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Abstract: Rheumatoid arthritis (RA) is a chronic, autoimmune disease with a complex outset. Besides
the genetic susceptibility in its pathogenesis, various environmental factors also participate. Of these,
in recent years, there have been increasing reports of the involvement of bacteria in the disease’s outset
and development, especially gut microbiota and oral pathogens. Most recent reports about bacteria
participation in RA pathogenesis focus on Prevotella copri and Porphyromonas gingivalis. There are also
reports about the involvement of respiratory and urinary tract pathogens. The exact mechanisms
leading to RA development used by bacteria are not well known; however, some mechanisms by
which bacteria can interact with the immune system are known and can potentially lead to RA
development. The aim of this study is to provide a comprehensive review of the potential bacteria
participating in RA development and the mechanism involved in that process.
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1. Introduction

Rheumatoid arthritis (RA) belongs to a group of chronic autoimmune diseases con-
necting abnormalities from both adaptive and innate immune systems. This rheumatic
disease involves progressive inflammation initially involving small joints before gradually
moving to larger and larger joints. The result is the destruction of joint structure, and the
inflammation of the synovial membrane by several immune cells, including macrophages,
T and B cells, as well as the cytokines and matrix metalloproteinases (MMPs) released by
them [1]. The progression of the illness can cause the systemic involvement of cardiovascu-
lar [2,3], respiratory [4], and renal tissue [5]. A basic determinant in RA diagnosis is the
presence of rheumatoid factors (RFs) and anti-citrullinated peptide antibodies (ACPAs).

A major risk factor for RA outset is genetic predisposition, among which the greatest
risk is HLA-DRB alleles from major histocompatibility complex (MHC) molecules. Even
though genetic factors definitely increase the risk of disease outset, it does not determine the
illness. There are many environmental factors that, in coexistence with genetic factors, can
lead to RA development. These factors including age, gender, smoking, and infections [6].
Viral infections were suspected for their importance in rheumatic disease development for
years. There are various reports about the Epstein–Barr virus (EBV) [7,8], Cytomegalovirus
(CMV) [9], Parvovirus B19 [10], or even Human Herpes Virus 6 (HHV-6) [11] and Hu-
man Immunodeficiency Virus (HIV) [12] occurring in higher frequencies in patients with
rheumatic diseases.

Bacterial infections are a relatively new topic in research about the exact pathogenesis
of rheumatic diseases, including RA. Recently, researchers have provided a lot of evidence
for a potential link between bacteria and RA outset. It is known that some pathogens can
influence immune response by their virulence mechanisms. Notably, bacteria are a rich
source of different antigens which can be recognized by Toll-like receptors (TLRs) and lead
to various autoimmune processes [13]. Lipopolysaccharide (LPS) produced by bacteria due
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to biofilm formation can also stimulate innate immune receptors in synovium, which leads
to joint inflammatory response and degradation [14]. Understanding the role of bacteria in
RA development and the discovery of the exact mechanisms involved in RA pathogenesis
could improve actual treatment, diagnosis, and prevention methods.

The aim of this study is to provide a comprehensive review of the recent knowledge
about the possible participation of different infectious and commensal bacteria in RA
pathogenesis and development. The data presented in this review were sourced from the
most recent studies about this topic (up to May 2023). PubMed, Scopus, Science Direct,
and Google Scholar were searched using the following expressions: rheumatoid arthritis,
bacterial infections, periodontitis, and microbiome.

2. Immunopathogenesis of Rheumatoid Arthritis

Although the mechanism of pathogenesis remains unclear, there are a lot of factors
potentially involved in the disease’s outset, and genetic factors are one of the greatest
risk of rheumatoid arthritis development. Even though the presence of genetic factors is
essential for RA development, it does not prejudge it. Between relatives, the probability
of disease occurrence is around 40–50%, with the risk increasing if a first-degree relative
has the condition, while between unrelated people, it is around 1%. Also, ethnicity has
a key impact on RA development [6]. The major genetic influence is assigned to class II
histocompatibility complex molecules. The connection between Human Leukocyte Antigen
(HLA) and the occurrence of RA was observed decades ago. Many different diseases have
been reported to correlate with HLA. The reason for this connection is probably because
of the high heterogeneity of this region [15]. Most of the autoimmune diseases associated
with HLA correlate with HLA class I and HLA class II alleles. In the case of RA, HLA
class II molecules are the main genetic factors [16]. HLA-DRB1 alleles (*0401, *0402, *0405,
and *0101, *102) are known to strongly correlate with the probability of the outset and
exacerbation of RA. Most of these alleles have a common conserved amino acid sequence
which is located at positions 70–74 in the third hypervariable region of the DRβ1 chain.
In the shared epitope (SE) hypothesis, HLA-DRB1 alleles have a direct impact on RA
susceptibility and disease progression [17].

There is a strong connection between SE-coding DRB1 alleles and anti-cyclic citrul-
linated peptides (anti-CCPs), which are specific markers of RA. ACPAs can be produced
years before the disease outset; the presence of ACPAs in undifferentiated arthritis indicates
a possible progression toward RA. RA patients, in comparison to undifferentiated arthritis
patients, display a wider isotype profile (IgG, IgM, IgA, and IgE ACPA). ACPA-positive RA
differs significantly from ACPA-negative RA in severity and prognosis [18]. The association
of SE-coding DRB1 molecules with RA only concerns ACPA-positive RA patients. This
indicates that this molecule participates in RA development and progression by enabling
ACPA production. The connection between RA, ACPAs, and HLA-DR has not been ex-
plained yet. At this point, it has not been demonstrated whether fibrinogen peptides bind
preferably to SE-coding HLA-DR molecules [19].

The production of ACPAs occurs as a result of tolerance breaks. Citrullination is a
physiological process of post-translational modification during which arginine residues
of proteins (vimentin, fibrinogen, and histone [20]) are converted to citrulline by peptidy-
larginine deiminase (PAD). Among the five PAD isoforms, only two (PAD2 and PAD4) are
involved in RA. Citrullination can create specific neoantigens that activate T lymphocytes,
which facilitate the activation of B cells and their differentiation into plasma cells, resulting
in ACPA production. Apart from SE coding, HLA-DR molecule citrullination also increases
due to other factors, including smoking and infections [21].

Many immune cells are implicated in RA pathogenesis [22] (Figure 1). In RA, there is
an overproduction of specific pro-inflammatory cytokines and a diminished production of
anti-inflammatory cytokines. Some of these cytokines, like interleukin-17 (IL-17), tumor
necrosis factor (TNF-α), and interleukin-1 (IL-1), contribute to RA pathogenesis. Th17 cells,
a subset of T cells, secrete various pro-inflammatory cytokines, including IL-17, TNF-α,
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granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-21 (IL-21), and
interleukin-22 (IL-22), and are seemingly key mediators in RA pathogenesis [23,24]. Th17
cells, in normal conditions, produce IL-17 and IL-22 cytokines as a from of protection
against extracellular bacteria, fungi, and mycobacteria and remains in balance with Treg
cells. When this balance is disturbed, it can lead to the development of autoimmune
diseases [25]. The level of Th17 cells was elevated in peripheral blood mononuclear cells
(PBMCs) isolated from early-RA patients in comparison to healthy controls in [26]. The
pro-inflammatory cytokines produced by Th17 cells activate osteoclasts, neutrophils, and
monocytes and recruit lymphocytes. In effect, leukocytes produce chemokines, cytokines,
and enzymes, resulting in chronic inflammation, bone destruction, and cartilage damage
in RA [27]. In the context of bacteria participation among all cell types, the key role at the
outset of the disease seems to be played by neutrophils. Their pathogenic role is the sum
of various processes, including the generation of pro-inflammatory cytokines, chemokine
receptors, and anti-apoptotic molecules; they also enhance oxidative stress and release
neutrophil extracellular traps (NETs) [28].
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Figure 1. Immunopathogenesis of rheumatoid arthritis. Rheumatoid arthritis outset occurs due
to the connection between genetic susceptibility and exposure to different environmental factors
(including bacteria). Autoantigens arising from citrullination are presented by antigen-presenting
cells (APCs), which are recognized by T cells. After recognition, T cells differentiate into Th1 and
Th17 cells, which stimulate macrophages to facilitate inflammatory cytokine production. Cytokines,
through the activation of osteoclasts and chondrocytes, lead to joint damage and bone destruction.

3. The Connection between Periodontal Disease and Rheumatoid Arthritis

Periodontitis (PD) is an inflammatory disease arising as a result of the host immune
response to biofilm-forming microorganisms. The progression of PD leads to the de-
struction of the periodontium and may result in tooth loss [29]. The destruction of the
periodontium occurs because of the ‘pocketing’ process, which involves the formation
of a pocket between the gingiva and teeth [30]. This is a disease with a complex patho-
genesis, in which pathogens, commensals, and host oral autoimmunity dysfunction are
involved [31]. PD was frequently proposed as a risk factor in various systemic disorders,
like diabetes [30,32], cardiovascular [33] and respiratory diseases [34], adverse pregnancy
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outcomes [35], and rheumatic diseases, including RA. Research on this topic indicates
that there is a higher prevalence of PD among RA patients [36,37]. The relation between
RA and PD could be due to their similar environmental (e.g., smoking) and genetic risk
factors. The similarities between PD and RA are apparent on many levels (Table 1), so the
co-occurrence of these diseases can affect the deterioration of patients’ conditions. Another
possibility is that RA predisposes to PD. On the other hand, PD can also be an RA risk
factor due to various pathways, including the activity of periodontal bacteria [38]. The
bacteria involved in the initiation of PD due to the red complex theory are Poprhyromonas
gingivalis (Pg), Tannerella forsythia (Tf ), and Treponema denticola (Td) [39]. In addition to red
complex bacteria, Filifactor alocis (Fa), Synergistetes, Peptostreptococcaceae, and Aggregatibacter
actinomycetemcomitans (Aa) also participate in PD initiation [31]. Poprhyromonas gingivalis
(and Aggregatibacter actinomycetemcomitans are major PD pathogens potentially involved in
RA outset and development.

Table 1. Similarities between periodontitis and rheumatoid arthritis.

Features Periodontitis (PD) and Rheumatoid
Arthritis (RA) References

Course of the disease

Both are chronic, inflammatory diseases
proceeding with the accumulation of
immune cells (lymphocytes (B and T
cells), monocytes, and neutrophils).

[40]

Genetic factors

Genetic factors play an important role in
disease outset in both diseases. Common
genetic factors implicated in RA and PD

include HLA-DRB3 and HLA-DR4.

[19,41–43]

Environmental risk factors
Air pollution, smoking, and gut

microbiome dysbiosis are risk factors in
both diseases.

[44–47]

ACPA production

ACPAs are produced in PD due to P.
gingivalis activity. In RA, the production
of ACPAs leads to joint inflammation and

destruction.

[48]

Cytokines

In both diseases, the upregulation of
cytokines and MMPs is involved in

pathogenesis. The cytokine profiles in
both diseases are similar (upregulation of

TNF-α, Il-1β, and IL-6 and
downregulation of TGF-β and IL-10).

[40,48,49]

Receptor activator of
nuclear factor-κB ligand

The overproduction of the receptor
activator of nuclear factor-κB ligand

(RANKL) in osteoclasts leads to
osteoclastogenesis and bone resorption in

both diseases.

[48,50]

There are many reports about the occurrence of specific periodontal bacteria among
RA patients, among which Porphyromonas gingivalis is mentioned most frequently [51–53].
Some scientists suspect that Pg citrullination activity can lead to autoimmunity in RA.
The citrullination process occurs due to the enzyme peptidylarginine deiminase (PAD),
which transforms L-arginine into citrulline. This bacterial enzyme is capable of facilitat-
ing the citrullination of both self-proteins and host proteins. In RA, the citrullination of
autoantigens results in autoimmune response and the production of specific antibodies
called anti-citrullinated protein antibodies (ACPAs) [54]. The activity of PAD is elaborated
as a major component of Pg participation in the initiation of RA. Pg is the only known
bacteria-produced PAD capable of carrying out the C-terminal citrullination of fibrinogen
and enolase peptides. This capability makes the role of this bacteria an interesting subject
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regarding RA pathogenesis studies. Jenning et al. discovered that beyond carrying out the
C-terminal citrullination of Pg, PAD is also capable of carrying out the internal citrullination
of arginine in fibrinogen/vimentin. The ACPAs produced in RA are recognized in many
different citrullinated autoantigens, including these citrullinated by PAD (e.g., 71vim).
Recombinant PAD from Pg was able to citrullinate major RA autoantigens. Moreover,
they confirmed the correlation between the levels of anti-RA–PADs and ACPAs. These
discoveries support the possible role of bacteria like Pg in the pathogenesis and progression
of RA by inducing ACPA production [55]. Maresz et al. observed that the infection of a
collagen-induced arthritis (CIA) mouse model with Pg led to an earlier outset, a severe
course, and an enhanced progression of the disease in comparison to the non-infected
animals [56].

Besides ACPAs, there is the linkage between Pg and RF, which is also commonly
detected among periodontitis patients [57]. RFs are antibodies commonly found in blood
samples from patients with RA. They can occur in different forms, among which the most
leading are IgM and IgA RFs. RFs recognize the constant part (Fc) of IgG class molecules
and bind to them. According to Maibom-Thomsen et al.’s research, RFs do not react with
native IgG in solution, and they are circulated nearby them in the blood [58]. Previous
studies indicate that the Fc region of IgG can become a perfect target for RFs because of Pg
proteinase activity, which can specifically decompose arginine and lysine in IgG3 CH2 and
CH3 domains [59]. As mentioned above, the cysteine proteinases (known as gingipains)
involved in that process are one of the crucial Pg virulence factors. Gingipains can be
specific to arginine (RgpA or RgpB) or lysine (Kgp). According to this characteristic, they
are divided into two types. They are crucial during infection because of their role in host
amino acid uptake, fimbriae maturation, hemagglutination, and the degradation of host
proteins [60,61]. The results about the association of gingipains and RA are conflicting.
In their studies, Svärd et al. discovered that the levels of RgpB antibodies in RA patients
were significantly higher than in healthy controls, although they did not find a correlation
between these antibodies and ACPA positivity levels [62]. In contrast, Bae et al. not only
observed higher RgpB antibody levels in RA patients but also noted a positive correlation
between these antibodies and ACPA levels [63]. Some studies did not find any association
between these antibodies and RA [64].

Another possible way that Pg participates in RA pathogenesis is through TLRs. TLRs
are a part of the innate immune system. They act against microorganisms by recognizing
pathogen-associated molecular patterns (PAMPs). The activation of TLRs by PAMPs
results in a variety of defense mechanisms, like phagocytosis and increased production
of inflammatory cytokines, chemokines, reactive nitrogen, and oxygen. TLRs are also
responsible for the production of costimulatory molecules, which makes them an important
mediator between the innate and adaptive system [13]. In humans, 10 paralogous TLRs are
recognized. Each of them is recognized and activated by a specific small group of microbe-
delivered molecules [65]. For example, TLR-2, TLR-1, and TLR-6 recognize lipopeptides in
bacteria, mycobacteria, and mycoplasma. Also, the effects of PAMP recognition can differ:
after activation, TLR-1, TLR-2, TLR-4, and TLR-5 produce specific inflammatory cytokines;
on the other hand, TLR-3 and TLR-7 induce the production of type I interferons [66]. TLRs
also are responsible for the imitation of various transcription factor activations, including
nuclear factor κB (NFκB). In PD, PAMP recognition leads to the overexpression of the
receptor activator of the nuclear factor-κB ligand (RANKL) in osteoclasts. In effect, this
action, together with cytokine overproduction, leads to osteoclastogenesis [50]. The same
situation occurs in RA [48]. A higher expression of TLRs, especially TLR-2, TLR-3, TLR-4,
and TLR-7, in the synovial fluid and tissue of early-RA and RA patients was observed
in various studies [67–69]. It was noticed that LPS from Pg activates TLR-2. One of
the observed effects of this activation is the upregulation of thrombospondin-1 (TSP1)
in monocytes. The higher expression of TSP-1 was also strengthened by inflammatory
cytokines such as IL-17. Because of the dual mechanisms of TSP-1, such as its interaction
with both CD36 receptors and integrins, it appears that TSP-1 has both pro- and anti-
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inflammatory functions. Also, because of the anti-angiogenic functions of TSP-1, it can be
involved in chronic inflammation outset [70]. Another observed result of LPS recognition by
TLR-2 is an enhanced production of interleukin-33 (IL-33). IL-33 upregulation is commonly
observed in chronic inflammatory diseases, including RA [71].

The second most common oral bacteria in the context of RA pathogenesis is Aggregati-
bacter actinomycetemcomitans (Aa). This Gram-negative red complex bacteria is reported to
be the bacteria most commonly isolated from periodontal lesions. The estimated percent
of patients with severe periodontitis infected by Aa is around 89–100% [72]. One of the
basic virulence mechanisms of Aa is the production of leukotoxin A (LtxA). Aa produc-
tion can occur in two phenotypes, namely minimally leukotoxic (652 strains) and highly
leukotoxic (JP2 strains) strains, the latter of which produce more LtxA and ltx mRNA,
although the direct mechanism responsible for the higher production of LtxA by JP2 is
not known [73]. LtxA is a member of the repeats-in-toxins (RTX) family, which includes
α-hemolysin from Escherichia coli and CyaA from Bordetella pertussis. Like all family mem-
bers, for its activity, LtxA requires calcium ions and generates unregulated calcium influx
into the cells. This mechanism can be the basis of LtxA cell lysis due to its promotion
of calcium changes in T cells, which result in various events, like calpain activation and
the mobilization of β2 integrins into membrane lipid rafts [74]. It is believed that LtxA is
responsible for damaging leukocyte membranes. The process starts with surface absorption
and interactions with function-associated antigen-1 (LFA-1) and other β2 integrins on white
blood cells, which, by triggering intercellular pathways, leads to cell death. A member
of the HACEK group of bacteria, Aa could be one of the reasons for the development of
various systemic diseases, for example, endocarditis [73]. According to Konig et al., LtxA
could be involved in Aa’s capability to induce global citrullination in host neutrophiles by
mimicking pathways (mediated membranolysis) responsible for autoantigen citrullination
in RA. The citrullinome created by LtxA action matched the RA patient’s citrullinome in
44/86 proteins. This observation suggests that Aa periodontal infection can be enough for
the production of antigenic determinants recognized by autoantibodies specific in RA [75].
Yoshida et al., during their research, discovered the relationship between RA and the heat
shock protein from Aa (DnaJ). According to their study, patients with RA have significantly
higher titers of IgG antibodies against the N-terminal conservative region (J-domain and
G/F region) of the DnaJ protein. This indicates that this region can play an etiological role
in RA pathogenesis [76].

The discussed correlation between periodontal diseases and RA indicates that the
restoration of the periodontium can be a helpful strategy in reducing RA severity. De-
spite the potential pathogenetic link between PD and RA, patients with RA and PD deal
with the same imbalance of cytokines, including higher levels of gingival crevicular fluid
of pro-inflammatory cytokines (IL-1β, IL-6, IL-4, and TNF-α) and lower levels of anti-
inflammatory cytokines (e.g., IL10) [48,77–79].

Non-surgical periodontal treatment is one of the most common treatments used
in periodontal therapy. Assumptions of the treatment consist of patient oral hygiene
improvement and the mechanical removal of plaque and calculus deposits. This form
of treatment aims to limit the population of “red complex” bacteria, and subsequent
maintenance should prevent the formation of a population with a size sufficient for disease
development to be repeated [80]. Białowąs K. et al. studied the impact of non-surgical
periodontal treatment on patients with RA and spondyloarthritis (SpA). The treatment
applied resulted in a reduction in disease activity, measured by DAS28, in the RA patients,
while the clinical and biochemical parameters did not change among the SpA patients.
They observed an improvement in the visual analogue scale (VAS) score and the number
of swollen and tender joints in the RA group, which probably influenced the decrease in
the DAS28 score [51]. D’Aiuto F. et al., in their study, observed that periodontal therapy
significantly decreases the levels of IL-6 and CRP in serum in patients with periodontitis.
This is promising due to the cytokine imbalance similarity between PD and RA patients [81].
In a meta-analysis conducted by Sun J. et al., they confirmed that periodontal therapy
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induced a significant reduction in DAS28, VAS score, CRP, and number of tender and
swollen joints. All of these results suggest that the usage of periodontal treatment can
decrease the severity of RA and improve patients’ lives [82].

4. Respiratory Infections

The common respiratory pathogens belong to Streptococcus pneumoniae and Haemophilus
influenzae. They are commonly found in the nasopharynx of healthy people, where the
overgrowth of these pathogens is balanced due to the presence of other commensal bacteria,
the majority of which are members of the genera Corynebacterium, Dolosigranulum, and
Staphylococcus. The disturbance in this protection mechanism leads to respiratory tract
infections [83].

Findings stating that airway abnormalities are associated with RA-related autoanti-
body positivity in patients without inflammatory arthritis indicate that the lung may be
a potential initiating site of RA with similar autoimmunity [84]. Moreover, the fact that
smoking significantly increases the risk of RA development supports the hypothesis that
the lungs have a potential role in RA pathogenesis [85]. In their research, Villis Van C.
et al. detected RA-related antibodies in the sputum of patients with early RA and a group
predisposed to RA This result suggests that the lungs may be a place of autoantibody
production in early RA [86].

Another potential role for the lungs in RA pathogenesis could be due to the lung mi-
crobiome. Using 16S sequencing, Scher U. J. et al. discovered that the lung microbiota of RA
patients significantly differ from those of healthy controls, being more similar to sarcoidosis
microbiota. In both cases, a decrease in or absence of Actinomycetaceae, Spirochaetaceae, and
Burkholderiaceae and the genera Actynomyces, Treponema, and Porphyromonas in comparison
to healthy controls was observed. These findings indicate that mucosal inflammation could
be one of the factors of lung dysbiosis in both cases. Because this dysbiosis correlates with
systemic and local autoimmune changes, it can be implicated in RA pathogenesis in some
cases [87].

5. The Impact of Intestinal Tract Microbiota Dysbiosis on Rheumatoid Arthritis

The relationship between the intestinal microbiota and autoimmune diseases has
been examined often in recent years. The potential impact of microbiota was reported in
Hashimoto’s thyroiditis, type I diabetes, multiple sclerosis, psoriatic arthritis, systemic
lupus erythematosus, and rheumatoid arthritis [88]. The human microbiome established
after birth and during human life increases the diversity of its composition. In adults, the
microbiome is composed of several hundred species, with Bacteroidetes and Firmicutes be-
ing dominant. Microbiota are responsible for a variety of processes, including metabolic,
physiological, nutritional, and immunological processes [89].

Microbial antigens are in continuous communication with the immune system. This
communication allows microbes to regulate immune responses through the influence of
B cells, innate-like T cells, T helper cells, and T regulatory cell responses. In the case
of microbiota dysbiosis, the basis of this interaction is disturbed, which may lead to
abnormalities in the functions of the immune system [90]. For example, dysbiosis in the
microbiota caused by factors such as bacterial infections, antibiotic therapy, and a poor diet
(Figure 2) can lead to abnormalities in the action of innate immune cells which result in the
upregulation of pro-inflammatory cytokines (type I interferon (IFN), interleukin-12 (IL-12)
and interleukin-23 (IL-23)) and the downregulation of anti-inflammatory cytokines (IL-10
and transforming growth factor β (TGF-β)) [91]. The same cytokine imbalance can be found
in the serum, synovial fluid, and synovial tissue of RA patients [92]. The impact of gut
microbiota in the pathogenesis of RA is probably multifactorial. The proposed mechanisms
include the activation of antigen-presenting cells by TLRs or nucleotide oligomerization
domain (NOD)-like receptors (NLRs), the production of citrullinated peptides through
enzyme activity, molecular mimicry, and, as mentioned above, the control of immune cell
responses [46].
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The commensal bacteria residing in the intestines are a rich source of various antigens
recognized by TLRs. One of the crucial antigens involved in gut dysbiosis is flagellin, which
is a component of the flagellum mostly occurring in Gram-negative bacteria recognized by
TLR-5. The activation of TLR-5 by flagellin results in various mechanisms, including the
production of pro-inflammatory cytokines, nitric oxide, and chemokines [93]. Moreover,
flagellin, through the activation of TLR-5 and the enhanced production of specific cytokines
(IL-17, IL-21, and IL-22), promotes Th17 cell production, which results in the disbalance
of Th1/Treg cells [94]. Different gut resident bacteria can trigger autoimmune diseases
through Th17 cells, and this has been confirmed by various animal model-based studies.
Wu Hsin-Jung et al. discovered that the severity of autoimmune arthritis was strongly
attenuated in a germ-free mouse model. The germ-free conditions also contributed to a
decrease in the Th17 cell population. The monocolonization with segmented filamentous
bacteria (SFB) resulted in an enhanced production of Th17 cells, autoantigen production,
and the remission of arthritis. This indicates that through the promotion of a specific subset
of Th cells, single commensal bacteria can trigger autoimmune disease outset [95]. On
the other hand, polysaccharide A (PSA) from Bacteroides fragilis, through the activation of
TLR-2, enhanced the activation of Treg cells [96].

One of the major gut commensal bacteria in the context of RA is Prevotella copri. A
high abundance of Prevotella copri in the gut microbiota of early-RA patients has been
commonly detected [97,98]. The levels of antibodies against P. copri correlate to immune
response (the production of specific cytokines and chemokines) by Th1 and Th17 cells [99].
In their research, Maeda Yuichi et al. observed that the colonization of a mice model with
P. copri triggers the development of joint inflammation. Moreover, changing the conditions
to germ-free conditions immediately stopped the arthritis development. The proposed
mechanism of pathogenesis is the activation of T cells with genetic predisposition by
Prevotella enrichment in microbiota, which leads to arthritis in mice. The microbiota P. copri
enrichment also increased the levels of Th17 cells in the large intestine, which could also
indicate the role of this bacterial strain in autoimmunity development [100].

Because of all the evidence about the microbiome’s role in RA development and
severity, immunosuppressive drugs that can restore microbial gut composition have be-
come potential therapeutic targets in autoimmune rheumatic diseases. Some of the possible
beneficial agents in RA treatment are probiotics. Probiotic bacteria can be involved in modu-
lating the immune system by affecting specific cells like dendritic cells (DCs), macrophages,
natural killer cells (NKs), and lymphocytes. Moreover, probiotics are capable of downregu-
lating TLR expression, which results in inflammation reduction [101]. There is evidence
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of the beneficial role of probiotics in animal arthritis models. Treating adjuvant-induced
arthritis rats with Lactobacillus casei significantly inhibited arthritis development while
protecting against bone destruction in [102]. In another study, Lactobacillus acidophilus
decreased arthritis score and also protected tissues from oxidative stress in a rat arthritis
model [103]. Moreover, probiotic treatment is also effective among patients with RA. In
their research, Mandel David R et al. observed a reduction in CRP levels, improvement in
patients’ self-assessed disability, and an improvement in global assessment scores among
RA patients treated with Bacillus coagulans [104].

6. Urinary Tract Diseases

Urinary tract infections (UTIs) are common, recurrent diseases caused by Gram-
negative bacteria, mostly uropathogenic Escherichia coli (UPEC). The risk of developing a
UTI is influenced by female gender and sexual activity, although the greatest risk factor is
UTI history. Besides UPEC bacteria, which are the reason for approximately 80% of UTIs,
some Gram-positive bacteria (Enterococcus faecium and Staphylococcus aureus) and different
Gram-negative bacteria (Proteus mirabilis, Klebsiella pneumoniae, Enterobacter species, and
Pseudomonas aeruginosa) are associated with the typical etiology of UTIs [105].

Regarding the pathogenesis of RA among all the bacteria causing UTIs, the most
important are Proteus mirabilis (Pm). In the 1980s, significantly elevated levels of antibodies
against this bacteria were found in blood samples of RA patients in comparison to healthy
controls and different autoimmune rheumatic diseases (ankylosing spondylitis, systemic lu-
pus erythematosus) [106,107]. The proposed mechanism by which Pm could be involved in
RA pathogenesis is molecular mimicry. The sequence EQRRAA (glutamic acid–glutamine–
arginine–arginine–alanine–alanine), localized in position 69–74 of HLA-DRB1, is a sequence
involved in the shaping of T cell repertoires [108]. There is a molecular similarity between
this sequence and the ESRRAL sequence of hemolysin. During their study, Pm. Tiwana
et al. observed that an antiserum against the EQRRAA sequence raised in rabbits bound
to similar peptides containing the ESRRAL sequence. Additionally, antiserum EQRRAA
and ESRRAL bound to a mice fibroblast cell line which expresses HLA-DRB1p0401, which
is an allele connected to RA. On the other hand, the aforementioned antiserums did not
bind to fibroblasts expressing HLA-DRB1 alleles not associated with RA [109]. A few years
later, Rashid T. et al. discovered that the elevated levels of IgG and IgM antibodies to
Pm and against EQRRAA and ESRRAL peptides, detecting them in both Japanese and
Finnish patients with early and advanced RA in comparison to their corresponding healthy
controls. This observation confirms the potential participation of Pm in RA pathogenesis
by molecular mimicry [110]. These results were expanded on by Newkirk M.M. et al.,
who noticed that the levels of IgM and IgG antibodies to Pm were significantly higher
in patients with RF-positive RA in comparison to patients with RF-negative RA, spondy-
loarthropathy, and undifferentiated arthritis. Their results indicate that elevated levels of
IgM and IgG antibodies to Pm are associated with early seropositive RA and occur only
in the presence of antibodies specific for immunoglobulin IgG damaged with advanced
glycation end-products (anti-IgG-AGE antibodies) [111]. In a different study conducted by
Chandrashekara S. et al., the researchers did not find a significant increase in antibodies to
Pm in patients with RA compared to healthy controls [112]. The results of this study show
that there is no consensus regarding the involvement of Pm in the pathogenesis of RA, and
further research is required to determine the role of this bacterium.

On the other hand, the situation can be reversed, and RA can directly influence
the occurrence of the UTIs and de novo lower urinary tract symptoms (LUTS), which
commonly affect women. Overactive bladder syndrome and urinary incontinence are the
most common LUTS among RA patients. One of the risk factors of LUTS occurrence in
female patients with RA is a higher BMI [113]. A higher incidence of hospitalization due
to UTIs was observed in RA patients, and the major reason for this situation could be the
increased frequency of all infections in RA patients. The same as with LUTS, the at-risk
group mainly consists of women. Puntis D. et al. discovered that the risk of UTIs grows with
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taking long-term oral steroids and increasing their dose, while taking methotrexate does
not influence the occurrence of infections in RA patients. They also confirmed that a higher
incidence of UTIs correlates with RA occurrence and could be due to the complication of
RA itself [114].

7. Conclusions

The pathogenesis of RA is without question a complex process involving the coexis-
tence of many various factors. Although researchers are not in agreement about which
bacteria are implicated in this process and how they are involved, the evidence about the
importance of their role seems to be extensive. Infectious and commensal bacteria can
trigger immune response through various virulence mechanisms which, in susceptible
individuals, can lead to autoimmune response. In the majority of cases, the use of therapy
targeting bacterial infections resulted in an improvement of the condition of RA patients.
It is worth remembering that the role of bacteria in RA development is one of the factors
that can lead to the development of RA, and it is also worth remembering that RA, like
many autoimmune diseases, is a multifactor condition. However, the topic of bacterial
involvement is still worthy of study, especially regarding research on improving detection
methods. The recognition of the microbes implicated in RA and their mechanisms of
interaction will be indispensable for future discoveries regarding RA treatment, diagnosis,
and prevention.
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