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Abstract: Lipids represent a large group of biomolecules that are responsible for various functions
in organisms. Diseases such as diabetes, chronic inflammation, neurological disorders, or neurode-
generative and cardiovascular diseases can be caused by lipid imbalance. Due to the different
stereochemical properties and composition of fatty acyl groups of molecules in most lipid classes,
quantification of lipids and development of lipidomic analytical techniques are problematic. Identifi-
cation of different lipid species from complex matrices is difficult, and therefore individual analytical
steps, which include extraction, separation, and detection of lipids, must be chosen properly. This
review critically documents recent strategies for lipid analysis from sample pretreatment to instru-
mental analysis and data interpretation published in the last five years (2019 to 2023). The advantages
and disadvantages of various extraction methods are covered. The instrumental analysis step com-
prises methods for lipid identification and quantification. Mass spectrometry (MS) is the most used
technique in lipid analysis, which can be performed by direct infusion MS approach or in combination
with suitable separation techniques such as liquid chromatography or gas chromatography. Special
attention is also given to the correct evaluation and interpretation of the data obtained from the lipid
analyses. Only accurate, precise, robust and reliable analytical strategies are able to bring complex
and useful lipidomic information, which may contribute to clarification of some diseases at the
molecular level, and may be used as putative biomarkers and/or therapeutic targets.

Keywords: lipids; lipid analysis; sample treatment; liquid chromatography; mass spectrometry;
data analysis

1. Introduction

Lipids belong to a crucial group of biomolecules that participate in many vital cellular
processes in various physio-pathological events; they are components of cell membranes,
cell barriers, energy sources, and signal transduction, and serve as intermediates in sig-
naling pathways [1,2]. Chemically, lipids are organic molecules with poor solubility in
water [3]. Because of the high number of lipids, their classification is important. Divid-
ing lipids into classes and subclasses is reliant on the lipid head group and the type of
connection between aliphatic chains and the head group. The most common classifica-
tion is according to their polarity. We distinguish non-polar, e.g., triacylglycerol (TAG)

Int. J. Mol. Sci. 2024, 25, 2249. https://doi.org/10.3390/ijms25042249 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms25042249
https://doi.org/10.3390/ijms25042249
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-1110-7666
https://orcid.org/0000-0001-6685-877X
https://orcid.org/0000-0003-4736-4592
https://orcid.org/0000-0001-6840-5248
https://orcid.org/0000-0002-3223-8705
https://orcid.org/0000-0003-2003-9052
https://doi.org/10.3390/ijms25042249
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms25042249?type=check_update&version=2


Int. J. Mol. Sci. 2024, 25, 2249 2 of 29

and cholesterol (Chol), polar lipids, e.g., ethanolamine glycerophospholipid (PE), choline
glycerophospholipid (PC), inositol glycerophospholipid (PI) [4,5], and neutral, e.g., waxes
and terpenes [6]. The best-known comprehensive classification system LIPID MAPS®

comprises more than 45,000 lipid structures in their database [4,5]. According to LIPID
MAPS®, these biomolecules are classified into eight categories (Table 1), including fatty
acyls (FA), glycerolipids (GL), glycerophospholipids (GP), sphingolipids (SP), sterol lipids
(ST), prenol lipids (PR), saccharolipids (SL), and polyketides (PK) [7]. Most lipid classes
contain a number of molecules that differ in terms of their stereochemical properties and
composition of fatty acyl groups. These differences in lipid species and their homeostasis
are involved in various pathological conditions [8]. Disruption of lipid homeostasis can
lead to problems in living organisms, such as cardiovascular diseases, diabetes, chronic
inflammation, neurological disorders or neurodegenerative diseases such as Alzheimer’s
disease (AD) [1,9].

Table 1. Lipid classes; adapted from [9,10].

Lipid Class Example

Fatty acyls HFAs, FAs
Glycerolipids MAG, DAG, TAG

Glycerophospholipids PA, PC, PE, PS
Sphingolipids Cer, PSL, SM
Sterol lipids CE, Chol, CS
Prenol lipids quinine, polyprenol, isoprenoid

Saccharolipids lipid A
Polyketides lovastatin

CE: cholesteryl ester; Cer: ceramide; CS: cholesteryl sulfate; DAG: diacylglycerol; FAs: fatty acids; HFAs: hydroxyl-
fatty acids; MAG: monoacylglycerol; PAs: phosphatidic acids; PS: phosphatidylserine; PSL: phosphosphingolipids;
SM: sphingomyelin.

The profile of lipid classes found in a cell, organelle or tissue refers to the lipidome,
while lipidomics represents lipid profiling in biological systems [11]. Lipidomics, as a part
of lipid analysis, is a quickly growing tool in the exploration of lipid metabolism, the search
for new biomarkers and the discovery of medicinal targets of lipid-related diseases [12,13].

Due to the complex structures of lipids and the large number of lipid species, analysis
is more demanding, and thus all analytical steps, including sample preparation, separation,
detection, data processing and interpretation, must be considered and verified for reliable
identification and/or quantification of different lipid species from complex matrices [14,15].
The development of analytical methodologies is an emerging field, seeking to fulfill the high
requirements of analysis results. For identification and quantification of lipids in various
matrices, the most dominant are MS-based methods, which can be used without prior
separation of lipids (direct MS) or in conjunction with appropriate separation technique,
mostly liquid chromatography (LC) [13]. These methods enable accurate identification of
lipid changes at the level of individual classes, subclasses and types of molecules [11,13].
Two approaches in lipid analysis are currently used: targeted and untargeted (or non-
targeted). Both approaches have their own advantages and disadvantages [8]. Absolute
concentrations of known metabolites (1–100 metabolites, depending on the number of
investigated analytes), thanks to the use of standards and calibration curves of selected
metabolites, provide a targeted approach [16,17]. An untargeted approach can cover the
detection of lipids in the hundreds to low thousands using a combination of separation and
detection modes. Semi-quantitative data are obtained by untargeted analysis, where each
lipid peak area is reported (instead using absolute concentration of each analyte) [16,18].

In rapidly evolving fields such as lipid analysis, staying current is important. Advances
in sample preparation and instrumentation, characterized i.e., by increased MS resolution
and enhanced sensitivity in new MS devices, present opportunities for analyses that are
not only more sensitive and accurate but also faster, enabling the monitoring of numerous
analytes in a single run. Consequently, publication of review articles regularly becomes
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essential to provide authors in this field with a contemporary understanding of the state-of-
the-art. To our best knowledge, a comparably comprehensive overview of lipid analysis
has not been published in the past five years.

This article is focused on overview of latest (last five years) advances in lipid analysis.
In this review, the advantages and limitations of extraction techniques are discussed, and
analytical techniques used in lipid analysis are critically reviewed. Furthermore, analysis
of obtained data is included.

2. Sample Pretreatment

Sample pretreatment comprises all actions performed with the sample from its delivery
to the laboratory to its analysis. That is why it is the most important and the most critical
step of the entire analytical procedure in chemical analysis, especially in lipid analysis.
Since lipids are susceptible to oxidation or their hydrolysis may occur (depending on the
matrix), it is necessary to process the sample as soon as possible or freeze it at −80 ◦C or
lower [1,2,12,19].

Sample treatment used in lipid analyses strategies is typically accompanied with
extraction procedures. Lipid extraction is often preceded by preparation of the analyzed
sample. The sample preparation step can include mechanical, biological, chemical or physi-
cal operations, which are included before the extraction step. When using these techniques,
a better penetration of the solvent into the matrix is achieved. As such, the robustness of the
entire method could be increased [11,20]. The sample preparation method is chosen mainly
based on the physical state of the sample. While the treatment of liquid samples (e.g.,
plasma or urine) is relatively simple, the treatment of solid samples, such as tissues, is more
difficult and, in most cases, requires reduction or disruption of solid sample particles and
homogenization [21]. Other sample preparation methods include physical and mechanical
operations such as bead milling, hydrodynamic cavitation, ultrasonication, autoclaving and
microwave irradiation, biological procedures, i.e., use of enzymes, or chemical procedures,
e.g., osmotic shock of cells [11,22–24]. Another aim of sample preparation in lipid analysis
is the improvement of lipid stability by adding additives or antioxidants to the sample or
treating the sample by flash freezing or heat [12]. Whether subsequent lipid extraction will
be effective depends on selecting an appropriate sample preparation method [11].

2.1. Extraction of Lipids

Several procedures are currently available for the extraction of lipids from different ma-
trices. Whether the result of the analysis will be quantitative/qualitative depends, among
other things, on the appropriately chosen extraction method. Differences in lipid structure,
molar weight and polarity make this part of sample pretreatment very challenging [7,11,25].
The choice of extraction method is also dependent on the type of analyzed sample or the
properties of lipids: (i) sample origin (human, animal, plant, food), (ii) physical state (fluid,
tissue), (iii) physicochemical properties of lipids (polarity). Polarity of lipids is the key
factor in the selection of extraction solvents. Another crucial factor affecting the extraction
procedure is the complexity of matrices. Therefore, there is a need to minimize the matrix
effect. This step includes selective removal of other interfering non-lipid components from
the sample [1,26]. Typical interferents, which need to be removed from biological samples
such as serum or tissue, are represented by proteins. For this purpose, it is necessary to
implement a simple operation known as protein precipitation (PP) and choose a solvent
that is also suitable for the extraction of lipids [27]. However, in most cases, PP and the lipid
extraction itself are two separate steps. The simplest extraction method is single organic
solvent extraction (SOSE) using polar solvents like acetonitrile (ACN) or methanol (MeOH),
which is limited in the extraction of neutral or non-polar lipids [21]. However, one-phase
extraction (OPE) is an analog of SOSE but includes the use of two or more miscible solvents
creating one phase, e.g., butanol (BuOH):methanol (MeOH) in ratio 3:1, known as the
BUME method [28]. Similarly, the same organic solvent mixture (BuOH:MeOH) at the
1:1 solvent ratio can also be used as an efficient lipid extraction environment [29]. OPE
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becomes very effective for the extraction of less polar lipids and nowadays is gaining more
and more popularity, especially thanks to its simplicity [30,31].

Another preferred method used in lipid sample pretreatment is liquid-liquid extrac-
tion (LLE) [1]. All currently used protocols (regardless of the nature and origin of the
sample) are based on the Folch [32] and Bligh and Dyer methods [11,33,34], which were
originally developed for lipids extraction from tissues. These two methods are considered
as the “gold standard” in lipid extraction. Recently, many modifications of these methods
are known, either in an attempt to increase the extraction efficiency or in an attempt to
replace the toxic solvents used in these methods: chloroform (CHCl3): MeOH (in a ratio
of 2:1 in Folch method and 1:2 in Bligh and Dyer method, respectively) [34,35]; less toxic
solvents include propanol, isopropanol (IPA), ethyl acetate (EtOAc), ethanol (EtOH) or their
combination [36,37]. Another modification is the use of methyl tert-butyl ether (MTBE), i.e.,
Matyash’s method [38]. In this method, lipids are extracted in the upper (organic) phase;
this phase is easily collected and represents an advantage over the Bligh and Dyer or Folch
methods, where lipids are in the lower (CHCl3) phase. The disadvantage of MTBE is the
volatility of MTBE; therefore, it is necessary to ensure the reproducibility control of the
extraction [11,39]. A simple comparison of the Bligh and Dyer, Folch and Matyash methods
is illustrated in Figure 1.
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In 2019, Wong et al. provided a comparison of the modified BUME method introduced
by Alshehry et al. [29] with classical Folch and Matyash’s methods. BUME method reached
comparable results in terms of reproducibility and recovery and in its ability to detect
a wide range of lipid classes without using chloroform [40]. Another chloroform-free
method was published recently, in which the three-phase liquid extraction was introduced
for lipidomic workflows. A mixture of distinct liquid phases consists of hexane, methyl
acetate, ACN, and water. Using this technique, polar and neutral lipid fractions are made.
Separating lipids into two distinct organic phases leads to less complex extracts; this
comes with other advantages, such as lower background or decreased ion suppression
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in comparison with the use of the modified Bligh and Dyer method. On the other hand,
the analysis time is doubled if both lipid profiles are needed [41]. In addition to the
listed less toxic solvents, there is an effort to incorporate green solvents, e.g., terpenes [42],
cyclopentyl methyl ether (CPME) [43], or a combination of 2-methyl tetrahydrofuran (2-
MeTHF) and CPME. Unfortunately, this solvent system showed significantly lower yields
of lipids extraction than classic Bligh and Dyer and Folch protocols [44]. On the other hand,
another combination of green solvent system consisting of 2-MeTHF:isoamyl alcohol:H2O
showed higher yields of lipids compared to classic extraction methods [11]. However, the
developed extraction method was significantly more expensive than the classic extraction
method, which is highly undesirable and makes the position of green extraction solvents
more difficult in competition with cheaper non-green toxic solvents such as chloroform
or MeOH [11,42]. An overview of extraction techniques (with representative examples of
solvents, phases etc.) used in lipid analysis is shown in Figure 2.
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Figure 2. Overview of extraction techniques (with representative examples of solvents, phases, etc.)
used in lipid analysis; individual techniques are colored according to their “greenness”: Red (OPE,
LLE, SE)—conventional extraction techniques with possibility of using greener solvents, such as 2-
MeTHF; Red-to-green gradient (SPE; UAE; MAE)—greener techniques requiring usage of organic sol-
vents; Green (SPME; SFE)—green extraction techniques. C18-PAN: C18-polyacrylonitrile; EtOH-UAE:
ethanol-ultrasound-assisted extraction; MAE: microwave-assisted extraction; MTBE-UAE: methyl-
tert-butyl ether-ultrasound-assisted extraction; PDMS/DVB: polydimethylsiloxane/divinylbenzene;
RP-amide: reversed-phase-amide; SE: Soxhlet extraction; SFE: supercritical fluid extraction; SPE:
solid phase extraction; SPME: solid phase microextraction.

Other extraction techniques include solid phase extraction (SPE), which can be used
for lipid extraction, especially in targeted lipidomics, where selected groups of lipids can
be selectively extracted [27]. However, it is more often used as a clean-up technique after
the previous LLE extraction. Suitable and commonly used SPE columns for more polar
lipids are silica and aminopropyl. For non-polar lipids, reversed-phase columns (C8 or
C18) are commonly utilized. A miniaturized parallel of SPE is solid phase microextraction
(SPME), which is usually used prior to GC analysis [21]. Based on SPE principles, the
simplified method for lipid extraction using superabsorbent polymer powders (SAP) was
introduced a few years ago [45]. This technique was recently modified by [46]. The novel
modified method utilized a spin column filled with SAP beads (Figure 3). The method
was reproducible, sensitive and timesaving, and it showed an especially high extraction
efficiency of lipids. A significantly lower (seven times) limit of detection (LOD) of PC
17:0/17:0 spiked into plasma in comparison with conventional methods was achieved.
Moreover, a considerably lower 5-day period relative standard deviation (RSD) values for
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variability (inter- and intra-day) in comparison with previous SAP and Matyash methods
were reached. According to these results, the modified SAP method could be a promising
approach to lipid analysis [46].

Int. J. Mol. Sci. 2024, 25, 2249 6 of 29 
 

 

C18) are commonly utilized. A miniaturized parallel of SPE is solid phase microextrac-
tion (SPME), which is usually used prior to GC analysis [21]. Based on SPE principles, the 
simplified method for lipid extraction using superabsorbent polymer powders (SAP) was 
introduced a few years ago [45]. This technique was recently modified by [46]. The novel 
modified method utilized a spin column filled with SAP beads (Figure 3). The method 
was reproducible, sensitive and timesaving, and it showed an especially high extraction 
efficiency of lipids. A significantly lower (seven times) limit of detection (LOD) of PC 
17:0/17:0 spiked into plasma in comparison with conventional methods was achieved. 
Moreover, a considerably lower 5-day period relative standard deviation (RSD) values 
for variability (inter- and intra-day) in comparison with previous SAP and Matyash 
methods were reached. According to these results, the modified SAP method could be a 
promising approach to lipid analysis [46]. 

 
Figure 3. Illustration of novel modified method using spin column filled with SAP beads. Adapted 
from [46]. Copyright 2023 SpringerOpen. 

Ultrasound-assisted extraction (UAE) [47], like SPE, is more often used in combina-
tion with OPE or LLE to increase the extraction efficiency [21]. An example of such an 
extraction was performed a few years ago. Xie et al. [48] developed the OPE-UAE method 
for egg yolk lipids profiling. IPA was used as an extraction solvent. The optimized con-
ditions of the extraction process were as follows: liquid-solid ratio was 5.2:10 (v/w), ul-
trasound power was 182 W and time was 43 min. This approach enabled the characteri-
zation of 646 lipid species. Furthermore, compared with conventional methods (Folch and 
Matyash), the IPA-UAE method showed improved extraction efficiency and particularly 
solved the main drawback of conventional methods, i.e., some lipids poor recovery [48]. 

Other less-used extraction techniques are microwave-assisted extraction (MAE), 
which can cause the decomposition of thermolabile analytes [21], or Soxhlet extraction 
(SE), which is commonly performed using hexane [49]. SE is controversial in the world of 
lipid analysis. On the one hand, similar recoveries to the Folch method are reported, but 
on the other hand, there is a suggestion of thermolabile analytes degradation and thus 
associated lower recoveries. Another drawback of SE is high solvent consumption, long 
extraction times (i.e., more than three hours) and the use of toxic solvents [11,50]. Greener 
extraction alternative represents supercritical fluid extraction (SFE), where the most 
suitable extraction medium is CO2, which is non-toxic and has polarity like pentane in the 
supercritical state. These facts make SFE very attractive for the extraction of non-polar 
lipids. If the extraction of polar lipids is needed, it is possible to add an organic modifier 
to CO2, such as EtOH, MeOH or EtOAc [11,21]. In several cases [23,51–53], higher effi-
ciency of extraction and recovery of SFE compared to classical extraction methods was 
confirmed [21]. A comparison of different extraction techniques used in lipid analysis is 
shown in Table 2. Each extraction method has advantages and disadvantages. The choice 
of the most suitable one, therefore, depends mainly on the groups of lipids that need to 
be extracted and on the aims of the analysis.  

Figure 3. Illustration of novel modified method using spin column filled with SAP beads. Adapted
from [46]. Copyright 2023 SpringerOpen.

Ultrasound-assisted extraction (UAE) [47], like SPE, is more often used in combination
with OPE or LLE to increase the extraction efficiency [21]. An example of such an extraction
was performed a few years ago. Xie et al. [48] developed the OPE-UAE method for egg
yolk lipids profiling. IPA was used as an extraction solvent. The optimized conditions
of the extraction process were as follows: liquid-solid ratio was 5.2:10 (v/w), ultrasound
power was 182 W and time was 43 min. This approach enabled the characterization of
646 lipid species. Furthermore, compared with conventional methods (Folch and Matyash),
the IPA-UAE method showed improved extraction efficiency and particularly solved the
main drawback of conventional methods, i.e., some lipids poor recovery [48].

Other less-used extraction techniques are microwave-assisted extraction (MAE), which
can cause the decomposition of thermolabile analytes [21], or Soxhlet extraction (SE), which
is commonly performed using hexane [49]. SE is controversial in the world of lipid analysis.
On the one hand, similar recoveries to the Folch method are reported, but on the other
hand, there is a suggestion of thermolabile analytes degradation and thus associated lower
recoveries. Another drawback of SE is high solvent consumption, long extraction times (i.e.,
more than three hours) and the use of toxic solvents [11,50]. Greener extraction alternative
represents supercritical fluid extraction (SFE), where the most suitable extraction medium is
CO2, which is non-toxic and has polarity like pentane in the supercritical state. These facts
make SFE very attractive for the extraction of non-polar lipids. If the extraction of polar
lipids is needed, it is possible to add an organic modifier to CO2, such as EtOH, MeOH
or EtOAc [11,21]. In several cases [23,51–53], higher efficiency of extraction and recovery
of SFE compared to classical extraction methods was confirmed [21]. A comparison of
different extraction techniques used in lipid analysis is shown in Table 2. Each extraction
method has advantages and disadvantages. The choice of the most suitable one, therefore,
depends mainly on the groups of lipids that need to be extracted and on the aims of
the analysis.

Table 2. Comparison of different extraction techniques used in lipid analysis.

Extraction Method Advantages Disadvantages Ref.

OPE

easy to perform
possibility of automation

low cost
precipitation of proteins and insoluble

organic species

may not remove interferences efficiently
long centrifugation needed [26,54]

LLE

well-established protocols
many combinations of solvents could be

used (in different ratios)
low cost

time-consuming
difficult to automate

repeated extractions needed
challenging organic phase layer transfer

[54]
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Table 2. Cont.

Extraction Method Advantages Disadvantages Ref.

SPE

reduction of matrix effect
purification of samples

wide range of commercially available
SPE sorbents

particularly suitable for targeted analysis
long optimization of washing and

elution solvents
[27]

SPME

requires very small amount of sample
reduction of matrix effect

small amounts of solvents needed
fast extraction

suitable mainly for GC
lower extraction ability [7,27,55]

UAE

highly-reproducible
time-efficient

improve the extraction efficiency in
combination with LLE

use of toxic solvents
longer extraction times increasing the

temperature (because of fictions) which
leads to degradation

possibly damage hearing

[21]

MAE
improvement of extraction efficiency

reduction of time and organic
solvents consumption

potential degradation of thermally
instable lipids

long optimization of extraction parameters
[21]

SE provides a high yield of lipids
possibility of use with green solvents

continuous heating at the boiling
temperature could lead to lipid oxidation

and degradation of heat liable, time
consuming

[11]

SFE(SCO2)
shorter extraction times

suitable for neutral, low-polarity lipids
supercritical CO2 is green solvent

extraction of polar lipids requires use of
organic modifier

high initial costs of equipment
[11,26,42]

2.2. Derivatization

Chemical modification (derivatization) of lipids represents an additional step in sample
pretreatment in lipid analysis. The use of derivatization is essential in GC analysis, primarily
because it enables the analysis of analytes, but also provides advantages such as increased
selectivity or ionization efficiency. The possibility of using an isotopic labeling (IL) strategy
can also be considered as an advantage. IL represents a valuable derivatization concept that
can be used in the case of quantitative GC-MS or LC-MS analysis [21,56,57]. This strategy is
based on the labeling of standards or control samples with an isotopic derivatization reagent
(heavy labeling), while the products of the reaction represent the internal standards (IS)
and the sample is labeled with a non-isotopic derivatization reagent (light labeling). After
reaction completion, both parts are mixed and analyzed using an appropriate instrumental
method [58]. Derivatization is most often applied in GC-MS analysis of FAs [26], but also in
the case of analysis of glycerol lipids, sphingolipids, phospholipids or steroids [59]. Even
though there are a lot of derivatization methods available for GC-MS analysis of lipids,
the use of LC-MS is preferred [26,56]. In recent years, derivatization has been used in
several cases, including in LC-MS, especially in short-chain fatty acids analysis [60,61].
An example can be the recent work of Wang et al., who developed highly fluorescent
derivatization reagent—1,3,5,7-tetramethyl-8-butyrethylenediamine-difluoroboradiaza-s-
indacene (TMBB-EDAN) for determining trans-fatty acids in food samples. The method
showed good linearity and low detection limits in the range of 0.1–0.2 nM [62]. Despite
advantages, derivatization chemically changes the lipid molecule, which can lead to the loss
of more information about individual analytes, which, together with the time-consuming
nature of derivatization, represents disadvantages [59,63]. In the future, it could be a
challenge or motivation not only to synthesize new derivatization reagents but also to
speed up or improve existing methods.

3. Instrumental Analysis of Lipids

After extraction, lipid analysis using instrumental methods is the next step in the
process. For this purpose, nuclear magnetic resonance (NMR) or MS can be used. NMR
spectroscopy (i.e., 1H, 13C, 31P) allows the elucidation of lipid structures as well as quali-
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tative and quantitative analysis [21]. For NMR analysis of extracted lipids, it is crucial to
dissolve them in an appropriate solvent, such as deuterated MeOH or CHCl3, just before
the analysis. NMR plays a significant role, particularly in studying membrane lipid profiles
or interactions between proteins (or peptides) and lipids. Conversely, analyzing complex
matrices without proper extraction can be challenging due to crowded one-dimensional
NMR spectra [26,59]. NMR is more often used in metabolomics than in lipidomics. A
comprehensive summary, as well as all aspects of the use of NMR in lipidomics, have been
reviewed a few years ago by Lia et al. [64].

On the other hand, MS provides the same data on the analyzed samples, but has a
higher sensitivity than NMR [21]. Moreover, according to the recently published papers, MS
approaches are the dominant ones in lipid analysis [63]. However, the use of MS is much
more frequent due to the variety of techniques it offers, whether within the framework of
shotgun lipidomics or the possibility of connection with effective separation techniques
such as LC or even today less used gas chromatography (GC) or thin-layer chromatography
(TLC), which was used in past. In addition, a relatively large number of different ion sources
or mass analyzers are commercially available for both identification and quantification or
MS lipids imaging [21,56,65]. In lipidomics analysis, liquid chromatography is most often
used, as well as direct infusion (DI)-MS [66,67].

3.1. Direct Infusion MS

Extracted lipids can be analyzed directly using MS without their previous separation.
In the case of lipidomic analyses, this technique is also referred to as shotgun lipidomics [65].
This technique has developed over the years to its present form. It represents a simple
but powerful tool for fast, reliable, sensitive, and reproducible lipidomic analyses, while
a triple quadrupole (QqQ) or hybrid mass analyzers like Orbitrap, quadrupole-time of
flight (QTOF) or Fourier transform ion cyclotron resonance (FT-ICR) can be used as mass
analyzers [56,68]. An example of the use of a high-resolution mass spectrometer (HRMS)
in shotgun lipidomics is presented in a paper by Nielsen et al. [69]. The authors used a
hybrid quadrupole-Orbitrap mass spectrometer with Fourier transformation (FT) equipped
with nano-electrospray ionization (nano-ESI) working either in positive or negative mode
to the quantitative shotgun lipidomic analysis of the mammalian sample. This approach
enabled them to quantify sub-picomole levels in 35 of 38 lipid classes [69]. An illustrational
FT MS/MS spectrum of PS 34:1 (in negative ionization mode) is shown in Figure 4.
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The FT MS/MS spectrum contains fragments: (C3H5O2N)—neutral loss and [C3H7O6P]−,
which are major lipid class-specific fragments and fragments: [FAsn1−H]− and [FAsn2−H]−,
which represent species-specific acyl chains fragments. The ability to distinguish and iden-
tify individual fragments allows the distinction of PS 18:0–16:1 and PS 18:1–16:0 isomers,
both of which we could refer to as PS 34:1 [69].

However, the DI-MS-based approach has some limitations. One of them is ion sup-
pression, which could have a negative effect on ion formation, detection, and accuracy of
quantification. Ion suppression is a limitation for lipid classes, which are less ionized, or
their responses are low and may fuse in the background noise. Another disadvantage that
this approach suffers from is the artifacts generated in the ion source, which are present
in ESI-MS due to in-source fragmentation. This results in the inability of this approach to
distinguish artifactual peaks from lipid peaks in mass spectra. The third issue in DI-MS
analysis is the possibility of the overlapping of isomeric or isobaric mass between lipid
species, making the identification of lipid isomers unfeasible [70]. Multi-dimensional mass
spectrometry-based shotgun lipidomics (MDMS-SL) or differential mobility spectrometry
(DMS) was utilized to overcome some of these issues [56]. DMS shotgun lipidomic analysis
was recently utilized by Baolong Su et al. (2021) [71]. Authors have also developed a
specific application, Shotgun Lipidomics Assistant (SLA), which facilitates DMS-based
lipidomics workflows. Using these approaches, the authors were able to analyze more than
1450 lipid species [71]. Other lipid analyses utilizing DI-MS are listed in Table 3.

Table 3. Overview on lipid analysis in different matrices using direct infusion-mass spectrome-
try (DI-MS).

Sample Analytes Extraction Type Extraction Solvent Results Ref.

rat brain tissue lipid profile OPE MeOH
direct infusion probe

development for
metabolomics

[72]

20 mammalian
cells 19 lipid subclasses LLE CHCl3:MeOH:IPA,

(1:2:4)

determination of different
lipid species with

potential for
clinical applications

[73]

fermented
vegetable juices lipid profiling LLE MTBE

fermented juices contain
more beneficial metabolites

and carotenoids
than commercial

non-fermented juices

[74]

mammalian
samples lipidome LLE (Bligh and

Dyer) CHCl3:MeOH
guideline for setting up and
using platform for exploring

mammalian lipidome
[69]

bovine milk TAG LLE CHCl3
identification of more than

100 TAGs [75]

3.2. Mass Spectrometry Imaging

Mass spectrometry imaging (MSI) represents a group of direct MS label-free visual-
ization techniques that do not require sample pretreatment, as needed in other discussed
methods [76,77]. In MSI techniques, only a thin slice of sample is required. It is usually
attached to a suitable surface and directly analyzed [21]. In conjunction with MSI, soft
ionization techniques such as desorption electrospray ionization (DESI), secondary ion MS
(SIMS) or matrix assisted laser desorption/ionization (MALDI) are used [78,79].
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In SIMS, the primary ion beam (Ga, Si or Cs) is accelerated to bombard the surface
of the sample and to release secondary ions that can be detected by MS. SIMS has high
spatial resolution and thus has the capability of analyzing surfaces of cell or tissues on the
molecular level [80,81]. SIMS is most commonly utilized with a TOF analyzer (TOF-SIMS).
Despite the fact that applications of SIMS in lipidomics starts much later than MALDI,
developments in SIMS such as introduction of nanoSIMS or cluster ion beams (i.e., Bi3+

Au3+, Au9+) that are able to reduce secondary ions fragmentation has led to improved
spatial resolution and analytical sensitivity [59,80,81]. Advances in TOF-SIMS were recently
reviewed in detail by Jia et al. [82] and the important role of SIMS in lipid imaging was
recently proven by Ren et al. [83]. A single-cell lipidomic study was performed using TOF-
SIMS analysis of mammalian cells (cardiomyocytes (CMs)). TOF-SIMS surface analyses
were performed using primary cluster ion beams Ar2000

+ (for intracellular surfaces) and Bi3+

(for cell surfaces and intracellular surfaces images). Thanks to this technique, the authors
were able to study lipid metabolism of single cardiomyocyte and identify characteristics
associated with heart failure [83].

In MALDI, the surface of matrix-coated sample is irradiated by a laser under vac-
uum or at atmospheric pressure (AP-MALDI) [76,84]. For good ionization of lipids in
MALDI-MSI, an appropriate matrix should be chosen, i.e., 9-aminoacridine (9-AA), 2,5-
dihydroxybenzoic acid (DHB) or N-(1-naphthyl)ethylenediamine hydrochloride [84]. In
addition to MALDI, water-assisted laser desorption ionization (WALDI)-MSI represents an
alternative approach where endogenous H2O is used as the MALDI matrix [76]. Thanks to
the years of improvement in instrumentation and bioinformatics, MALDI-MSI was devel-
oped to a method capable of lipid classes and species identification and semi-quantification
with no need to use chromatographic separation [76,85]; it is therefore considered as a
universal tool for the study of lipids [76]. Evidence of the versatility of MALDI-MSI was
recently proven by Martín-Saiz et al. [86]. The authors used a combination of two inde-
pendent methods, MALDI-MSI and HPLC-MS, for lipids screening in clear cell renal cell
carcinoma patients. Analysis of samples using both methods revealed differences between
them in terms of the number of detected and identified lipid species (344 by HPLC-MS in
ESI-mode and 148 by MALDI-MSI). Moreover, thanks to the spatial resolution of MALDI-
MSI, authors were able to get information about studied samples, i.e., the existence of
different tumor cell populations or the existence of necrotic areas [86].

Both techniques (SIMS, MALDI) work in a vacuum but MALDI can also operate
near or at atmospheric pressure. The non-destructive soft ionization technique (DESI)
is the most widely used ambient ionization technique for lipid MSI when working at
atmospheric pressure [87,88]. In DESI, desorption of analyte molecules and their ESI
ionization is performed in one step. DESI-TOF or even DESI-QqQ setups could be used
for analysis. For the highest possible spatial resolution, experimental parameters of DESI,
such as solvent (usually MeOH), solvent flow rate, nebulizing gas flow rate (N2), capillary
and cone voltages and sprayer geometry [87,89], should be optimized. Despite optimizing
these parameters, DESI has lower spatial resolution compared to MALDI [87]. On the
other hand, sensitivity and spatial resolution could be improved using nanoDESI or a
technique called airflow-assisted desorption electrospray ionization (AFADESI). A detailed
comparison of MALDI, DESI and AFADESI for MSI was recently published by He et al. [90].
In 2019, Nguyen et al. [91] used nanoDESI for MSI lipid profiling of mouse lung tissues.
This method showed comparable coverage of lipids to LC-MS/MS method. Furthermore,
the method was able to provide spatial localization (with sufficient spatial resolution) not
only of lipids but also small and nonlipid molecules that are not detected in LC-MS/MS
lipidomics analysis [91]. All MSI methods used for lipid analyses are shown in Table 4.
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Table 4. Overview on MSI methods used for lipid analysis in different matrices.

MALDI-MSI
Sample Analytes Matrix Results Ref.

human kidney
tissues lipidome DAN

comparing of LIMS and
HPLC-MS—identification of larger

number of species with using HPLC-MS
[86]

rat brain tissue lipidomic profiles norharmane lipidomic spectra showed high
consistency between MALDI and WALDI [76]

human and murine
tissue lipid profiling DHB identification of several atherosclerosis-

specific lipid biomarkers [92]

salivary gland
tumor tissue lipidomic profile DHB MALDI-MSI complementary

diagnostic tool [77]

human tissue lipid profiling DHB plaque features and specific lipid classes
clear colocalization [93]

osteoarthritic
synovial

membrane
lipidomic profile norharmane novel insight into lipid profiling of

synovial membrane [94]

colorectal cancer
tissue lipidomic profile 9-AA tool for subtyping the diverse immune

environments in CRC [95]

tumor spheroids lipid metabolites DHB method for detailed information about
spheroids and drug relationship [96]

human tissue lipid profiling DHB
diacylglycerols are more abundant in

thrombotic area in comparison with other
plaque areas

[97]

human kidney
tissue Lipid storage DHB

sections stored at RT (one week of
storage)—largest amount of lipid

degradation in comparison with sections
stored under N2 at −80 ◦C

[98]

SIMS-MSI
Sample Analytes Primary Ion Beam Results Ref.

mammalian CMs lipid profiling Ar2000
+

Bi3+
identifying of heart failure

associated lipids [83]

lipid extracts, cells,
mouse brain tissue lipid profiling (CO2)n

+ (H2O)n
+,

(H2O)n
+(CO2)

imaging of LPC for the first time
using TOF-SIMS [99]

Gammarus fossarum lipidome
characterization Bi3+ cluster ions

compositional and spatial information
of lipids [100]

infarcted mouse
heart tissue

spatial distribution
of lipids

gas cluster ion beam
(Ar4000

+)

different spatial lipids distributions;
insights changes in lipid metabolism

following infarction
[101]

DESI-MSI

Sample Analytes Solvent System,
Technique Results Ref.

mice liver tissue lipid distribution MeOH:H2O (98:2)
DESI

zone-specific hepatic lipid distribution
of three zones [102]

human carotid
plaque lipid signatures MeOH:H2O (98:2)

DESI
identified lipid species present in plaque

(compared with plasma) [103]

asiatic toad lipid composition MeOH:H2O (95:5)
DESI

significant lipid metabolism changes
due to body remodeling during

metamorphosis
[104]

xenograft
glioblastoma

tumour
lipid profiling MeOH:H2O (95:5)

3D DESI

heterogeneous lipid expression is
important to aid β-oxidation in hypoxic

areas glioblastoma
[105]

cow, sow,
mouse ovaries lipid distribution DMF:ACN (1:1)

DESI

similar lipid signatures of corpora lutea,
follicular wall, ovarian stroma

independent of the species
[106]

swine fetuses lipid distribution DMF:ACN (1:1)
DESI

organ-dependent localization of lipids,
indication of key lipids related to

physiological organogenesis
[107]

mouse lung tissues lipid coverage MeOH:H2O (9:1)
nanoDESI

spatial localization of lipids in tissues. 50%
of lipid coverage in comparison with
Folch extraction-LC-MS/MS method

[91]

DAN: 1,5-diaminonaphtalene; RT: Room temperature.
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3.3. Ion Mobility Spectrometry (IMS-MS)

Within lipid analysis, ion mobility (combined with MS: IMS-MS) is a separation technique
that separates analyte ions based on their mobilities in an inert gas (nitrogen or helium) using
electric field (static or modulated) gradient. Identification (and quantitation) of classes of
lipids can be conducted using QqQ working in selective reaction monitoring (SRM) mode.
Higher mass resolution analyzers, such as hybrid ion trap-Orbitrap [108] and Q-Orbitrap [109]
or Q-TOF [110,111], can work in parallel reaction monitoring (PRM) mode to detect all
fragment ions; this allows the identification of lipid species or subspecies [112–114]. IMS
can be integrated into DI-MS or coupled with chromatographic methods, such as GC
or more frequently LC. Incorporating IMS into LC-MS can achieve a new dimension of
separation and thereby increase not only selectivity and accuracy but also the sensitivity of
the method. Moreover, isomeric/isobaric lipids can be separated; when using MS without
IMS, this could not be effectively resolved [85]. Several technologically different variants
of IMS-MS are nowadays commercially available: (i) trapped ion mobility spectrometry
(TIMS), (ii) traveling wave ion mobility spectrometry (TWIMS), (iii) drift time ion mobility
spectrometry (DTIMS), (iv) high field asymmetric waveform ion mobility spectrometry
(FAIMS), (v) Differential ion mobility spectrometry (DIMS) and (vi) differential mobility
spectrometry (DMS) [85,115].

Furthermore, a bioinformatics approach based on collision cross section (CCS) can
also be included in these IMS techniques [114,116]. CCS represents shape-related physical
properties of an ion in specific experimental conditions [115,117]. A few years ago, CCS lipid
databases were established, in which lipid CCS values are obtained either experimentally
(measurement of authentic lipid standards) or theoretically predicted using bioinformatic
approach (based on experimentally measured CCS values). Parameters such as retention
time, accurate mass, MS/MS spectra or CCS make this a promising tool for improving
confidence in lipid identification [118,119]. However, there is still a big challenge due to
the limited number of lipids integrated in these CCS databases [85,119]. To cope with
this limitation, a relatively new LipidIMMS Analyzer used for the identification and
quantification of lipids was introduced. The database contains more than 260,000 lipids; for
each lipid, retention time, m/z, MS/MS spectra and CCS parameters are available [85,118].
An overview of other DI-MS approaches utilizing IMS in lipid analysis is shown in Table 5.

Table 5. Overview on lipid analysis in different matrices analyzed by IMS.

Sample Analytes Extraction
Type

Extraction
Solvent Method Results Ref.

porcine oocyte lipidomic
profile LLE MeOH:CHCl3 nanoLC-TIMS-MS

oocyte lipids identification
and relative quantification

at the single-cell level
[120]

human plasma,
serum lipid profiling LLE MTBE:MeOH

(10:3)
UHPLC-TIMS-

PASEF-MS

Annotation of 370 lipids in
reference plasma and

364 lipids in serum sample
[121]

mouse brain
tissue

lipid
localization - MeOH:H2O (9:1)

nanoDESI
nanoDESI-TIMS-

MSI

separation of lipid isomers
and isobars and

localization in brain tissue
[122]

plasma lipid profile LLE MTBE UHPLC-TIMS-MS approach development for
untargeted lipidomics [123]

human plasma,
mouse liver,
HeLa cells

lipidomic
profile LLE MeOH:MTBE:H2O nanoLC-TIMS-

PASEF-MS

1108 lipids (0.05 µL
plasma), 976 lipids (10 µg

liver tissue) and
1351 lipids (~2000 HeLa

cells) were identified

[124]

PASEF: Parallel accumulation–serial fragmentation.
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3.4. LC-MS

Some of the drawbacks mentioned for the direct MS approach may be solved by intro-
ducing a separation step: liquid chromatography (LC) before MS detection [125,126]. LC-
MS is the most frequently used tandem of analytical techniques used in lipid analysis, espe-
cially in lipidomics [21]. Previously, thin-layer chromatography (TLC) or high-performance
thin-layer chromatography (HPTLC) were also used, but nowadays, high-performance liq-
uid chromatography (HPLC) or ultra-high-performance liquid chromatography (UHPLC)
utilizing capillary or nano-columns are the most commonly used platforms of LC [127,128].
In LC/MS spectra, data can be collected in positive or negative ESI ionization modes, or
more rarely polarity switching ionization mode. Due to the high requirements for the
quality of analyses, it is necessary to choose a suitable mass analyzer to study the lipids.
Nowadays, it is typical to use hybrid mass analyzers such as Orbitrap, QTOF or even
combined quadrupole with Orbitrap (Q-Orbitrap). Development of these analyzers greatly
improves the identification [127,129]. In the case of quantitative analysis of lipids, use of
QqQ is typical [67]. Quantification could be performed using internal standards (IS). Of
course, especially in lipidomic analyses, it is not possible to have an IS corresponding to
every lipid; as such, commercially available pre-prepared mixes of selected lipids with a
precisely defined concentration are used for this purpose [56,130].

Separations are preferably performed in reversed-phase (RP) mode utilizing a sta-
tionary phase with different alkyl chains (C8, C18, C30, etc.), which is suitable for the
majority of lipid classes [25,56,127]. Composition of mobile phase is an important factor
in lipid analysis. Mixtures of H2O and organic solvents like ACN, MeOH or IPA are used
with the addition of volatile buffers, i.e., acetic acid, formic acid, ammonium acetate or
ammonium formate [127,131]. More demanding quantitation in lipid class separation
(different retention times of internal standards and analytes) and inappropriate retention of
more polar lipids (like phospholipids) RP stationary phase are the main drawbacks of this
strategy [25,131]. On the contrary, an alternative approach is to use a normal-phased (NP)
separation system or, more likely, hydrophilic interaction chromatography (HILIC), which
can be defined as a subclass of NP system but with the possibility of using mobile phases as
in RP mode. HILIC is suitable for the separation of polar lipids and for reliable quantitation
because of similar retention times of lipids and internal standards [129]. On the other hand,
retention of some lipid classes such as nonpolar (i.e., TAG, CE) or lipids containing one -OH
group is poor [127]. Representative example of relevance of RP and HILIC in lipid analysis
or in lipidomics was published by Romsdahl et al. [125]. The authors presented targeted
lipidomic workflow for polar and nonpolar lipids characterization by two LC-MS methods.
The method for determination of nonpolar lipids used the RP-C30 column and offered the
possibility to analyze more than two hundred nonpolar lipids. An example of extracted ion
LC-MS chromatograms of selected nonpolar lipid classes (MAG, DAG and TAG) separation
on the RP-C30 column is shown in Figure 5. The second LC-MS method was based on
HILIC using the NH2 column. A total of 260 molecular species from 12 classes of lipids
were analyzed using the HILIC method. The use of two separate methods was able to
prevent possible peak overlapping, which is undesirable in the quantification process [125].

As can be seen from Figure 5, earlier eluted lipid species are those with greater FA
unsaturation. The most nonpolar species (TAGs) were eluted in the range from 9 min to
27 min of the chromatogram [125]. Despite certain advantages of HILIC, RP chromato-
graphic system remains dominant. A list of LC-MS and SFC-MS strategies published from
2019 to 2023 is shown in Table 6.

3.5. Supercritical Fluid Chromatography—Mass Spectrometry (SFC-MS)

Another chromatographic approach based on LC principles coupled with MS is su-
percritical fluid chromatography (SFC-MS) or the more powerful mode of this technique,
known as ultrahigh-performance supercritical fluid chromatography-MS (UHPSFC-MS).
In SFC, supercritical CO2 is used as a mobile phase, where the improved chromatographic
performance is the result of a higher diffusion coefficient and lower viscosity of the su-
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percritical mobile phase. The addition of organic modifiers (i.e., MeOH, EtOAC) to the
mobile phase creates the possibility of separation of large groups of analytes from highly
nonpolar to highly polar [132,133], making this technique suitable for lipid analysis. All
aspects of the SFC-MS technique in lipidomic analysis were comprehensively discussed by
Wolrab et al. [134]. In 2021, Hayasaka et al. [135] used the SFC-MS method for the anal-
ysis of lipids in small extracellular vesicles and cells. Supercritical carbon dioxide was
supplemented by 0.1% (w/v) ammonium acetate in 95% (v/v) MeOH as a mobile phase.
SFC chromatograph was equipped with QqQ mass analyzer with ESI interface. This ap-
proach enabled the quantification of five hundred lipids [135]. Despite the advantages
of UHPSFC-MS, such as noteworthy sensitivity (especially for non-polar lipids) or its
important for clinical applications (high-throughput analysis), the potential of including
SFC-MS or UHPSFC-MS techniques into lipidomic studies has not yet been fulfilled. This is
primarily due to lack of experience with this technique and also due to low upper pressure
limit 400–600 bar (in comparison with UHPLC-MS technique, where upper pressure limit
can reach 1300 bar) [134].
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chromatographic performance is the result of a higher diffusion coefficient and lower 
viscosity of the supercritical mobile phase. The addition of organic modifiers (i.e., MeOH, 
EtOAC) to the mobile phase creates the possibility of separation of large groups of ana-
lytes from highly nonpolar to highly polar [132,133], making this technique suitable for 
lipid analysis. All aspects of the SFC-MS technique in lipidomic analysis were compre-
hensively discussed by Wolrab et al. [134]. In 2021, Hayasaka et al. [135] used the SFC-MS 
method for the analysis of lipids in small extracellular vesicles and cells. Supercritical 

Figure 5. Extracted ion chromatograms (EIC) of selected nonpolar lipid classes: (A): MAG; (B): DAG;
(C): TAG separation on RP-C30 column; (D): Total ion current (TIC) with display of total number of
ions and their distribution on chromatogram. Adapted from [125]. Copyright 2022 Frontiers.

3.6. Gas Chromatography—Mass Spectrometry (GC-MS)

In GC, an inert carrier gas, used as a mobile phase, carries the analytes through a
narrow, long column, where their separation then occurs. A basic condition of GC analysis
is sufficient volatility of analytes and their thermal stability [21,119]. Because of this fact, the
use of GC in lipid analysis is limited. Lipids that are not volatile or thermally stable must
be derivatized and then analyzed by GC [119]. The easiest example of the derivatization
procedure is the formation of highly volatile fatty acid methyl esters (FAME) using MeOH
as a derivatization reagent. Other derivatization procedures utilizing agents such as
heptafluorobutyric acid (HFB) or pentafluorobenzoyl (PFB) have been proposed [136].
However, as mentioned above, derivatization chemically changes the lipid molecule, which
is undesirable in some cases depending on the aims of the analysis [21].

In combination with MS detection, chemical (CI) or electron ionization (EI) are used
because of advantages such as high sensitivity, high resolution and compound libraries for
identification. Even though GC-MS is not suitable for large-scale lipidomic studies, it can
be used advantageously for the analysis of sterols, FAs and cis/trans isomers [119,137].
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Table 6. Overview on lipid analysis in different matrices using LC-MS and SFC-MS approach.

Sample Analytes Extraction Type Extraction Solvent Method Approach Results Ref.

Biological samples

rat serum,
brain tissue SP LLE CHCl3:MeOH (9:1) RPLC-MS/MS targeted method for quantification of SP in

biological samples [138]

human plasma,
mouse serum lipidomic profiling BUME BuOH:MeOH (1:1) LC-MS/MS untargeted

88 lipid species were identified as
significantly different between wild

type CerS2 null mice
[139]

human serum lipid profiling LLE CHCl3:MeOH (3:1) UHPLC-HRMS untargeted
potentially 12 lipids can serve as

diagnostic markers of
colorectal adenoma

[140]

serum HDL LLE (Folch
method) CHCl3:MeOH LC-MS/MS targeted

association of MetS with impairment
of phospholipid metabolism in HDL,
with obesity and insulin resistance

[141]

plasma SP OPE MeOH LC-MS/MS targeted 33 identified SP [142]

mouse tissue lipid profiling OPE MeOH:H2O (80:20) LC-MS/MS -
identification of major cardiolipin
molecular species by BRI-DIA and

hybrid methods
[143]

rat serum lipid markers of
CHD LLE MTBE UPLC-HDMS - GP and SP metabolism as targets for

the treatment of CHD [144]

porcine brain extract lipidomic profile LLE MTBE RP-LC-MS -
development of microgradient

fractionation of total lipid extract for
lipidomic analysis.

[145]

renal biopsies lipid biomarkers of
Fabry disease

LLE (Folch
method) CHCl3:MeOH UHPLC-HRMS untargeted identification of biomarkers of

Fabry disease [146]

pancreatic cancer
cells, extracellular

vesicles

lipids and
metabolites LLE CHCl3:MeOH SFC-MS - identification of 494 lipids [135]

human serum PCs SPE eluted with IPA LC-MS/MS - elevation of oxidized PCs in the acute
phase of KD [147]
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Table 6. Cont.

Sample Analytes Extraction Type Extraction Solvent Method Approach Results Ref.

Biological samples

human cancer cells
and EVs lipidomic profile LLE (Bligh and

Dyer method) CHCl3:MeOH SFC-MS -
breast cancer EVs selectively loaded

with lipids supporting
tumor progression

[148]

human plasma polar lipids OPE MeOH LC-MS/MS method development for monitoring
of 398 polar lipids [149]

plasma, urine oxidation products
of PUFA

LLE (Folch
method) CHCl3:MeOH LC-QTOF-MS/MS targeted method development for measuring

of oxidation products of PUFA [150]

human CSF VLCFA SPE, LLE +
derivatization

octane:EtOH (88:12) +
DAABD-AE UPLC-MS/MS targeted assay development for measuring of

VLCFA biomarkers [151]

human plasma lipidome LLE, UAE CHCl3:MeOH (3:1) UHPLC-MS targeted,
untargeted

PC (18:1/P-16:0), PC (o-22:3/22:3),
PC(P-18:1/16:1) as biomarkers of

metabolic syndrome
[152]

human plasma lipidomic biomarkers OPE IPA LC-MS targeted reference for bladder cancer and renal
cell carcinoma biomarker discovery [153]

human fibroblasts unsaturated FA LLE MTBE LC-MS targeted complete characterization of
FA species [154]

mouse plasma CE, FA, PC, NAE, SM LLE (Folch
method) CHCl3:MeOH UHPLC-HR-MS untargeted

identification of plasma lipid species
associated with pain and/or

pathology in a DMM model of OA
[155]

human plasma LPCs OPE, UAE MeOH:ACN LC-ESI-MS/MS targeted identification of 60 LPCs [156]

human plasma lipidomic screening LLE (Bligh and
Dyer method) CH3OH–CH2Cl2 UPLC-MS untargeted

increasing of TAGs levels of
advanced-stage CRC patients

compared with early-stage
CRC patients

[157]

human serum

LPC, PC, LPE, PE,
LPS, PS, LPG, PG,

LPI, PI, LPA, PA, SM,
MAG, DAG, TAG,

CL, Cer, CE

LLE (Folch
method) CHCl3:MeOH (2:1, v/v) RPLC-MS/MS untargeted identification of 753 lipids [158]
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Table 6. Cont.

Sample Analytes Extraction Type Extraction Solvent Method Approach Results Ref.

Biological samples

mouse tissues
and fluids acylcarnitines OPE +

derivatization MeOH:H2O + 3-NPH LC-MS targeted identification of 123 acylcarnitines [159]

plasma, fecal SCFAs OPE +
derivatization

H2O + 2-
bromoacetophenone LC-MS/MS targeted identification of 7 SCFAs [160]

plasma, tissue lipid mediators SPE eluted with methyl
formate LC-MS/MS untargeted

novel tool for studying complete
profile of lipid mediators in

biological samples
[161]

human serum lysosphingomyelin-
509 OPE EtOH:H2O (3:1, v/v) LC-MS targeted identification of

lysosphingomyelin-509 [162]

mouse liver lipid profile LLE MeOH:DCM (1:3) UPLC-MS -
significant differences in lipid profiles

of SCID and chimeric PXB
liver-humanized mice

[163]

Food

green, red lettuce sulfolipids,
galactolipids

LLE (Folch
method) CHCl3:MeOH (3:2) LC-ESI-MS/MS targeted oxidized SQDG as potential markers

for abiotic stress factors [164]

geopropolis lipid profiles LLE MeOH, CHCl3 LC-HRMS - identification of 61 lipids [165]

oil palm lipid profiles LLE MTBE LC-MS targeted
lipidomic tools for analysis of

lipid composition variability in
oil from palm

[166]

fish oil, mushroom
extract

FuFA-containing
TAGs LLE, UAE

cyclohexane:EtOAc
(46:54)IPA:n-hexane

(1:4)
LC-HRMS - identification of 39 different

FuFA-containing TAGs [167]

olive fruit seeds polar lipids LLE (Folch
method) CHCl3:MeOH (2:1) HILIC-HR-MS/MS untargeted identification of 94 lipids [168]

coffee
specific lipids of
interest for each

coffee origin
LLE MTBE LC-MS/MS targeted determination of coffee origin based

on its lipid profile [169]
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Table 6. Cont.

Sample Analytes Extraction Type Extraction Solvent Method Approach Results Ref.

Food

donkey meat lipid profiles LLE (Folch
method) CHCl3:MeOH (2:1) LC-MS untargeted identification of 1143 lipids [170]

milk HFAs OPE MeOH LC-HRMS - quantification of 19 free HFAs [171]

extra virgin olive oil

FFAs, FFA methyl-
and ethylesters,

MAGs, triterpenoids,
TAGs

OPE IPA LC-MS/MS - potent tool for studying variability of
lipid species in olive oil [172]

potatoes polar lipids

LLE (Bligh and
Dyer, Folch,

”Green” Folch,
Matyash,

extraction with
n-hexane)

CHCl3:MeOH
EtOAc:MeOH

MTBE
n-hexane

UPLC-MS targeted,
untargeted

“Green” Folch method (with
EtOAc)—the most suitable

extraction method
[173]

Pharmaceuticals

dietary supplements lipid profiling - - LC-MS - production of different lipid classes by
different based ingredients products [174]

Bacteria

Pseudomonas
aeruginosa phospholipids LLE (Bligh and

Dyer) CHCl3:MeOH LC-MS/MS - the growth medium can influence
membrane lipid composition [175]

C. eiseniae,
Olivibacter sp. glycerophosholipids LLE MTBE

MeOH UHPLC-HR-MS - identification of 2 novel
glycerophospholipids, 2 novel LAAs [176]

Escherichia coli GPs LLE MTBE UPLC-MS/MS targeted
transferability of method to any
UPLC-MS/MS system with no

hardware modification need
[177]

Fungi

marine fungi ergosterol LLE (Bligh and
Dyer) CHCl3:MeOH LC-MS/MS targeted highly sensitive method for

measuring fungal biomass [178]
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Table 6. Cont.

Sample Analytes Extraction Type Extraction Solvent Method Approach Results Ref.

Plants

plant tissue polar and non-polar
lipids LLE

different solvents
optimization of

extraction
UHPLC-MS/MS - method development for evaluating

of polar and non-polar lipids [125]

tobacco hairy roots GPL LLE (Bligh and
Dyer) CHF3:MeOH HILIC-MS/MS targeted

method development for
simultaneous determination of

different phospholipids
[179]

Arabidopsis thaliana lipid profiling LLE

CHCl3:MeOH:H2O
(1:2.5:1)

MeOH:MTBE (1:3)
IPA +

CHCl3:MeOH:H2O
(30:41.5:3.5)

IPA + CHCl3:H2O (5:2)
+ CHCl3:MeOH (2:1)

LC-MS targeted,
untargeted

single-step extraction method for
untargeted lipidomic analysis [34]

3-NPH: 3-nitrophenylhydrazine; CHD: coronary heart disease; CL: cardiolipin; CRC: colorectal cancer; CSF: cerebrospinal fluid; DAABD-AE: (4-[2-(N,N-
dimethylamino)ethylaminosulfonyl]-7-(2-aminoethylamino)-2,1,3-benzoxadiazole]; DCM: Dichloromethane; DMM: destabilisation of the medial meniscus; EVs: extracellular vesicles;
FFAs: free fatty acids; FuFA: furan fatty acids; GPL: Glycerophospholipids; HDL: high-density lipoprotein; HFAs: hydroxy fatty acids; KD: Kawasaki disease; LAAs: lipoamino acids;
LPA: lysophosphatidic acid; LPC: lysophosphatidylcholine; LPE: lysophosphatidylethanolamine; LPG: lysophosphatidylglycerol; LPI: lysophosphatidylinositol; MetS: metabolic
syndrome; NAE: N-acylethanolamines; OA: osteoarthritis; PUFA: polyunsaturated fatty acids; SCFAs: short-chain fatty acids; SQDG: sulfoquinovosyl diacylglycerols; UPLC/UHPLC:
ultra high-performace liquid chromatography; VLCFA: very long chain fatty acids.
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4. Data Analysis

Computational analysis of lipidomic data typically comprises three parts: processing
of raw data, statistical analysis and enrichment analysis/visualization.

As mentioned in the introduction, two approaches are commonly used in lipid analysis:
targeted and untargeted. The processing of raw data significantly differs between these two
approaches. Identifying lipids after analysis is challenging with the untargeted approach.
In the case of LC-MS analysis, the Metabolomics Standards Initiative (MSI) proposed that a
minimum of two different types of data are needed for molecule identification, for example
fragmentation MS spectrum and retention time [180]. In 2022, the Lipidomics Minimal
Reporting Checklist was introduced to unify the minimal requirements for generating,
reporting and publishing lipidomic data [181].

At this point, it should be mentioned that a very important step preceding data
analysis is data acquisition. To acquire MS/MS data, two main acquisition techniques, data-
dependent acquisition (DDA) and data-independent acquisition (DIA), are used [1,180].
The main difference between these two approaches is in the number of compounds for
which the MS/MS spectrum is acquired. In the DDA technique, a greater number of
possible MS/MS fragmentation spectra can be obtained for fewer compounds in a single run.
On the other hand, MS spectra are purer due to the narrow mass isolation window [180,182].
However, the incapability of producing MS/MS fragments of each precursor ion found
in spectra (particularly for low-abundance precursor ions) and false MS/MS fragment
contamination because of precursor window width are disadvantages of DDA [1]. In a
single injection run using the DIA technique, possible MS/MS fragmentation spectra can
be obtained for all compounds [180]. DIA could be performed in two ways: (i) all-ion
fragmentation (MSALL and MSE) or (ii) all theoretical fragment-ion spectra sequential
window acquisition [1,183]. Due to the structural similarity of compounds, MS/MS spectra
could be complicated and lead to incorrect data interpretation [180].

A routinely used acquisition method in lipidomics is DDA [1,143,184], not only because
of the high quality of spectra but also as is little or no spectra processing before their
usage [184]. On the other hand, novel workflows for the DIA acquisition method have
been recently developed [139,143,163]. As an example of such approach is the work of
Duan et al. [143]. Based on LIPID MAPS and MS DIAL 4 (lipidome atlas), authors created
an ion list consisting of biologically relevant lipids. After extraction of lipids from mouse
tissues, LC-MS/MS analysis was conducted using DDA, BRI-DIA (biologically relevant
ions-DIA) and hybrid mode (BRI-DIA followed by DDA) approaches. It is important
to mention here, however, that while hybridizing DIA and DDA modes are trending in
metabolomics or proteomics, they have not adapted well in HRMS lipidomics. In addition
to other results from this study, the authors concluded that DIA was comparable to DDA,
and, moreover, that DIA was better in terms of lipid identification consistency [143].

In the past few years, many bioinformatic tools have been created to evaluate data
obtained from untargeted lipid analysis and their subsequent statistical processing for
the proper interpretation of the results. The choice of evaluation software often depends
on the equipment used, e.g., evaluation software Analyst or MultiQuant (Sciex); MassL-
ynx MS and Progenesis QI (Waters); Masshunter (Agilent) or LipidSearch (Thermo). On
the other hand, it is possible to use other freely available software or internet modules
for MS data processing, e.g., Skyline, MSDial, MZmine, LipidMatch and others [127].
Zeng et al. provided an example of utilizing such software for the determination of sphin-
golipid content. [138]. The authors used Masshunter Workstation after LC-MS/MS analysis
of rat serum, brain tissue and HT22 cells. This evaluating tool helped to determine several
sphingolipids changes in these matrices [138]. Another example is the use of Analyst soft-
ware (Sciex), which was used by Aurum et al. [169] to evaluate LC-MS/MS lipid profiles
obtain by analysis of two types of Indonesian coffee. Subsequent statistical processing of
obtained data was carried out in MarkerView software. Thanks to LC-MS/MS analysis and
combination of software, the authors were able to identify 85 lipid species from 5 different
lipid classes [169]. Another group of authors, Kirkwood et al. [185], made a protocol for
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utilizing Skyline software for processing and annotating multidimensional lipidomic data
and described each step of this processing in detail. Moreover, a lipids library containing
more than five hundred lipids was created [185]. Zhou et al. [118] developed a software tool,
LipidIMMS Analyzer, for more accurate identification of lipids analyzed by IM-MS. For
each lipid, the software comprises four-dimensional (4D) structural information (retention
time, m/z, MS/MS spectra and CCS). Moreover, the software contains a database with
more than 260,000 lipids. In addition, the authors also proposed a complete workflow for
LipidIMMS Analyzer [118].

Each of these software tools has its advantages and limitations, particularly in terms of
being able to evaluate only data from specific acquisition modes, or limited output formats
(.csv, .xlsx, .html) that only certain statistical software can process [112].

In targeted mode, the primary focus is on manually verifying the correct peak selec-
tion, and integration using retention time patterns. This is typically done using vendor-
specific software.

Processed data, usually in .csv or .txt format, are subjected to data transformation,
normalization, subsequent statistical analysis, and enrichment/pathway analysis. This
process is similar to that in metabolomic analysis and involves the use of similar tools.
The most frequently used tools include MetaboAnalyst [168], and specific packages for
metabolomics/lipidomics written in Python [186], R [187], or Matlab [188]. Delving into
detailed discussions of specific packages and computational tools exceeds the scope of this
manuscript, focusing instead on the analytical chemistry approaches in lipidomics. For
in-depth exploration, readers are encouraged to consult specialized resources.

Complexity of lipids, difficulties in identifying lipid isomers or challenging lipids
quantification create limitations in lipid analysis. Moreover, often complicated sample
preparation step, which can negatively affect analysis results (especially in term of repro-
ducibility), have to be involved in the process. To overcome these challenges, advancements
in mass spectrometry resolution, real-time imaging technologies are needed hand in hand
with standardized analytical methodologies in lipid analysis should be established. Addi-
tionally, in terms of broader biological context of lipid importance (i.e., physiological, or
pathological processes), the use of multi-omics approaches can be essential. Last but not
least, advancements in sample pretreatment are needed. Development in miniaturized and
automated extraction techniques can lead to increased efficiency of extraction and thus to
high quality data obtained from lipid analysis.

5. Conclusions

This review provides a comprehensive overview of the analytical methodologies used
in lipid analysis in various matrices. Across the available literature, biological matrices
(such as plasma, CSF, and urine) are nowadays the most commonly analyzed. Within
the framework of lipid analysis, much attention is currently being paid to lipidomics.
However, the analysis itself is preceded by sample treatment, where the most common
step is the extraction of lipids due to the complexity of matrices. Classical LLE-based
extraction methods, such as Bligh and Dyer or Folch, are still being improved and there is
an ongoing effort to replace toxic solvents with green ones such as CPME. However, the use
of green solvents for extraction is still limited by economic considerations. Other promising
extraction methods are SPE, SAP, or SFE, which have not yet reached their potential in lipid
analysis. Due to the fact that high-throughput analyses are usually required, MS-based
methods are the most used in this field. After considering a lot of factors (i.e., aims of
analysis, type of analysis etc.) MS can be used for lipid analysis directly without prior
separation by DI-MS (or shotgun lipidomics). However, in most cases, it is essential to
include a separation technique before MS, while the most frequently used combination is
LC-MS, which represents the combination of two high-performance analytical techniques.
The combination of MS with other separation techniques such as GC or CE is less common
due to its limitations. However, SFC, which can separate a wide range of lipids, is also
gaining awareness. Technological advances in MS techniques caused an increase in the
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so-called spatial lipidomics, which is ensured by MS imaging techniques. Due to revealing
information about connection between lipid changes in the organism and different diseases,
there is still emerging interest for introducing novel extraction methods or development of
high-precision and high-sensitivity methods for reliable identification and quantification of
lipids in the future.
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