies can be grouped mainly into three categories:
early, intermediate, and late fusion [7–9]. Early integration, such as fully connected neural
networks (FCNNs) [10–12] and autoencoders (AEs) [13–15], perform integration through
concatenating representations without considering the complex inter-omics interactions.
Intermediate fusion emphasizes the interactions within inter-omics, rather than perceiving
each omics type individually. For example, variational AEs (VAEs) are widely used to
perform a fusion of homogeneous data types in a joint manner [16,17]. Despite the ad-
vantages of coordinated representation learning in intermediate fusion, it operates under
the presumption of an equal contribution from each modality. This presumption can be
challenging for the fitting capabilities of ANNs, especially in cases of feature imbalance,
severe missing modalities, or substantial noise interference. Considering the uncertainty
of such situations, trustworthy learning has been adopted. It involves transforming the
operation from feature embedding to a decision-level process, which ultimately stabilizes
and enhances the outcomes of late integration strategies. Han et al. [18] introduced a
dynamic fusion approach for multi-modal classification. This method employed true-class
probability to assess the classification confidence across different omics and then performed
adjustments through modality confidence weighting for integration. Wang et al. [19]
proposed Mogonet, which employed a view correlation discovery network (VCDN) to
integrate initial classifications instead of fusing features across modalities, thereby utilizing
label-correlated information in the shared space to produce final classification labels. We
observed that, by perceiving and integrating the informativeness of each modality and
inter-modality from distinct samples in trustworthy multimodal learning, practical appli-
cations can be significantly enhanced. However, traditional intra-modality information
embedding may inadequately capture the full scope of informativeness, primarily due to
the biological explainability of intra-omics. Such studies may overlook crucial aspects of
the underlying biological processes, potentially resulting in a limited comprehension of
the intricate molecular networks that drive various biological systems [20]. Ultimately, this
could result in challenges to effective integration.

In omics research, it is crucial to acknowledge the interconnections among molecular
functions, given the multifactorial nature of complex diseases [21,22]. Instead of treating
each genetic factor as an independent entity, this approach allows for a more compre-
hensive understanding. Consequently, more investigations are focused on constructing
disease networks by reconfiguring omics data into graph-based structures, reflecting the
growing recognition of the importance of contextualized molecular interactions in un-
derstanding disease mechanisms. For instance, Ramirez et al. [23] employed a graph
convolutional network (GCN) approach for cancer classification, leveraging a framework
of gene co-expression based on Spearman correlating analysis. Althubaiti et al. [24] utilized
the DeepMOCCA framework, combining omics data with protein–protein interaction net-
works for improved cancer prognosis predictions. Tang et al. introduced SiGra [25] and
SpaRx [26], which used graph-based approaches to decode complex spatial tissue struc-
tures and nuanced cellular drug responses, showcasing a deeper insight into the dynamics
of molecular interactions in biomedical research. Furthermore, Xing et al. [27] adopted
an approach involving a weighted correlating method to build prior knowledge graphs.
This method was particularly advantageous for unraveling disease-specific complexities.
Therefore, inspired by the effectiveness of network representations in omics studies, we
were motivated to adopt a graph-based representation to enhance the informativeness
of intra-omics. This approach is intuitive and easy to interpret. It has the potential to
better preserve the inherent structure and capture functional interactions from omics data,
ultimately leading to improved disease prediction performance.

Based on the above observations, we propose a multi-omics integration framework,
named TEMINET, for disease-predictive diagnosis that leverages graph attention networks
and an uncertainty-based trustworthy strategy. Specifically, we construct a disease-specific
network for each omics data to represent large-scale, unstructured, and irregular data effec-
tively. We apply hierarchical graph attention networks (GATs) to capture co-informative
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intra-omics representations. Then, a trustworthy learning mechanism is employed to assess
the reliability of informativeness using uncertainty information. Combine beliefs fusion
integrates informativeness and uncertainty into an inter-omics fusion embedding for subse-
quent tasks. We conduct extensive experiments to show the effectiveness and robustness
of TEMINET for multi-omics prediction. Our results demonstrate that the combination of
graph-based feature representation and uncertainty-based trustworthy learning integration
surpasses the state-of-the-art models on four disease classification tasks. We further em-
ploy a global interpretation approach to identify important biomarkers and analyze their
disease-related functional relevance.

2. Results

Our research evaluated the effectiveness of the proposed model relative to current
methodologies across diverse classification tasks. We also explored the scalability through
the incorporation of additional omics data types and conducted a robustness study to assess
the generalizability of the model. In the comparative analysis of various methodologies,
accuracy (ACC) is a common metric employed for binary and multi-class classifications. In
addition to ACC, binary classifications also utilize the F1 score (F1) and the area under the
receiver operating characteristic curve (AUC). For multi-class classifications, the ACC, the
weighted average F1 score (F1_weighted), and the macro-averaged F1 score (F1_macro)
are used. Our experimental framework replicated the same settings as those used in
Mogonet [19] and five random experiments to report the mean and standard deviation of
evaluation metrics. To demonstrate a significant improvement in our model compared to
the suboptimal method, we conducted an independent t-test. An obtained p-value of less
than 0.05 indicated the statistical significance of the improvement.

Fourteen computational approaches were investigated, including six classic classifiers
employing early integration strategies: K-nearest neighbor classifier (KNN) [28], sup-
port vector machine (SVM) [29], Lasso [30], random forest (RF) [31], XGboost [32], and
fully connected neural networks (NNs) [33]. Furthermore, five multi-omics classifiers
were analyzed: group-regularized ridge regression [34], BPLSDA for projecting data into
latent structures with discriminant analysis [35], block PLSDA with additional sparse con-
straints (BSPLSDA) [35], the concatenation of final representations (CF) [36] for late-stage
multi-omics data, and gated multimodal fusion (GMU) [37] that integrates intermediate
representations, along with three advanced methods, Mogonet [19], MODILM [38], and
Dynamic [18].

2.1. Classification Performance Comparison

In Table 1, a comparative analysis between the proposed model and established meth-
ods on ROSMAP and LGG datasets is provided. Compared to alternative approaches, the
outcomes demonstrated that our suggested model performed better in binary classifica-
tion tests. TEMINET outperformed the suboptimal method in many evaluation metrics,
though not in the AUC metric for the ROSMAP dataset. The outcomes demonstrated the
advantages of integrating informative data utilizing a multi-level, graph-based attention
framework and disease-specific networks. Moreover, the proposed model significantly
exceeded the performance of MODILM (GAT). This advantage was likely due to the incor-
poration of uncertainty-based adaptive fusion, enhancing the capability of the model to
select and utilize the informative modalities, thus ensuring a more precise characterization
of each subject. As shown in Table 2, the proposed method continued to lead in overall
performance, yet it exhibited slightly lower efficacy in the five-class BRCA task compared
to the top-performing method in this specific area. This further indicated the strength
of our model in leveraging disease-specific network analysis and graph attention mecha-
nisms, underscoring its potential despite the room for improvement in certain multi-class
classification tasks.
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Table 1. Comparison with advanced methods using the ROSMAP and LGG datasets. The top-
performing results are emphasized in boldface. Metrics marked with * indicate a significant improve-
ment for our model compared to the suboptimal method, as confirmed with an independent t-test
resulting in p < 0.05.

Method
ROSMAP (Two Categories) LGG (Two Categories)

ACC (%) F1 (%) AUC (%) ACC (%) F1 (%) AUC (%)

KNN 65.7 ± 3.6 67.1 ± 4.4 70.9 ± 4.5 72.9 ± 3.4 73.8 ± 3.3 79.9 ± 3.8
SVM 77.0 ± 2.4 77.8 ± 1.6 77.0 ± 2.6 75.4 ± 4.6 75.7 ± 5.0 75.4 ± 4.6
Lasso 69.4 ± 3.7 73.0 ± 3.3 77.0 ± 3.5 76.1 ± 1.8 76.7 ± 2.2 82.3 ± 2.7

RF 72.6 ± 2.9 73.4 ± 2.1 81.1 ± 1.9 74.8 ± 1.2 74.2 ± 1.0 82.3 ± 1.0
XGBoost 76.0 ± 4.6 77.2 ± 4.5 83.7 ± 3.0 75.6 ± 4.0 76.7 ± 3.2 84.0 ± 2.3

NN 75.5 ± 2.1 76.4 ± 2.1 82.7 ± 2.5 73.7 ± 2.3 74.8 ± 2.4 81.0 ± 3.7
GRridge 76.0 ± 3.4 76.9 ± 2.9 84.1 ± 2.3 74.6 ± 3.8 75.6 ± 3.6 82.6 ± 4.4
BPLSDA 74.2 ± 2.4 75.5 ± 2.3 83.0 ± 2.5 75.9 ± 2.5 73.8 ± 3.1 82.5 ± 2.3

BSPLSDA 75.3 ± 3.3 76.4 ± 3.5 83.8 ± 2.1 68.5 ± 2.7 66.2 ± 3.0 73.0 ± 2.6
CF 78.4 ± 1.1 78.8 ± 0.5 88.0 ± 0.5 81.1 ± 1.2 82.2 ± 0.4 88.1 ± 0.4

GMU 77.6 ± 2.5 78.4 ± 1.6 86.9 ± 1.6 80.3 ± 1.5 80.8 ± 1.2 88.6 ± 1.2
Mogonet 81.5 ± 2.3 82.1 ± 2.2 87.4 ± 1.2 81.6 ± 1.6 81.4 ± 1.4 84.0 ± 2.7
MODILM 84.3 ± 1.2 85.0 ± 0.8 89.1 ± 1.2 82.8 ± 0.7 82.5 ± 2.3 86.1 ± 1.5
Dynamic 84.2 ± 1.3 84.6 ± 0.7 91.2 ± 0.7 83.3 ± 1.0 83.7 ± 0.4 88.5 ± 0.4

Ours 87.9 ± 0.4 ∗ 88.2 ± 0.4 ∗ 87.6 ± 1.3 84.3 ± 0.7 ∗ 84.1 ± 0.9 88.6 ± 1.2

Table 2. Comparison with advanced methods on the BRCA and KIPAN datasets. The top-performing
results are emphasized in boldface. Metrics marked with * indicate a significant improvement in our
model compared to the suboptimal method, as confirmed with an independent t-test resulting in
p < 0.05.

Method
BRCA (Five Categories) KIPAN (Three Categories)

ACC (%) F1-W 1 (%) F1-M 1 (%) ACC (%) F1-W 1 (%) F1-M 1 (%)

KNN 74.2 ± 2.4 73.0 ± 2.3 68.2 ± 2.5 96.7 ± 1.1 96.7 ± 1.1 96.0 ± 1.4
SVM 72.9 ± 1.8 70.2 ± 1.5 64.0 ± 1.7 99.5 ± 0.3 99.5 ± 0.3 99.4 ± 0.4
Lasso 73.2 ± 1.2 69.8 ± 1.5 64.2 ± 2.6 97.4 ± 0.2 97.4 ± 0.2 97.2 ± 0.4

RF 75.4 ± 0.9 73.3 ± 1.0 64.9 ± 1.3 98.1 ± 0.6 98.1 ± 0.6 97.5 ± 1.1
XGBoost 78.1 ± 0.8 76.4 ± 1.0 70.1 ± 1.7 99.3 ± 0.8 99.3 ± 0.8 98.9 ± 1.4

NN 75.4 ± 2.8 74.0 ± 3.4 66.8 ± 4.7 99.1 ± 0.5 99.1 ± 0.5 99.1 ± 0.5
GRridge 74.5 ± 1.6 72.6 ± 1.9 65.6 ± 2.5 99.4 ± 0.4 99.4 ± 0.4 99.3 ± 0.4
BPLSDA 64.2 ± 0.9 53.4 ± 1.4 36.9 ± 1.7 93.3 ± 1.3 93.3 ± 1.3 91.9 ± 2.1

BSPLSDA 63.9 ± 0.8 52.2 ± 1.6 35.1 ± 2.2 91.9 ± 1.2 91.8 ± 1.3 89.5 ± 1.4
CF 81.5 ± 0.8 81.5 ± 0.9 77.1 ± 0.9 99.2 ± 0.5 99.2 ± 0.5 98.8 ± 0.9

GMU 80.0 ± 3.9 79.8 ± 5.8 74.6 ± 5.8 97.7 ± 1.6 97.6 ± 1.7 95.8 ± 3.2
Mogonet 82.9 ± 1.8 82.5 ± 1.6 77.4 ± 1.7 99.9 ± 0.2 99.9 ± 0.2 99.9 ± 0.2
MODILM 84.5 ± 0.9 84.0 ± 1.6 80.4 ± 1.2 99.2 ± 0.8 99.2 ± 0.8 99.2 ± 0.8
Dynamic 87.7 ± 0.3 88.0 ± 0.5 84.5 ± 0.5 99.9 ± 0.2 99.9 ± 0.2 99.9 ± 0.3

Ours 88.0 ± 0.8 85.5 ± 1.3 88.2 ± 0.7 ∗ 99.9 ± 0.2 99.9 ± 0.2 99.9 ± 0.2
1 The terms F1-M and F1-W denote the F1 macro and weighted scores, respectively.

2.2. Ablation Comparison of the Model Key Component

In an extensive ablation study of our framework, as shown in Table 3, performance
metrics were compared against established benchmarks. Our model incorporated an ad-
vanced uncertainty-based mechanism and omics-specific co-expression networks, and it
achieved increases in ACC and F1, particularly within the ROSMAP dataset, with which
it outstripped the GAT+NN model by 4.3% and 4.4%. However, there was a slight decre-
ment in the AUC by 1.0% compared to the second-best models. This outcome suggested
that, while our model advanced predictive accuracy, it did so with a trade-off in AUC
performance, signaling an area for further refinement in balancing predictive precision with
generalizability across diverse datasets. The result of the LGG and KIPAN datasets also
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revealed improvements across all metrics, reflecting the exceptional ability of our model to
capture intricate data patterns. For the BRCA dataset, our model exhibited enhancements
in both ACC and F1-M, yet it encountered a slight decrease in the F1-W score, indicating
potential for further refinement in the equilibrium of precision and recall.

Table 3. This study examined key components of TEMINET with benchmark datasets. The top-
performing results are highlighted.

Dataset Metric NN 1 NN 1 + Trust GAT + NN 1 Our Model

ROSMAP
ACC (%) 76.6 ± 2.3 82.5 ± 0.9 84.3 ± 1.6 87.9 ± 0.4

F1 (%) 77.7 ± 1.9 82.3 ± 0.6 84.5 ± 1.6 88.2 ± 0.4
AUC (%) 81.9 ± 1.7 88.5 ± 0.6 88.5 ± 0.6 87.6 ± 1.3

LGG
ACC (%) 74.0 ± 3.9 81.9 ± 0.8 82.4 ± 0.5 84.3 ± 0.7

F1 (%) 75.6 ± 3.6 81.5 ± 0.4 82.2 ± 1.3 84.1 ± 0.9
AUC (%) 82.4 ± 3.6 87.1 ± 0.4 87.7 ± 1.3 88.6 ± 1.2

BRCA
ACC (%) 79.6 ± 1.2 84.2 ± 0.5 87.7 ± 0.4 88.0 ± 0.8

F1-W 2 (%) 78.4 ± 1.4 84.4 ± 0.9 88.2 ± 0.5 85.5 ± 1.3
F1-M 2 (%) 72.3 ± 1.8 80.6 ± 0.9 84.8 ± 1.7 88.2 ± 0.7

KIPAN
ACC (%) 98.8 ± 1.1 99.7 ± 0.3 98.9 ± 0.4 99.9 ± 0.2

F1-W 2 (%) 98.8 ± 1.1 99.7 ± 0.3 98.9 ± 0.5 99.9 ± 0.2
F1-M 2 (%) 98.1 ± 1.6 99.4 ± 0.5 98.7 ± 0.7 99.9 ± 0.2

1 NN refers to a neural network. 2 The terms F1-M and F1-W denote the F1 macro and weighted scores,
respectively.

2.3. Ablation Study Comparing Integration Performance across Varied Omics Categories

In our investigation, we analyzed the effectiveness of different omics data combi-
nations for classification performance. Figure 1 shows that using all three omics types
outperformed combinations of just two. This result underlined the individual and sub-
stantial contributions provided via different omics categories. Moreover, it confirmed
the advantage of integrating multiple omics approaches. Our results demonstrated that
TEMINET significantly improved classification performance by integrating multi-omics
informative data. Remarkably, these enhancements became more pronounced with the
gradual inclusion of diverse omics types. This observation underscores the scalability and
adaptability of our model, suggesting its potential for broader applications in the field
of biomedicine.
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Figure 1. The efficacy of the proposed approach on different omics data combinations was assessed,
presenting means and standard errors for comparison.
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2.4. Robustness Study Involving Comparisons with Advanced Methods

In the robustness experiments, we increased the masked ratio to heighten the un-
certainty of a specified modality. This method assessed the robustness of our model by
comparing the reduction in accuracy as the data became increasingly incomplete or uncer-
tain. Figure 2 demonstrates that TEMINET exhibited superior stability, with consistently
lower accuracy reduction ratios across all masked ratios, compared to Mogonet and Dy-
namic. The robustness of TEMINET was attributed to its use of a graph-based topology
and an uncertainty-based trust mechanism. While Mogonet also employed a graph-based
approach by constructing similarity graphs among samples and incorporating the VCDN
trust mechanism, its performance was moderate. Conversely, the Dynamic method, which
relied on an encoder network and a confidence-based trust mechanism, displayed a greater
decrease in accuracy, indicating reduced robustness relative to TEMINET. The findings
underscored that TEMINET not only maintained lower accuracy reduction ratios but also
exhibited stability across various levels of data masking, highlighting the effectiveness of
its graph-based approach and uncertainty-based trust mechanism in preserving model
robustness. This robustness enhances the generalizability and applicability of the model.

ROSMAP LGG BRCA

0.2 0.4 0.60%

5%

10%

re
du

ct
io

n 
ra

tio

masked ratio
0.2 0.4 0.6 0.2 0.4 0.6

a.

TEMINET Mogonet Dynamic

b. c.

Figure 2. The robustness of the proposed approach was evaluated by comparing it with that of
advanced methods. KIPAN was excluded from this comparison since it is relatively easy to classify.

2.5. Important Biomarkers Identified via TEMINET

In interpreting the model, the primary objective was to identify biomarkers of sig-
nificance. As shown in Table 4, the five most discriminating biomarkers based on their
differential values were reported. The biomarkers with identical values were assigned the
same ranking. If the number of tied positions exceeded the threshold for reporting (i.e., five
distinct ranks), a random set from the tied group was chosen to fulfill the report. Subse-
quently, we conducted a brief review of the existing literature to elucidate the biological
significance and disease association of these identified biomarkers.

As shown in Table 4, existing advances in AD research have identified biomarkers
associated with its pathogenesis. As the most significant mRNA biomarker of AD identified
via TEMINET, MEIS3 was revealed through differential expression analysis to be consid-
erably linked with cognitive decline and increased neurofibrillary tangle density [39,40].
Complementing this, cg19485804 (NGEF) emerged from LASSO regression analysis as
another insight [41], notably associated with the APP mutation in mouse models. The
downregulation of NGEF in the CVN-AD model suggested a critical role in modifying
actin dynamics and consequently disrupting neuronal growth cone motility [42]. Further-
more, the microRNA miR-132 has been associated with the progression of Aβ and tau
pathologies, with its reduced levels in circulation suggesting its utility as a potential diag-
nostic insight for AD. In the realm of breast cancer, CA9 has been identified as an mRNA
biomarker. A study showed that BRCA patients with lower levels of CA9 derive more
benefit from adjuvant therapies, suggesting that CA9 expression could be instrumental in
tailoring patient-specific treatment plans [43]. The interaction between IGF2BP3, TRIM25,
and miR-3614 delineated a novel regulatory pathway crucial for tumor cell proliferation.
The protective role of IGF2BP3 in safeguarding TRIM25 mRNA from degradation and
its influence on miR-3614 maturation presented new potential targets for therapeutic in-
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tervention in BRCA [44]. In LGG, our model did not reveal any methylation or miRNA
biomarkers. However, ADD3 was identified as the leading mRNA biomarker. Essential
for actin cytoskeleton assembly, ADD3 deficiency in GBM cells triggered pro-angiogenic
signaling, enhancing VEGFR expression in endothelial cells, which could have implications
for angiogenesis in LGG [45]. Suggested as a tumor suppressor and survival predictor on
chromosome 10q, ADD3 was valuable for prognostic assessments in LGG [46]. In kidney-
related cancers, miR-126 has been recognized for its strong prognostic potential in clear-cell
renal cell carcinoma (ccRCC) [47], while miR-1271, markedly upregulated in ccRCC tissues,
has emerged as a significant marker for assessing disease severity [48]. These findings
affirmed the robust capability of TEMINET in elucidating complex biological markers
pertinent to disease mechanisms and therapy responsiveness.

Table 4. Top five significant disease-specific biomarkers identified using TEMINET.

Dataset
Omics Data Type

mRNA Expression DNA Methylation miRNA Expression

ROSMAP
MEIS3, NPNT, KIF5A,
GPIHBP1, SAMD4A,
CDK18

cg04126866, cg08367223,
cg27091787, cg19485804,
cg24192663

hsa-miR-132, hsa-miR-129-5p,
hsa-miR-146b-5p,
hsa-miR-129-3p, hsa-miR-143

BRCA
CA9, GPM6B,
FAM171A1, RARA,
KLHL29

A2LD1, A2ML1, ABAT,
ABCA13, ABCC11

hsa-mir-3614, hsa-mir-3677,
hsa-mir-760, hsa-mir-937,
hsa-mir-1269

LGG
ADD3, AGXT2L1,
AMOT, DAAM2,
FAM189A2

— —

KIPAN — LOC649395
hsa-mir-126, hsa-mir-1270-1,
hsa-mir-1270-2, hsa-mir-1271,
hsa-mir-145

3. Discussion

The advancement of high-throughput techniques and individualized healthcare ap-
proaches has produced various supervised data collections critical for predictive applica-
tions such as pinpointing disease conditions, classifying tumor stages, and distinguishing
cancer subtypes. The fusion of multi-omics information has demonstrated enhanced effi-
cacy in disease prediction compared to single omics approaches. For clinical applications,
these integration models must not only provide precise diagnostic guidance but also cover a
wide range of diseases. This underscores the necessity for models exhibiting high accuracy
and strong generalization across diverse medical conditions.

To achieve optimal multi-omics integration, the informativeness of modality represen-
tation has increasingly attracted attention. On the one hand, this informativeness reflects
the quality of features specific to each omics type. This quality is contingent not only on
the methodologies employed for feature representation but also on the inherent quality
of the data. This is because data quality can be compromised during collection, storage,
and processing, leading to potential loss and degradation. On the other hand, the informa-
tiveness of a modality significantly determines its contribution to the integration process.
This contribution is measured by the extent to which data from a modality can complement
or enhance the understanding that other omics types provide. It concerns not merely the
quantity of data each modality brings but also the unique biological insights it offers that
cannot be captured by others. Therefore, evaluating the informativeness of each modality
representation is essential to ensure that the most informative and relevant features are
utilized for better predictive accuracy and a deeper biological understanding.

In this study, we introduced TEMINET, a framework optimized for the trustworthy
integration of multi-omics datasets. The advanced performance of TEMINET can be at-
tributed to the joint observation of intra-omics molecular interactions and inter-omics
informativeness. The framework addressed multifaceted complexities in disease patho-
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genesis by amalgamating omics data with topological models. Our approach involved
constructing individual graphs for each subject within all omics data. This data forma-
tion strategy allowed us to leverage the inner topological information among intra-omics
molecules obtained from disease-specific data to improve model performance. It empha-
sized the importance of the interplay between genetic factors in revealing the underlying
causes of diseases. Investigations have shown that TEMINET outperforms in various met-
rics across four distinct tasks, demonstrating that enhancing intra-omics informativeness
can significantly improve the performance of a trustworthy learning strategy in multi-
omics integration. The outperformance observed with four diseases, including one cerebral
degeneration disease and three cancers, highlighted the generalizability and adaptability of
TEMINET at the disease level. The robustness study also confirmed its generalizability, as
a robust model produces more stable and reliable results, which are particularly essential
in real-world application scenarios. Additionally, the combination ablation experiment
conducted at the omics level confirmed the scalability of TEMINET, indicating that its inte-
gration capabilities significantly improve with the increasing variety of omics data types.
Applied to four diverse diseases, TEMINET enhanced the understanding of disease mech-
anisms and patient stratification, revealing biomarkers as potential insights and offering
precise classifications. These advancements assist healthcare professionals in developing
personalized therapeutic interventions based on deeper insights into patient conditions.

However, the model exhibited several limitations. In comparison to other models,
TEMINET demonstrated lower computational efficiency due to the construction of multiple
omics-level networks for each sample, potentially posing challenges for practical deploy-
ment. Meanwhile, it also presented computational demands that became apparent when
dealing with larger datasets, indicating potential scalability issues. While it concentrates
on specific omics interactions, the model might overlook the broader dynamics between
different omics. This oversight could reduce the AUC performance, indicating that a more
balanced approach should be considered in future developments.

This study can be additionally extended towards some future directions. For example,
one direction would be to extend the capability of TEMINET by incorporating spatial
transcriptomics data [25]. This enhancement would enable the analysis of not only mRNA,
methylation, and miRNA but also the exploration of the spatial dimensions of cellular
behavior and interactions. Another direction would be to improve the computational
efficiency of the model and make it applicable to a broader range of diseases, thereby
enhancing its generalizability.

4. Materials and Methods
4.1. Overview of TEMINET

The proposed method is illustrated in Figure 3. It begins with constructing a co-
expression graph for the omics data of each subject via weighted gene co-expression
network analysis (WGCNA). The second step involves generating initial classification
results for each omics data using a multi-level GAT process. This process utilizes three
layers for the extraction of intra-omics features, encompassing G0, G1, and G2. G1 is updated
from G0, and G2 is subsequently updated from G1. Thirdly, the uncertainty of each initial
distribution is parameterized using subjective logic. Based on the Dempster–Shafer theory,
the integration of multi-omics evidence comes from the inference of overall uncertainty
and classification probability. The whole inference process concludes with the final label
prediction of each subject.
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Figure 3. Framework of TEMINET. (A) TEMINET operates on a sample-wise basis with multi-omics
information of each sample being imported into the model. (B) The first intra-omics network was
built using the WGCNA. (C) The intra-omic information at each omics level was augmented using
the multi-level GAT. (D) The evidence was evaluated via the subject logic module to determine the
uncertainty. During the integration phase, the trustworthy informativeness and uncertainty of each
omics were amalgamated into composite embedding that encompassed inter-omics information. The
fusing representation was subsequently applied to implement a downstream classification task.
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4.2. Dataset Overview

In our investigation, we performed analysis using four public benchmark datasets,
including ROSMAP for binary classification (distinguishing between Alzheimer’s disease
(AD) and a normal control (NC)), BRCA for the classification of breast-invasive carcinoma
into PAM50 subtypes (including five categories), low-grade glioma (LGG) for distinguish-
ing between grade I I and grade I I I, and KIPAN, referring to the classification of renal
cell carcinoma subtypes. All datasets were acquired from Wang et al. [19], and they each
contained three types of omics data: mRNA expression, DNA methylation, and miRNA
expression. Detailed information regarding data acquisition and preprocessing was avail-
able in [19]. In brief, features with no signal (mean = 0) and those with low variances
(standard deviation = 0.1 for mRNA, 0.001 for DNA methylation, and 0 for miRNA) were
filtered out. To optimize the feature selection, the ANOVA F-value and principal com-
ponent analysis (PCA) were employed. Initially, ANOVA tests were utilized to preselect
features, reducing the impact of redundant ones. Subsequently, PCA was applied to the
preselected features, aiming for the first principal component to account for less than 50% of
the variance, thereby avoiding the overrepresentation of any individual feature within the
dataset. Each feature was then scaled to the range of [0,1] through a linear transformation.
Comprehensive details regarding these datasets are presented in Table 5.

Table 5. Overview of datasets used in this investigation.

Dataset Source Subjects
Amount of Origin Data Amount of Data for Study

mRNA Methy miRNA mRNA Methy miRNA

ROSMAP AMPAD Normal Control: 169, 55,889 23,788 309 200 200 200Alzheimer’s Disease: 182

BRCA TCGA Luminal A: 436, Luminal B: 147, HER2-enriched:
46, Normal-like: 115, Basal-like: 131 20,531 20,106 503 1000 1000 503

LGG TCGA Grade I I: 246, Grade I I I: 264 20,531 20,114 548 2000 2000 548

KIPAN TCGA KICH: 66, KIRC: 318, KIRP: 274 20,531 20,111 445 2000 2000 445

4.3. Intra-Omics Network Construction

The development of functional interaction networks is integral to understanding the
pathogenesis of complex diseases. To leverage synergistic relationships among intra-omics
molecules, the initial step in our methodology involved implementing the WGCNA [49]) to
construct intra-omics co-expression networks, as shown in Figure 3B. The construction of
the intra-omics graph G0 for each subject involved several key stages: Firstly, an adjacency
matrix was formed through the WGCNA, with each entry indicating the correlation strength
between pairs of omics features. Secondly, this matrix was transformed into an edge matrix
by applying a threshold. Thirdly, a co-expression network was constructed for individual
subjects, assigning omics data expression values to nodes as their features.

In this context, an initial co-expression graph network of each patient was denoted
as G0 = G(Vd×1

0 , Ed×d
0 ). Here, Vd×1 symbolizes the attributes of d nodes. Ed×d represents

the edge matrix derived from the co-expression correlations computed via the WGCNA.
Specifically, for each subject n, a feature vector of dimension 1 × d was generated, where d
represents the number of features. For a group of N subjects within a single omics data, an
N × d matrix was formulated to calculate the co-expression matrix Ad×d. The correlation
Aij between node vi and vj was determined as follows:

Aij =

1
2

1 +
∑N

n=1 (vi,n − v̄i)(vj,n − v̄j)√
∑N

n=1 (vi,n − v̄i)
2
√

∑N
n=1 (vj,n − v̄j)

2




β

, (1)
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where v̄i and v̄j denote the mean values of nodes vi and vj, and β denotes an adjustable
parameter set through WGCNA. The edge matrix Ed×d

0 was then obtained by binarizing the
values from the matrix Ad×d. The optimal threshold for binarizing was determined through
a grid search approach, where the threshold parameter was varied within a range of 0.05
to 0.5. The optimal threshold setting in our study was 0.08. Intra-omics co-expression
networks for mRNA, methylation, and miRNA datasets were constructed similarly in
our study.

4.4. Intra-Omics Informative Augmentation

To leverage the information embedding in nodes and their associations within co-
expression matrices effectively, we introduced GAT [50] to enhance the disease-specific
characteristics of the omics dataset. GAT incorporated masked self-attention-based layers
to enable the dynamic weighting of neighboring node contributions, which allowed GAT to
selectively focus on more pertinent adjacent nodes, thereby diminishing the impact of nodes
that were less significant. As a result, GAT exhibited a superior ability to discern intricate
and non-structure connections, as well as variations within the topology of the graph.

Specifically, an initial network for each omics subject n, denoted as G0 = G(Vn
0 , E0) in

Figure 3B, was updated through a GAT layer. Initially, for a node hi within this network,
the normalization of attention coefficients αij with its neighboring nodes hj was calculated
as follows:

αij =
exp(LeakyRelu(α([WChi ∥ WChj])))

∑hl∈Ni
exp(LeakyRelu(α([WChi ∥ WChl ])))

, hj ∈ Ni, (2)

where ∥ is the concatenation operation, and WC is the shared parameter matrix for linear
transformation. To ensure a more stable self-attention update, a multi-head approach
was introduced [50]. We conducted a process in which the attention-layer functions were
implemented T times, each with unique parameters. The outcomes of these replications,
indicated as h′ i, then conducted an aggregating concatenation in sequence, as follows:

h′ i =∥T
t=1 σ

(
∑ j∈Ni α

t
ijW

t
Rhj

)
, (3)

where αt
ij represents the attention coefficients from the t-th attention head, and Wt

R is the
weight matrix associated with the t-th head.

To enhance the exploration of internal feature relationships, we incorporated the multi-
level feature representation approach implemented by Xing et al. [27]. The foundational
network G0 encapsulated data corresponding to the primal features. Subsequently, G1
evolved from G0 via a multi-head GAT attention layer. Analogously, G2 was generated
from G1. This progression through three progressive graph network layers created a
hierarchical integration structure, systematically amalgamating features across the GAT
layers. Ultimately, the vectors produced from these transformation stages were fused,
resulting in comprehensive feature representations. This design facilitates a dynamic
optimization of feature interplays within the network, leading to a more substantial and
comprehensive representation of the fundamental biology mechanisms. Using a similar
process, we also implemented the DNA methylation and miRNA informative augmentation
for each subject.

4.5. Trust-Driven Multi-Omics Fusion

In traditional multi-omics integration methods, the trustworthiness of different datasets
is often not adequately considered, leading to potential inaccuracies in understanding com-
plex biological processes. To address this, we introduced an uncertainty-based trustworthy
learning approach to our integration method [51]. This approach enhances trustworthiness
and precision in multi-omics data integration by quantifying inherent uncertainty in each
modality. It leverages this measure of uncertainty to jointly perceive informativeness across
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intra- and inter-omics. Given that uncertainty assessments define confidence in predictions,
the evidence of a dataset with lower uncertainty should achieve higher trustworthiness
and be assigned a larger contribution to multi-omics integration.

Evidence in a classifier is generally considered the outputs of a neural network pro-
cessed through an activation function like softmax. In our study, the evidence
em = [em

1 , · · · , em
K ] for the mth omics category across K classes was generated from GAT-

enhanced features. In the augmentation module, GAT-enhanced features were transformed
into evidence through a sequence of fully connected layers and an active layer. Here, we
set a cross-entropy loss Lm

GAT to modify the GAT augmentation module.
Secondly, to obtain the uncertainty, we applied subjective logic [52] to the evidence

em = [em
1 , · · · , em

K ]. For each class k in the mth omics category, the belief mass bm
k and

uncertainty mass um were calculated:

um +
K

∑
k=1

bm
k = 1, (4)

where um ≥ 0 indicates the overall uncertainty in the classification for the mth omics
category and bm

k ≥ 0 indicates the confidence in each class prediction. The concentration
parameters αm of the Dirichlet distribution were determined from the evidence, where

αm
k = em

k + 1. The belief mass for each class was computed as bm
k =

em
k

Sm and the overall
uncertainty as um = K

Sm , with Sm = ∑K
i=1 (e

m
i + 1) = ∑K

i=1 αm
i . An opinion,

Mm = [bm
1 , bm

2 , · · · , bm
K , um], was obtained for the evidence em. In summary, for the mth

omics category, the more evidence gathered for each of the K classes, the higher the prob-
ability assigned to the respective class, thus reducing uncertainty. Conversely, a scarcity
of evidence led to increased uncertainty. Utilizing subjective logic, this approach mod-
els second-order probabilities and uncertainties for the mth omics category, effectively
countering the overconfidence often seen in traditional neural network classifiers.

Thirdly, within the methodological framework for multi-omics fusion, we applied
the Dempster–Shafer theory to synthesize evidence from different classes. This process
consolidates independent probability mass assignments from each class into a unified joint
mass. The Dempster rule orchestrates this fusion to merge belief and uncertainty across the
omics spectrum, symbolized as follows:

MF = M1 ⊕ M2 ⊕ · · ·Mm, (5)

where MF denotes the combined beliefs, and Mm represents the opinion of the mth omics
type. As illustrated in Figure 3D, we took a fusion of two omics categories as an example.
The first category, M1, represented in orange, corresponded to the mRNA type and was
denoted as [b1

1, b1
2, · · · , b1

K, u1]. The second category, M2, represented in green, corresponded
to the methylation and was denoted as [b2

1, b2
2, · · · , b2

K, u2]. In the process of combining
these two sets, we focused on recombining the compatible elements (indicated with brown
blocks) while disregarding the mutually exclusive parts (shown as white blocks). The
fusion process was implemented to form the combined beliefs, which were denoted as MF,
as follows:

MF = M1 ⊕ M2, (6)

and
bF

k =
1

1 − C
(b1

k b2
k + b1

k u2 + b2
k u1), uF =

1
1 − C

u1u2, (7)

where 1
1−C denotes the scale factor for normalization. The term C = ∑i ̸=j b1

i b2
j represents a

degree of conflict observed between the two sets of mass values, and b1
i b2

j represents the
white blocks in Figure 3D. It can be observed that, in instances where both M1 and M2

exhibit high levels of uncertainty (with high values of u1 and u2), the resulting prediction
manifests in low confidence, indicated by a lower value of bk. Conversely, when both
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sources demonstrate low uncertainty (low values of u1 and u2), the resulting prediction
exhibits high confidence, indicated by a higher value of bk. When only one source shows
low uncertainty (either u1 or u2), the final prediction relies on the more reliable source. After
MF = {{bF

k }
K
k=1, uF} was obtained, the final evidence could be inferred with ek = bk × S,

αk = ek + 1, and S = K
u .

Furthermore, we introduced an enhanced cross-entropy loss function by integrating
sample-specific evidence, as follows:

LE−ce(αi) =
K

∑
k=1

yik(ψ(Si)− ψ(αik)), (8)

where αi is the parameter of the Dirichlet distribution for the ith sample, and ψ(·) is
the digamma function. Building on this, an overall sample-specific loss function, which
combined the adjusted cross-entropy loss with a Kullback–Leibler divergence term to
effectively manage the evidence for incorrect labels, was defined as follows:

L(αi) = LE−ce(αi) + λtKL[D(pi|α̃i) ∥ D(pi|1)]. (9)

The modified attribute of the Dirichlet distribution is α̃i = yi + (1 − yi)αi, and λ is a
balance factor greater than zero. This design helps penalize incorrect class evidence while
preserving the evidence for the correct class. To ensure that the informative augmentation
and evidence fusion were updated simultaneously, a total loss was defined as follows:

Lglobal =
N

∑
i=1

[L(αi) +
M

∑
m=1

L(αm
i ) + γ

M

∑
m=1

Lm
GAT ], (10)

where γ denotes an adjusted attribute. We deployed γ = 1 across our investigations.

4.6. Identifying Biomarkers with TEMINET

In the realm of biomedical research, the elucidation of biomarkers is pivotal for unrav-
eling the intricacies of biological processes and providing insight into diverse outcomes.
Concurrently, there is a growing need in clinical research for interpretable models that
elucidate underlying disease mechanisms and bolster model credibility. Consequently, we
applied a global interpretation method to identify the importance of biomarkers in our
model. Specifically, to evaluate omics features in computational models, the normalization
of these features on a scale from zero to one was initially implemented. Feature ablation
involved individually removing features to evaluate their impacts on the model efficacy,
with a focus on classification capability. The importance of each feature was determined
by observing the reduction in model performance post-ablation. In binary classification
and multi-class classification tasks, the F1 score and F1 macro score were used to assess
the impact of feature ablation on model performance, respectively. This process was im-
plemented with the best-performing model. For multi-omics data, we implemented this
strategy with each type of omics data.
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50. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. arXiv 2017, arXiv:1710.10903.

http://dx.doi.org/10.3389/fphy.2020.00203
http://dx.doi.org/10.1038/s41467-023-41437-w
http://www.ncbi.nlm.nih.gov/pubmed/37699885
http://dx.doi.org/10.1093/bib/bbad338
http://www.ncbi.nlm.nih.gov/pubmed/37798249
http://dx.doi.org/10.1093/bioinformatics/btac088
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1002/bjs.10895
http://dx.doi.org/10.1016/j.patrec.2013.10.017
http://dx.doi.org/10.1002/sim.6732
http://www.ncbi.nlm.nih.gov/pubmed/26365903
http://dx.doi.org/10.1093/bioinformatics/bty1054
http://www.ncbi.nlm.nih.gov/pubmed/30657866
http://dx.doi.org/10.1109/TGRS.2020.3016820
http://dx.doi.org/10.1186/s12911-023-02173-9
http://www.ncbi.nlm.nih.gov/pubmed/37147619
http://dx.doi.org/10.1038/s41598-023-43686-7
http://www.ncbi.nlm.nih.gov/pubmed/37789141
http://dx.doi.org/10.1016/j.bbih.2021.100227
http://dx.doi.org/10.3389/fsysb.2023.1085577
http://dx.doi.org/10.1016/S0092-8674(01)00314-2
http://dx.doi.org/10.1038/sj.bjc.6601122
http://dx.doi.org/10.1016/j.ebiom.2018.12.061
http://dx.doi.org/10.1016/j.canlet.2020.01.007
http://dx.doi.org/10.3389/fonc.2021.717793
http://dx.doi.org/10.3892/ol.2019.10142
http://dx.doi.org/10.1038/s41598-020-77774-9
http://www.ncbi.nlm.nih.gov/pubmed/33277569
http://dx.doi.org/10.1186/1471-2105-9-559
http://www.ncbi.nlm.nih.gov/pubmed/19114008


Int. J. Mol. Sci. 2024, 25, 1655 16 of 16

51. Han, Z.; Zhang, C.; Fu, H.; Zhou, J.T. Trusted Multi-View Classification with Dynamic Evidential Fusion. IEEE Trans. Pattern
Anal. Mach. Intell. 2022, 45, 2551–2566. [CrossRef] [PubMed]

52. Jsang, A. Subjective Logic: A Formalism for Reasoning Under Uncertainty; Springer: Berlin/Heidelberg, Germany, 2018.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TPAMI.2022.3171983
http://www.ncbi.nlm.nih.gov/pubmed/35503823

	Introduction
	Results
	Classification Performance Comparison
	Ablation Comparison of the Model Key Component
	Ablation Study Comparing Integration Performance across Varied Omics Categories
	Robustness Study Involving Comparisons with Advanced Methods
	Important Biomarkers Identified via TEMINET

	Discussion
	Materials and Methods
	Overview of TEMINET
	Dataset Overview
	Intra-Omics Network Construction
	Intra-Omics Informative Augmentation
	Trust-Driven Multi-Omics Fusion
	Identifying Biomarkers with TEMINET

	References

