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Abstract: Virtual screening of large chemical libraries is essential to support computer-aided drug
development, providing a rapid and low-cost approach for further experimental validation. However,
existing computational packages are often for specialised users or platform limited. Previously, we
developed VSpipe, an open-source semi-automated pipeline for structure-based virtual screening. We
have now improved and expanded the initial command-line version into an interactive graphical user
interface: VSpipe-GUI, a cross-platform open-source Python toolkit functional in various operating
systems (e.g., Linux distributions, Windows, and Mac OS X). The new implementation is more
user-friendly and accessible, and considerably faster than the previous version when AutoDock Vina
is used for docking. Importantly, we have introduced a new compound selection module (i.e., spatial
filtering) that allows filtering of docked compounds based on specified features at the target binding
site. We have tested the new VSpipe-GUI on the Hepatitis C Virus NS3 (HCV NS3) protease as the
target protein. The pocket-based and interaction-based modes of the spatial filtering module showed
efficient and specific selection of ligands from the virtual screening that interact with the HCV NS3
catalytic serine 139.

Keywords: virtual screening; chemoinformatics; VSpipe; VSpipe-GUI; AutoDock; AutoDock Vina;
drug design; docking

1. Introduction

AutoDock v4.0 (AD4) is a widely used software for screening large chemical libraries
from compound databases [1]. The in vogue tools for ligand docking, such as AutoDock-
Tools [1], Raccoon [2], the Autodock.py plugin of PyMOL [3,4], or UCSF DOCK [5], have
either a very steep learning curve or require a specific operating system (OS). The more
advanced docking tools such as Glide [6], Gold [7], and FlexX [8] require a commercial
license for use, and thus are not freely available, unlike the aforementioned resources. To
facilitate structure-based virtual screening (VS), we have previously developed VSpipe,
a free and open-source command-line pipeline [9]. Although this initial version stream-
lined the transition between different software packages and new filtering tools, it remains
somewhat cumbersome to use. We have now redesigned VSpipe to be launched via an
accessible and OS-independent graphical user interface (GUI).

VSpipe [9] (hereafter referred to as VSpipe-CLI, where CLI stands for command-line
interface) is a semi-automated pipeline for virtual screenings that uses AD4 [1], AutoDock
Vina (Vina) [10], and Open Babel [11] to perform multiple steps required for structure-based
drug design, ranging from the preparation of receptor and ligands to the visualization of
results. Lipinski’s “rule of five” [12], ligand efficiency (LE) [13,14], binding efficiency index
(BEI), and surface efficiency index (SEI) [15,16] are employed in VSpipe-CLI to aid in the

Int. J. Mol. Sci. 2024, 25, 2002. https://doi.org/10.3390/ijms25042002 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms25042002
https://doi.org/10.3390/ijms25042002
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-6586-7241
https://orcid.org/0000-0001-8016-9006
https://orcid.org/0000-0002-9508-6286
https://orcid.org/0000-0001-8867-455X
https://doi.org/10.3390/ijms25042002
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms25042002?type=check_update&version=1


Int. J. Mol. Sci. 2024, 25, 2002 2 of 16

identification and selection of hits for experimental validation. Recently, Onyango et al. [17]
used VSpipe-CLI for in silico identification of new anti-SARS-CoV-2 main protease (Mpro)
molecules. Similarly, various studies have used VSpipe-CLI in identifying hit compounds
against selected drug targets such as protein tyrosine phosphatases or a fungal methionine
synthase [18–21].

However, VSpipe-CLI requires users to be well versed in a Linux environment and
familiar with the CLI-based third-party software mentioned. In order to run VSpipe-
CLI successfully, users need to install several dependencies and modify various settings
depending on the OS, which can be challenging without a computational background. In
addition, users often need to edit the various commands used during the final filtering
steps, which can be error prone and lead to a wrong interpretation of the results. To address
these shortcomings, we have developed VSpipe-GUI, a new user-interactive graphical
interface that includes additional features to improve the VS experience.

VSpipe-GUI integrates different modules that allow users to customize their VS:
(i) “Receptor Preparation”, (ii) “Compounds library preparation”, (iii) “Docking”, and
(iv) “Filtering”. Briefly, users run a VS through a graphical interface where the options
for each of the modules mentioned above can be selected without requiring the command
line. Various features have also been included to further improve users’ experience. First,
VSpipe-GUI automatically imports protein structures from the Protein Data Bank (PDB) [22]
when users enter the corresponding PDB ID. Alternatively, users can use the file browser to
upload PDB files with their own generated receptor models. Secondly, the “Compounds
library preparation” module in VSpipe-GUI can now prepare library compounds from
just individual PDB files. Lastly, a newly developed spatial filtering module has been
implemented to filter compounds based on either the binding site they occupy in the target
protein, or the desirable interactions with key functional residues. Note that a comparison
between the features available in VSpipe-CLI and VSpipe-GUI is illustrated in Figure 1.

The installation process in VSpipe-GUI has been streamlined with fewer dependencies
needing installation for launching the tool. Comprehensive and detailed documentation
are provided for the installation and running of VSpipe-GUI (https://github.com/rashid-
bioinfo/vspipe-gui/tree/master/Installation_Guide accessed on 24 January 2024). More-
over, the implementation of VSpipe-CLI in VSpipe-GUI has been optimized to decrease
execution time (more details are given in Section 2.3).

In this study, we tested VSpipe-GUI by screening a fragment compound library against
the Hepatitis C Virus (HCV) NS3 protease receptor. We showed that, when compared to
VSpipe-CLI, VSpipe-GUI is about 30% faster when using Vina for ligand docking. The
NS3/4A protease of the HCV is a critical therapeutic target because it plays a pivotal role in
the viral life cycle, making it an attractive target for drug development. Residue serine 139
(S139) is particularly significant as a catalytic residue in NS3/4A. Binding to this residue
is essential for blocking protease function and, consequently, for arresting the viral life
cycle. HCV infection is as a leading cause of chronic liver diseases with a serious global
public health impact. Targeting the NS3/4A protease, especially residues like S139, is thus
critical for developing effective treatments [23,24]. We demonstrate the use of the new
spatial filtering module in VSpipe-GUI by showing the effective and unbiased selection of
fragments binding to the catalytic S139 from the VS on the NS3/4A target.

https://github.com/rashid-bioinfo/vspipe-gui/tree/master/Installation_Guide
https://github.com/rashid-bioinfo/vspipe-gui/tree/master/Installation_Guide
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Figure 1. Comparison between VSpipe-CLI and VSpipe-GUI. Blue squares represent the common steps between both versions. Features only available in VSpipe-
CLI are represented by uncolored rhomboid shapes. Green rhomboid shapes represent modified/new features implemented in VSpipe-GUI. 
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2. Results
2.1. VSpipe-GUI Features

Here, we present VSpipe-GUI, a comprehensive graphical interface (Figures 2 and 3)
(that implements a redesigned version of VSpipe-CLI where users can interact to customize
their structure-based VS according to their target protein and ligand compounds.
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The main GUI window (Figure 2) helps users to specify their preferred project directory
for saving results, and for uploading the input receptor target protein and the compound
libraries on their local disk. Regarding the Grid Parameter File (GPF), required for docking,
users can either manually enter the coordinate values in the main GUI window, or upload
a previously saved GPF file in text format. Users may also select the type of docking to
take place, either blind or targeted, and the tool to be used for docking, either Vina or
AD4. Finally, users are able to choose whether they want to filter the compound library by
applying the Lipinski’s rule of five. A more detailed description of the main GUI window
is available in Figure S1, and a description of the Lipinski’s rule in Figure S2.
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Figure 3. Module options available for users. (a) Options for receptor preparation according to users’
needs, (b) options to use already minimized compound libraries provided by VSpipe-GUI, (c) options
to process (and minimize, if not done already) compounds uploaded by users in a single batch file,
(d) options to process ligand compounds input by users.

2.2. Modules of VSpipe-GUI
2.2.1. Receptor Preparation Module

This module is used to prepare the receptor target protein before starting the VS. Users
may either upload their own PDB file for the target protein or specify the PDB ID and allow
VSpipe-GUI to retrieve the file directly from the PDB. There are three options to process the
PDB file to choose from: (i) extract the first chain of the receptor and clean it from water
molecules, metal ions, and other non-protein components; (ii) specify metal ions to keep
and the corresponding ion charge if the target protein input is a metalloprotein; or (iii) keep
the content of the PDB file intact without changes. The GUI window of this module is
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shown in Figure 3a (see Figures S3 and S8a for a detailed description of this GUI window
and this module workflow, respectively).

2.2.2. Compound Library Preparation Module

This module allows users to prepare ligand compounds prior to the docking step.
Users may upload their own compound library in one of the accepted formats (i.e., SDF,
PDB, or MOL2), which VSpipe-GUI will then minimize and generate conformers with
Open Babel [11]. Alternatively, users may decide to choose one of the eighteen already
minimised compound libraries available: AnalytiCon Discovery, Asinex, ChemBridge,
ENAMINE, InterBioScreen, Indofine Natural Products, Maybridge, Princeton Natural
Products, Specs Natural Products, and Zenobia. The GUI window of this module is
described in Figure 3b–d (see Figures S4 and S8b for a detailed description of this GUI
window and this module workflow, respectively).

2.2.3. Docking Module

Once the receptor and compound library have been prepared, docking can take place
with either AD4 or Vina. First, users define the values of the grid box that will be used to
direct the docking onto the receptor (i.e., either generate a GPF file with MGL Tools [1] or
reuse previously generated GPF files). Then, users can either upload the resulting GPF file
generated or just type the coordinates of the grid box that will be used by VSpipe-GUI to
centre the docking site (i.e., the x, y, and z coordinates). In addition, users can choose to
further filter the compounds according to the Lipinski’s rule [12].

Once all parameters have been specified in this module, users will be able to initiate
the docking with the “run” button. Once VSpipe-GUI has successfully run the docking
analysis, a CSV file is generated containing compound IDs, their SMILES notations, and the
corresponding physic-chemical properties. A new directory will also be created in which
the PDB files for the lowest energy compound conformations are saved (see Figure S9a for
a detailed description of this module workflow).

2.2.4. Filtering Results by Property Module

The output files generated after successfully running a VS include a list of the docked
ligands and their corresponding 16 physicochemical properties, and molecular descriptors
together with the ligand efficiency indices calculated during the virtual screening (please
see the “Materials and Methods” section for details as well as the Supplementary Materials
for more information about the workflow). At this stage, users can check these parameters
and decide whether to run the filtering module to sort and/or filter the docked ligands
by selecting a threshold value for one or more of the properties described. In this way,
this module can be run several times with different threshold values for the different
properties chosen by the user. Specifically, the parameters to choose from for the filtering
are the following: molecular weight (MW), calculated lipophilicity and solubility (cLogS,
cLogP), hydrogen bond donors (HBD), hydrogen bond acceptors (HBA), polar surface area
(PSA), rotatable bonds, binding affinity (experimental Ki or calculated ∆G), and the ligand
efficiency indices, binding efficiency index (BEI), surface-binding efficiency index (SEI),
NSEI, NBEI, nBEI, and mBEI. The GUI window of this module is given in Figure 4a (see
Figures S5 and S9b for a detailed description of the GUI window and the module workflow,
respectively).
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2.2.5. New Spatial Filtering (3D Filtering) Module

The aim of the new filtering module is to facilitate the selection of ligands that bind
to a specific site, such as the active site or other substrate, or allosteric sites in the target
receptor. In VSpipe-CLI, the filtering steps only allowed for the selection of physicochemical
parameters but not spatial filtering [9]. Manual evaluation of ligand–protein interactions is
a tedious task, which becomes impossible with large libraries. A number of good external
options to calculate protein–ligand interactions such as ligGrep and LigPlot [25,26] are
available. Nevertheless, we wanted to integrate a similar interaction-based filtering module
within VSpipe-GUI to minimise the burden of exporting large numbers of files for use with
external software, which reduces the efficiency of the overall VS process.

The new spatial filtering module allows users to select the docked ligand compounds
(i.e., results generated by VSpipe-GUI) based on their binding site interactions with specific
target protein residues. This step is important in VS because it enables the selection of
ligands based on the known functional relevance of the binding sites or specific residues
(i.e., catalytic residues) where clusters are located. In addition, spatial filtering permits
the enrichment of the pool of “more likely” active site target inhibitors or other functional
binding site inhibitors.

By using this new feature, users can select either a “pocket-based” filtering (i.e., con-
sidering interactions between the whole ligand and defined protein site) or an “interaction-
based” filtering (i.e., when specific atom types in the ligands are used to define the interac-
tions with atoms or residues in the target).

In pocket-based filtering, users define a protein-pocket location either using the name
of a ligand, which occupies the pocket, or the XYZ coordinates of the centre of the pocket.
Next, users specify the size of the pocket in Å and the VSpipe-GUI returns all ligands
within the site. Alternatively, users may select few ligands around the centre of the pocket
(e.g., return the closest 20 ligands to the centre of the pocket).

In interaction-based filtering, users define a protein residue to select ligands that
interact with it by defining the XYZ coordinates of that residue. Subsequently, users may
select which atom types in the ligand are involved in the interaction. For example, for a
potential hydrogen bond the user may wish to select the oxygen and nitrogen as the ligand
interaction atoms. Lastly, users specify the maximum interaction distance desired.

In both cases, once VSpipe-GUI starts, PDB files for both the target protein and the
ligand compounds are read, and the coordinates are collected from the input given by
the users. The distance to a pocket or protein residue is then calculated, and ligands that
match the criteria specified by users are copied to a newly created results directory. An
overview of the spatial filtering module and a flowchart describing the operations is shown
in Figure 5. The GUI window that users interact with when launching this module is given
in Figure 4b (see Figures S6 and S7 for a detailed description of pocket-based filtering and
interaction-based filtering processes, respectively).

To demonstrate the application of the new filtering module and its ability to enrich
docking results, we used the crystal structure of HCV NS3 protease with the known
inhibitor MK-5172 bound in the active site (PDB ID: 5EPN) [27] as our target protein.
When running the VSpipe-GUI, we removed the original ligand and water molecules
from the target protein prior to running a blind-docking with Vina using the Maybridge
500 fragment library. We then used the spatial filtering module to identify those ligands
that were binding to the target protein in a similar fashion to MK-5172.

The ligand compounds were found to predominantly bind within two distinct sites
of the target protein. The first site corresponds to the well-documented active site, where
compounds like MK-5712 are known to bind. This site is a recognised target for drug
development, essential for the enzymatic function of NS3 [27,28]. The second binding
site is located at an allosteric site at the rear of the protein (Figure 6a). While not as
extensively studied as the active site, this allosteric site has been previously reported
in the scientific literature [29]. Allosteric sites can influence protein function through
conformational changes and represent potential targets for therapeutic agents [30,31]. In
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this case study, we show how VSpipe-GUI allows users to rapidly perform unbiased
docking and identify binding sites that have been experimentally validated, as well as new
ones for further exploration.
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Next, we used the pocket-based filtering option in the spatial filtering module to
select only the ligands that were binding to the active site. We selected the coordinates
of the active site S139 as the reference for the active site location and set the radius of the
pocket to 10 Å. This approach reduced the initial 501 ligands to 82 (Figure 6b). In a second
filtering step, we used the interaction-based filtering option to identify those ligands within
hydrogen bond distance to the catalytic S139, which interacts with the MK-5712 molecule.

We selected the hydroxyl hydrogen atom Hγ of S139 as the reference for the target
protein and then selected the oxygen and nitrogen atoms as the interaction partners in
the ligand, specifying a cut-off distance of 3 Å for the interaction. These criteria identified
14 out the 82 ligands that contained an oxygen or a nitrogen within 3 Å of the target
S139OHγ, which greatly reduced the number of ligands for further visual inspection. The
interaction-based filtering step also found a possible hydrogen bond between an oxygen of
ligand CC01309 and S139Hg of the NS3 protease, similar to that observed in the binding of
MK-5712 in the crystal structure [27] (Figure 6c). This approached allowed for the selection
of ligands with similar binding modes to that of the MK-5712 inhibitor, indicating a high
likelihood for the new ligands to inhibit the target protein [27]. VSpipe-GUI can therefore
be used under this scenario to quickly identify a specific binding site by using the new
interaction- and pocket-based filtering modules.
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Figure 6. (a) General view of MK-5172 and allosteric binding sites in the NS3 protease. The Maybridge
500 fragment library and MK-5712 are docked against the NS3 protease crystal structure; catalytic
S139 is highlighted in cyan. (b) MK-5712 is bound to the catalytic site of NS3 protease; the hydrogen
bond between catalytic S139 (cyan) and the sulfonamide oxygen is shown with a yellow dashed line.
(c) In total, 93 ligands identified by the pocket-based filtering option occupy the active site. Possible
hydrogen bond (shown by the yellow dashes) was identified by the interaction-based filtering option
between an oxygen of CC01309 and S139Hg.

2.3. Benchmarking the Docking Step between VSpipe-GUI and VSpipe-CLI

We conducted a comparative performance analysis between VSpipe-GUI and VSpipe-
CLI to assess the virtual screening efficiency between both versions. Our experiments were
conducted using the HCV NS3/4A protease (PDB ID: 5EPN) [27] as the target protein, and
we performed virtual screenings with both AD4 and Vina. We ran these analyses on a local
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machine with Ubuntu 20.04 as its operating system. Table 1 provides an overview of the
CPU usage for each scenario.

Table 1. Benchmarking of the docking step when running Vspipe-CLI and Vspipe-GUI with both
AD4 and Vina during the screening of two libraries of 98 and 500 compounds, respectively, onto the
HCV NS3 protease as a target protein. We ran Vina and AD4 with VSpipe-CLI and VSpipe-GUI on a
PC with 8192 MB RAM and Intel(R) Core(TM) i7-5500 CPU @ 2.40 GHz (4 CPUs).

Docking Software
Docking Time with

VSpipe-CLI
(hh:mm:ss)

Docking Time with
VSpipe-GUI
(hh:mm:ss)

98 compounds

Vina 1.1.2 00:14:00 00:09:32

AD4 4.2.6 01:16:26 01:23:10

500 compounds

Vina 1.1.2 01:28:26 00:49:18

AD4 4.2.6 09:40:41 09:40:17

To expand the initial experiments carried out with the Maybridge library of 98 com-
pounds [9], we analysed a larger compound library containing 500 compounds. This
extended the evaluation to assess the scalability and performance of both VSpipe-GUI
and VSpipe-CLI versions when dealing with more extensive datasets. Benchmarking both
versions with larger libraries allowed us to also explore the capabilities of the spatial filter-
ing module further within VSpipe-GUI. While our initial experiments provided valuable
insights into the efficiency of VSpipe-GUI and VSpipe-CLI, the expanded dataset enabled
us to assess how well the spatial filtering module accommodates the screening of larger
compound libraries and its potential to streamline the compound selection process based
on binding site preferences.

Our results show significant efficiency improvements when employing Vina as the
docking software in VSpipe-GUI compared to using VSpipe-CLI. These enhancements are
summarised as follows:

(1) Detailed improvement in computational time: one of the most significant improve-
ments is the approximately 30% reduction in computational time achieved when running
Vina through VSpipe-GUI (please see Table 1 for details). This efficiency improvement can
be attributed to an innovative approach that involves batching configuration parameters
for all compounds in the library. VSpipe-CLI processes one compound at a time in a
sequential approach. In other words, the program reads the configuration parameters for
one compound, performs the necessary computations, and then moves on to analyse the
next compound. This sequential process requires the program to write and read individual
configuration files for each compound. For example, when dealing with a library of 100
compounds, 100 separate configuration files will be generated, thus resulting in a significant
time overhead because of the frequent file operations and configuration handling for each
compound.

VSpipe-GUI, however, takes a different and more efficient approach than VSpipe-CLI
to parameter handling. Instead of processing compounds one at a time in a sequential
manner, VSpipe-GUI collects all the configuration parameters for all compounds in the
library simultaneously: all the x, y, and z coordinates are collected for every compound at
once during runtime. Subsequently, the program applies these parameters to each com-
pound within the library without the need for writing and reading individual configuration
files for each compound. VSpipe-GUI effectively batches the configuration parameters by
treating them as a single set for the entire library. This streamlined process minimizes the
time spent on file operations and configuration handling for each compound, leading to
substantial time savings.
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(2) Disk space efficiency: beyond the computational time savings, the implementation
in VSpipe-GUI also enhances disk space efficiency. By eliminating the need to generate
individual configuration files for each compound, VSpipe-GUI significantly reduces disk
space usage. This feature proves especially valuable when dealing with extensive com-
pound libraries by simplifying data storage and management, which reduces the overall
costs related to such computational resources. Particularly, this feature is advantageous in
large-scale virtual screening projects.

(3) Scalability: while initial experiments involved a library of 98 compounds, perfor-
mance improvements extend to larger compound libraries, including those containing 500
compounds. This scalability feature enables researchers to efficiently apply VSpipe-GUI to
high-throughput screening efforts without compromising VS efficiency.

(4) Potential for further optimisation: the observed improvement in computational
time primarily results from optimising the configuration parameter handling process.
However, it is noteworthy that other features of Vspipe-GUI, such as its accessibility and
user-friendly graphical interface, may also contribute to a smoother and more efficient
workflow for researchers. Exploring these features and their impact on overall performance
may lead to further insights.

3. Discussion

We have developed a new interactive virtual screening pipeline, VSpipe-GUI, by
implementing VSpipe-CLI [9] with a graphical interface alongside new features. The new
version of VSpipe, VSpipe-GUI, has addressed the limitations that users often encountered
when using VSpipe-CLI by (i) keeping a simple installation with fewer dependencies,
(ii) allowing for an interactive graphical interface instead of using the command line,
(iii) enabling users to search their file system to upload input files and easily customise VS
options, and (iv) implementing a new spatial-based filtering module.

Computational docking allows for the processing of large compound libraries by
filtering the results to a manageable compound set for subsequent analysis. While VSpipe-
CLI could filter docked ligands based on a docking score or on pre-computed physic-
chemical properties, the specific location of the ligands or their binding site was not
considered. To tackle this problem, we implemented a spatial-filtering module in VSpipe-
GUI. Now, users can narrow down the list of final ligand conformations from the VS
based on their position in binding sites or specific ligand–protein interactions. In this
way, large data sets can now be efficiently filtered by targeting functionalities within the
receptor protein such as the active site or known relevant substrate binding or regulatory
sites, which has improved the applications of VSpipe-GUI substantially. After testing and
validating VSpipe-GUI with the HCV NS3 protease as the target protein, we found that the
spatial filtering module could identify ligands interacting with the catalytic S139 residue
and specifically compounds with a very similar binding mode to MK-1572, an already
reported inhibitor of this protease [32].

In conclusion, we have redesigned VSpipe [9] to deliver a user-friendly and interactive
tool for VS. VSpipe-GUI offers a simpler implementation and usage, and includes new
features that can accelerate the identification of potential hits for experimental validation
and drug development.

We believe that the development of user-friendly computational resources and tools
such as VSpipe-GUI will help the scientific community by making complex methodologies
more accessible to a broader audience. Only by improving the overall VS throughput
with more accessible, reproducible, and efficient computational processes will we then be
able to enhance the discovery of new compounds for novel and known binding targets of
pharmaceutical interest.
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4. Materials and Methods
4.1. Programming Languages

VSpipe-CLI was developed by Álvarez-Carretero et al. [9] in the Bash scripting lan-
guage as a semi-automated pipeline that combines the usage of AutoDock, Open Babel
tools, and in-house Python and R scripts to carry out the VS. Here, we have rewritten this
bioinformatics tool as VSpipe-GUI using the Python Tkinter package [33].

4.2. Comparison of VSpipe-CLI and VSpipe-GUI

VSpipe-CLI and VSpipe-GUI were run separately on a machine running Ubuntu 20.04
LTS [34] with Intel(R) Core ™ i7-5500U CPU @ 2.40 GHz (4CPUs) and 8192 MB of RAM.

4.3. Visualization

The software Schrödinger PyMOL version 2.5.4 [4] was used to view the protein–
ligand docked poses.

4.4. Target Proteins and Ligands

VSpipe-GUI accepts protein structures in the PDB format [22]. VSpipe-GUI supports
both individual files and ligand libraries for small compounds [35]. The formats supported
by VSpipe-GUI are PDB, MOL, MOL2, SMI, CAN, and SDF. Current libraries used by
VSpipe include those from AnalytiCon Discovery, Asinex, ChemBridge, ENAMINE, In-
terBioScreen, Indofine Natural Products, Maybridge, Princeton Natural Products, Specs
Natural Products, and Zenobia. These libraries are available from various commercial
providers and can be pre-formatted for use by VSpipe.

4.5. Filtering the Results after the VS

After filtering, VSpipe-GUI creates a new directory with the filtered results: (i) out-
put summary files with the information of the filtered ligands according to the criteria
specified by users; (ii) a subdirectory with the PDB ligand files that meet the filtering
requirements; and (iii) the ligand efficiency plots corresponding to the filtered ligands. The
output summary plots are (a) HBA vs. number of compounds; (b) log P vs. number of
compounds; (c) MW vs. number of compounds; (d) NSEI (−log10Ki/NPOL) vs. nBEI
(−log10[(Ki/NHEA)]); (e) PSA-number of compounds; and (f) SEI (p(Ki)/(PSA/100 Å2)
vs. BEI (p(Ki)/MW(kDa)). Please note that this module is very convenient for users that
want to sort and order the screened ligands according to a specific property or various
properties. This feature becomes even more useful when thousands of compounds have
been screened and users want to narrow down the list of selected compounds to those
fitting specific criteria.

4.6. Spatial Filtering

The spatial filtering module contains two different filtering options: a pocket-based
filtering mode and an interaction-based filtering mode (Figure 4b). When enabling the
pocket-based mode, users define the location of a binding pocket using either the XYZ
coordinates of an atom in the receptor protein or a specific ligand name bound in the
site. Then, users can define a distance range from the specified receptor atom (e.g., 20 Å
from oxygen in a catalytic serine residue) or the number of the closest ligands to that
receptor atom (e.g., 20 top ligands). In the first instance, VSpipe-GUI calculates the centre
of mass (CoM) for each ligand, and then calculates the distance from the specified receptor
atom to the computed CoM. VSpipe-GUI then selects those ligands that are located within
the distance range specified by users and copies the selected ligand PDB files to the new
results directory. In addition, the filtering module generates a new FilteredOutput.xlsx file
with the parameters of each selected ligand. In the other instance, when a specific ligand
(i.e., reference ligand) is chosen, VSpipe-GUI uses the CoM of that ligand to rank the rest of
the ligand conformations according to their distance to the reference. Once this is done,
the program will select the top number of ligands pre-defined by users (e.g., 20) and copy
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the corresponding PDB files to the new results directory, where a new FilteredOutput.xlsx
file will be saved. When the interaction-based filtering option is enabled, users define the
XYZ coordinates of an atom within the receptor protein residue. Afterwards, users select
specific atom types in the ligand (i.e., O, N, C, H) and then the distance range between
the protein atom and the ligand atoms (Figure 4b). Vspipe-GUI will then calculate the
distance between each specified ligand atom type and the receptor atom. Based on such
results, the program will select those ligands within the defined distance criteria and copy
the corresponding PDB files into the results directory, where the FilteredOutput.xlsx file
will also be saved.

4.7. Docking Parameters for HCV NS3 Protease

HCV NS3/4A protease (PDB ID: 5EPN) [27] was used as a receptor. The grid centre
for the S139 in the catalytic site was x = −8.063, y = −21.772, z = 13.487, while the grid size
was defined to be x = 40, y = 40, z = 40. The grid spacing was set to 0.375 Å. The Maybridge
500 fragment library was used for spatial filtering. Both the Maybridge 98 fragment library
and the 500 compound library aforementioned were used for benchmarking Vspipe-GUI
and Vspipe-CLI.
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