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Abstract: We reported that a 31-amino-acid Zfra protein (zinc finger-like protein that regulates
apoptosis) blocks neurodegeneration and cancer growth. Zfra binds WW domain-containing oxidore-
ductase (WWOX) to both N- and C-termini, which leads to accelerated WWOX degradation. WWOX
limits the progression of neurodegeneration such as Alzheimer’s disease (AD) by binding tau and
tau-hyperphosphorylating enzymes. Similarly, Zfra binds many protein targets and accelerates their
degradation independently of ubiquitination. Furthermore, Zfra4-10 peptide strongly prevents the
progression of AD-like symptoms in triple-transgenic (3xTg) mice during aging. Zfra4-10 peptide
restores memory loss in 9-month-old 3xTg mice by blocking the aggregation of a protein cascade,
including TPC6A∆, TIAF1, and SH3GLB2, by causing aggregation of tau and amyloid β. Zfra4-10
also suppresses inflammatory NF-κB activation. Zfra-activated Hyal-2+ CD3- CD19- Z cells in the
spleen, via Hyal-2/WWOX/Smad4 signaling, are potent in cancer suppression. In this perspective
review, we provide mechanistic insights regarding how Zfra overrides WWOX to induce cancer
suppression and retard AD progression via Z cells.
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1. Introduction to Molecular Signaling and Cell Fates

How a single cell maintains its highly complicated signaling network is essentially
unknown. Signaling molecules are well connected in the interaction network that is
essential in maintaining normal physiology. Alterations in signaling molecules, either in
concentrations or structures, lead to disruption of the signaling pathway and the potential
development of multiple diseases such as cancer, neurodegeneration, and others [1–3].
For example, an imbalance in L-tryptophan metabolism via the kynurenine pathway
may affect and induce disorders ranging from cancer to neurodegenerative disease [1].
Dysregulation in the participating proteins in autophagy is linked to cancer development,
neurodegenerative diseases, and immune defects [2]. NAD+ plays an indispensable role in
signaling and metabolism. Controlled and balanced levels of NAD+ are needed to prevent
metabolic diseases, cancer, neurodegeneration, and immune disorders [3].

Interestingly, inappropriate phase separation can cause aberrant formation of protein
condensates or aggregates implicated in the pathogenesis of cancer and neurodegenera-
tion [4,5]. Dysregulation of programmed cell death causes developmental disorders and
may lead to cancer and neurodegeneration [6]. Nonetheless, there is still a long list showing
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molecule-regulated cancer and neurodegeneration. A straightforward question to ask is
how those aberrant signaling pathways can travel down a similar path for the development
of both cancer and neurodegeneration.

In this perspective review, we will go through the fundamental concept of chronic
inflammation in neurodegenerative diseases and cancer, update the WWOX functional
properties in suppressing Alzheimer’s disease (AD) and cancer, and discuss how Zfra
peptide regulates AD and cancer via Hyal-2/WWOX/Smad4 signaling and how Z cell
activation by Zfra works in limiting disease progression.

2. Chronic Inflammation Is Constantly Associated with Neurodegeneration and Cancer

Chronic inflammation is a common occurrence for the progression of neurodegener-
ation, as well as cancer growth [7–11]. Thus, suppression of inflammation may mitigate
both diseases, but does not effectively provide a cure. Low-grade inflammation can be
regarded as a process of aging. The aging event involves the production of inflammatory
cytokines and activated immune cells. For example, the gut–brain axis is needed in the
development of rotenone-induced Parkinson’s disease (PD) in rats, as revealed by changes
in substantial intestinal histological alterations, such as shortened villi, crypt architecture
loss, and inflammation, along with upregulation of inflammatory microglial cells [7]. Using
techniques for determining microglial transcriptomes and epigenomes, one can estimate
the altered microglial status affecting neuroinflammation, neurodegeneration, and disease
progression [8]. In this case, specific alterations in AD and related diseases partly correlate
with the status of inflammatory microglia [8]. Database analysis provides information
regarding the effects of metformin on inhibiting oxidative stress, gluconeogenesis, and
inflammation, linking to the mechanism for improving symptoms in AD and type 2 dia-
betes [9]. Most recently, the cGAS-STING pathway has been identified as a driving force
for aging-related inflammation in peripheral organs and the brain [10]. Suppression of
cGAS-STING signaling is likely to halt neurodegeneration in old age [10]. Again, sup-
pression of inflammation in aging may not be able to stop the aging process, nor cancer
growth, completely.

Curcumin is good for preventing and suppressing neurodegeneration and cancer, as
well as modulating immune functions [12,13]. Curcumin has tautomeric forms (Figure 1).
The keto form of curcumin possesses antioxidant activity, whereas the enol form is not
stable and tends to degrade. Curcumin induces apoptosis in cancer cells and reduces inflam-
mation, angiogenesis, and tumor metastasis by targeting cancer signaling pathways such as
p53, Ras, PI3K, AKT, Wnt-β catenin, and mTOR. The family of NADPH oxidase enzymes
(Nox1-5, Duox1-2) has seven members, which are known to be involved in various diseases,
such as inflammatory lung diseases, neurodegenerative diseases, and cancer. A novel Nox2
inhibitor, TG15-132, supports neuroprotection by blocking inflammatory responses, includ-
ing the generation of reactive oxygen species and inflammatory cytokines [14]. Calebin-A
is a natural polyphenol and a curcumin analog [15–18] (Figure 1). Calebin-A has a ferulic
acid ester bond. Calebin-A supports neuronal survival from β-amyloid insult, inhibits
cancer growth, and prevents obesity, partly due to its anti-inflammatory activities such
as downregulating nuclear factor (NF)-κB activation [15–18]. Whether Calebin-A reduces
peritumor coats in metastatic brain cancer or causes the degradation of amyloid plaques in
the brain is unknown.
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Figure 1. Structures of curcumin and calebin-A. Curcumin has a stable keto form and an unstable 
enol form. Calebin-A is an analog of curcumin and has a ferulic acid ester bond. The structure was 
drawn using a ChemDraw v22.0 software. 

3. Patients Who Survive Cancer Do Not Develop AD 
Epidemiological data show that AD and cancer could run in opposite directions. In 
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neurodegenerative diseases cannot develop cancer [19–21]. It has been estimated that AD 
patients have a 61% decreased risk of cancer incidents compared to reference subjects. It 
has been proposed that downregulation of Pin1 and Wnt signaling and upregulation of 
p53 contribute to neuronal death during cancer growth. By contrast, both Pin1 and Wnt 
are upregulated in cancer. This scenario fails to support the inverse relationship for AD 
and cancer development.  

Protein aggregation in the brain occurs frequently due to the downregulation of 
WWOX in the brain hippocampus in middle-aged individuals [22,23]. If the protein ag-
gregation worsens with age, the individuals will likely have AD 30 to 40 years later due 
to the building up of β amyloid plaques and tau aggregates in the brain. If cancer develops 
simultaneously in middle age, cancer cells should have a faster formation of peritumor 
coats containing aggregated β amyloid and amyloid fibrils [24–26]. Hypothetically, the 
presence of amyloid fibrils in the peritumor coats in the newly developed tumors signals 
the brain to slow down the protein aggregation event. Metastatic cancer cells may relocate 
to the brain and cause neuronal death [25]. Under this condition, both cancer growth and 
neural death happen simultaneously.  

Drugs that are highly effective in curing AD and PD are not available. The rationale 
for repurposing anti-cancer drugs in treating AD, PD, and other neurodegenerative dis-
eases is to speed up drug discovery for curing the diseases [27]. Many known kinase in-
hibitors have been proposed to be good for suppressing multiple protein kinases in neu-
rodegenerative disorders. Nonetheless, whether these drugs can cure AD and PD remains 
questionable. 

4. WWOX Exhibits Multiple Functional Properties  
WW domain-containing oxidoreductase (WWOX) was first isolated in 2000 [28–30], 
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Figure 1. Structures of curcumin and calebin-A. Curcumin has a stable keto form and an unstable
enol form. Calebin-A is an analog of curcumin and has a ferulic acid ester bond. The structure was
drawn using a ChemDraw v22.0 software.

3. Patients Who Survive Cancer Do Not Develop AD

Epidemiological data show that AD and cancer could run in opposite directions. In
most cases, patients who survive cancer do not develop AD. Conversely, patients with
neurodegenerative diseases cannot develop cancer [19–21]. It has been estimated that AD
patients have a 61% decreased risk of cancer incidents compared to reference subjects. It
has been proposed that downregulation of Pin1 and Wnt signaling and upregulation of
p53 contribute to neuronal death during cancer growth. By contrast, both Pin1 and Wnt are
upregulated in cancer. This scenario fails to support the inverse relationship for AD and
cancer development.

Protein aggregation in the brain occurs frequently due to the downregulation of
WWOX in the brain hippocampus in middle-aged individuals [22,23]. If the protein
aggregation worsens with age, the individuals will likely have AD 30 to 40 years later due
to the building up of β amyloid plaques and tau aggregates in the brain. If cancer develops
simultaneously in middle age, cancer cells should have a faster formation of peritumor
coats containing aggregated β amyloid and amyloid fibrils [24–26]. Hypothetically, the
presence of amyloid fibrils in the peritumor coats in the newly developed tumors signals
the brain to slow down the protein aggregation event. Metastatic cancer cells may relocate
to the brain and cause neuronal death [25]. Under this condition, both cancer growth and
neural death happen simultaneously.

Drugs that are highly effective in curing AD and PD are not available. The rationale for
repurposing anti-cancer drugs in treating AD, PD, and other neurodegenerative diseases is
to speed up drug discovery for curing the diseases [27]. Many known kinase inhibitors have
been proposed to be good for suppressing multiple protein kinases in neurodegenerative
disorders. Nonetheless, whether these drugs can cure AD and PD remains questionable.

4. WWOX Exhibits Multiple Functional Properties

WW domain-containing oxidoreductase (WWOX) was first isolated in 2000 [28–30],
and has been considered a candidate tumor suppressor protein [28–38]. Since then, there
have been many outstanding review articles related to this gene. The WWOX/Wwox gene
and its encoded WWOX protein participate in cancer suppression [28–32] and inhibition of
AD progression [22,23]. Whether WWOX protein controls the transition between cancer
susceptibility and AD resistance, or cancer resistance and AD progression has not been
entirely delineated.
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4.1. WWOX Primary Structure and Binding Partners

The wild-type WWOX protein possesses two N-terminal WW domains and a C-
terminal short-chain alcohol dehydrogenase/reductase (SDR) domain [28–30]. A nuclear
localization signal is located between the N-terminal first and second WW domains (WW1
and WW2). The WW domain is mainly responsible for protein/protein interactions. For
example, WW1, possessing two tryptophan residues, binds proline-rich motifs PPXY or
PPPY-containing target proteins for numerous biological functions during signaling [31–41].
Such events include cell death, differentiation, signaling, cell migration and recognition,
and disease development [10–22]. WW2 has one tryptophan, whose function has not been
elucidated. However, WW2 may team up with WW1 to maintain an appropriate tertiary
conformation that affects the function of WW1 in protein/protein binding [42]. Nuclear
localization of WWOX may occur, especially when cells are stimulated with growth factors
or are under apoptotic stress [35]. The crystal structure of WWOX has not been established.

4.2. WWOX Is Not a Typical Tumor Suppressor

The human WWOX gene, encoding the WWOX protein, is located on a common
fragile site, i.e., FRA16D—the second most frequent site of its kind [28–32]. Most cancer
cells derived from breast, lung, prostate, and other organs have alterations in the WWOX
gene [32–39]. Restoration of the WWOX gene and the resulting protein in cancer cells
blocks their growth in vivo and in vitro [40,41]. WWOX protein is not a typical tumor
suppressor, as it participates in numerous biological events, including (i) cell survival,
proliferation, differentiation, cell cycle regulation, and senescence via complicated signal-
ing pathways [38–45], (ii) aging and neurodegeneration [22,23,46,47], (iii) apoptotic cell
death [30,48–51], (iv) chromosomal DNA stability [52,53], (v) bubbling cell death [54–56],
and (vi) cell-to-cell recognition and migration [57]. Human newborns lacking the WWOX
gene and functional WWOX protein suffer severe neural diseases but do not have sponta-
neous tumor formation, suggesting WWOX does not fit Knudson’s two-hit hypothesis of
tumorigenesis [31,35,45,46].

4.3. pY33-WWOX Maintains Normal Mitochondrial Physiology

Under physiological conditions, a portion of activated Tyr33-phosphorylated WWOX
(pY33-WWOX) localizes on the outer membrane of the mitochondria to support normal
physiology [28,48,58–61]. Without WWOX, cells undergo uncontrollable proliferation and
die readily [43]. Under stress conditions such as exposure to UV irradiation and chemother-
apeutic drugs, significantly upregulated pY33-WWOX, together with p53, induces mito-
chondrial apoptosis [58–61] or co-relocates to the nucleus to exert cell death [30,35,47,48].
The prosurvival TNF receptor-associated factor 2 (TRAF2) blocks the apoptotic function of
WWOX and p53 [54]. The trafficking protein particle complex 6A (TRAPPC6A or TPC6A)
carries WWOX to undergo nuclear translocation [22]. The protein complex dissociates in
the nuclei. WWOX remains in the nuclei, and TPC6A continues to relocate to the nucleoli.
Indeed, during trafficking, TPC6A travels from the mitochondria to the nucleoli and then
from the nucleoli back to the mitochondria [22]. Carrying of TPC6A with proteins and asso-
ciated materials between mitochondria and nucleoli is unusual but is essential for normal
cell physiology [22]. The nucleolus is a center of ribosome synthesis and is abundant in
small nucleolar RNA for pre-rRNA processing.

4.4. Overexpressed pY33-WWOX Induces Apoptosis Which Is Unfavorable for Neurons But
Beneficial for Eliminating Cancer Cells In Vivo

The binding of pY33-WWOX with target proteins does not require the presence of
PPXY or PPPY motif in the target proteins. Indeed, pY33-WWOX expands its scope in
protein binding interactions [32]. In vivo data confirms that pY33-WWOX binds and
functions together with many nuclear transcription factors such as p53 [30,48,49], CREB
1 (CAMP responsive element binding protein 1) [50], and c-JUN [50], and JNK1 (c-JUN
N-terminal kinase 1) [48,50]. These connections may be linked to neuronal death. For
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example, during the acute phase of sciatic nerve dissection, the activation of JNK1 and
WWOX occurs quickly, which leads to rapid apoptosis of large neurons in the ipsilateral
side of the injury in rat brains [50]. In the chronic phase of injury, small neurons in both
the ipsilateral and contralateral sides of dorsal root ganglia (DRG) have co-activation of
WWOX, CREB, and NF-κB, which leads to apoptosis [50] (Figure 2).
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Figure 2. Nuclear accumulation of pY33-WWOX and transcription factors in small neurons in DRG
during sciatic nerve dissection. (A) The extent of nuclear accumulation of an indicated protein is
shown. Ipsi: ipsilateral; Contra: contralateral. (B) pY33-WWOX binds and blocks the function of
JNK1, NF-κB, CREB, and AP-1 to cause neuronal death. pY33-WWOX also enhances the promoter
activation driven by c-JUN and ELK-1 to induce neuronal apoptosis. Binding of pY33-WWOX with
ATF3 is unknown. Our data were tabulated and summarized from reference [50].

4.5. WWOX Modulates the Activities of Transcription Factors to Determine Neuronal Survival
or Death

WWOX controls chromosomal DNA stability [52,53]. During sciatic nerve dissection,
activated pY33-WWOX is co-localized in the nuclei with several transcription factors: CREB,
c-JUN, ELK-1, CRE, and AP-1 [50,62]. It is very likely that these proteins co-relocate to the
nuclei simultaneously. For example, at 6 hr post-sciatic nerve dissection, accumulation of
pY33-WWOX goes up 40 to 65% in the nuclei of medium/large neurons in the ipsilateral
DRG for at least two months [50]. p-JNK1 takes 24 h to reach a similar extent of nuclear
accumulation in the medium/large neurons, followed by a reduction on day 7. c-JUN
accumulation in the nuclei of medium/large neurons also takes 6 h and lasts one week only.
Interestingly, ATF3 accumulation in the nuclei of medium/large neurons by more than 65%
starts in 24 h and lasts two months. Transcription factors p-CREB, NF-kB, and SMAD4
have little or no accumulation in the medium/large neurons in the ipsilateral dorsal root
ganglia. Functional suppression of p-JNK1 by pY33-WWOX rapidly causes apoptosis of
the medium/large neurons during the acute phase of nerve injury [48,50,63].

In vitro promoter assay revealed that transiently overexpressed WWOX activates the
promoter activity driven by transcription factors c-JUN and Elk-1 [50] (Figure 2). Similarly,
WW1 activates the promoter of NF-κB [50]. Again, these interactions cause neuronal
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apoptosis. In contrast, WWOX inhibits the activation of promoter elements induced by
prosurvival transcription factors CREB, CRE, and AP-1, leading to neuronal death [50].

Retarded death of small neurons in two months at the chronic phase of sciatic nerve
dissection is probably due to accumulation and functional balance of pY33-WWOX, ATF3,
and p-CREB in the nuclei [50] (Figure 2). ATF3 is either protective or apoptosis-inducing
for neurons. A nuclear calcium-CREB signaling to an ATF3-mediated neuroprotective gene
repression program counteracts age- and disease-related neuronal loss [64]. Nonetheless,
ATF3 modulates inflammatory responses during injury, leading to cell death [65–67].

Overall, pY33-WWOX orchestrates an array of transcription factors during sciatic
nerve dissection. Binding of activated pY33-WWOX with pro-survival JNK1 [48,63], NF-
κB [50], CREB [50], and AP-1 results in inhibition of their protective function, thereby
leading to neuronal death (Figure 1). Meanwhile, pY33-WWOX enhances the promoter
activation driven by c-JUN and ELK-1 to induce neuronal apoptosis. pY33-WWOX physi-
cally binds c-JUN [50], whereas its binding with ELK-1 is unknown. We do not exclude the
possibility of the team effort of pY33-WWOX and pS46-p53 in manipulating the function of
transcription factors. pY33-WWOX binds pS46-p53, and both proteins induce apoptosis in
a synergistic manner [49].

5. Zfra4-10 Activates Hyal-2/WWOX/Smad4 Signaling Pathway for Retardation
of Neurodegeneration

We reported that when endogenous WWOX strongly binds intracellular protein part-
ners in cancer cells, the cells cannot grow effectively in vivo [68]. When mice or cells are
stimulated with the Zfra4-10 peptide, this peptide binds cell membrane hyaluronidase
type II (Hyal-2) to activate the Hyal-2/WWOX/Smad4 signaling pathway [56,69–74]. The
signaling activation leads to Smad4-mediated cell death or survival [69–74], cancer suppres-
sion [70,71,73,74], and restoration of memory loss in AD [71], depending upon the strength
of signal activation.

5.1. Zfra Induces Activation of Spleen Hyal-2+ CD3- CD19- Z Cell

The Hyal-2/WWOX/Smad4 signaling induces spleen Hyal-2+ CD3- CD19- Z cell
activation for eradicating cancer cells [70]. While Z cell function in vivo is largely unknown,
our laboratory has been focusing on characterizing the role of Z cells in suppressing
neurodegeneration in AD, PD, and seizures. Z cells are so named because Zfra activates
this cell type in the spleen [70,71]. Z cells were originally isolated from T/B cell-deficient
NOD-SCID mice. Z cells are not T, B, monocyte, or NK cells, but are similar in size to T and
B cells. We have determined the gene expression profile of naïve Z cells (see GEO database
Accession: GSE98409, ID: 200098409). Z cells are a new type of lymphoid cells. Activated Z
cells enable immune-deficient NOD-SCID mice to suppress cancer growth [70,71].

Zfra-activated Z cells cause cancer cell death with or without physical contact [70].
When cancer cells are co-cultured with activated Z cells in vitro, Z cells undergo clonal
expansion and rapidly eradicate cancer cells [68]. Without prior exposure to cancer cells or
cancer cell antigens, Zfra-activated Z cells effectively induce cancer cell death [70]. Non-
activated Z cells cannot kill cancer cells even though they relocate, together with T cells, to
the cancer lesions [68]. Both T and Z cells group side-by-side in cancer lesions [68].

Unlike nature killer (NK) cells, naïve Z cells require pre-activation by Zfra1-31 or 4-10
or WWOX7-21. This activation allows Z cells to recognize more than ten cancer cell lines
for effective eradication [70]. Thus far, Zfra1-31 or 4-10, and WWOX7-21 peptides, and
antibodies against Hyal-2 or pY216-Hyal-2 are known ligands for activating Z cells [68].
Inflammatory NK cells kill cancer cells and cause damage to neurons [75–78]. In contrast,
activated Z cells protect neurons from being damaged [71]. The activation markers for Z
cells are being determined.
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5.2. Zfra Restores Memory Loss in Triple Transgenic Mice for AD

Zfra4-10-mediated restoration of memory loss in triple transgenic mice for AD (3xTg)
occurs via its inhibition of the aggregation of amyloid beta 42 (Aβ42), accelerating the
degradation of aggregated proteins and blocking the activation of inflammatory NF-κB [71]
(Figure 3). Zfra4-10 prevents the age-dependent progression of AD-like symptoms in
3xTg mice [72]. Whether Zfra4-10 suppresses the expansion of inflammatory glial cells in
the brain is unknown. In addition to amyloid beta, there are numerous cytosolic proteins
subject to degradation upon binding with Zfra—an action designated as zfration [68,70–74].
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Figure 3. Zfra peptide prevents AD progression and mitigates AD-like symptoms in 3xTg mice. Zfra
peptide is potent in mitigating AD-like symptoms in 9-month-old 3xTg mice [71] and prevents the
age-dependent memory loss and reduced capability in learning [72].

While the action of pS14-WWOX is still being determined, it is not appropriate to con-
sider pS14-WWOX a disabled form. pS14-WWOX is needed for T/B cell differentiation [45].
However, the pS14-WWOX-induced T/B cells cannot target cancer cells for eradication.

Full-length Zfra1-31 and the truncated Zfra4-10 undergo polymerization when the
peptides are suspended in phosphate-buffered saline (PBS) but not in water [70,71]. The
presence of Cys9 and Cys12 in the Zfra peptide suggests covalent binding occurs in both
intra- and inter-molecular manners [70,73] (Figure 4A). Excessive polymerization of Zfra
makes the peptides ineffective in blocking cancer growth [70,73]. Whether overly polymer-
ized Zfra blocks neurodegeneration is unknown. Polymerized Zfra cannot be separated
into monomers by reducing chemicals such as β-mercaptoethanol, suggesting the presence
of another type of covalent binding. The likely candidate is the phosphorylation site Ser8.
Compared to non-phosphorylated Zfra, pS8-Zfra is not functionally active.

Our research on Zfra peptides in mice has revealed a fascinating phenomenon. When
these peptides are administered, they quickly bind with plasma proteins, forming com-
plexes that are then sequestered in the spleen. This leads to the activation of spleen Hyal-2+
CD3- CD19- Z cells in vivo [70], a process that can last for several months due to the
resistance of the Zfra/protein complex to degradation. These activated Z cells may then
migrate to various organs, including the liver and lungs. However, what intrigues us is the



Int. J. Mol. Sci. 2024, 25, 3507 8 of 21

potential presence of Z cells in the small intestine. If they are indeed found in the gut, their
activation could play a role in halting neurodegeneration via the gut–brain axis.
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Additionally, activated Z cells do exist in the brain [71]. Whether these brain-activated
Z cells come from the spleen is unknown. The role of brain Z cells in preventing neurode-
generation is of great interest to investigate.

5.3. Zfra Physically Interacts with Endogenous Proteins for Degradation

Zfration is critical for protein degradation [70–74]. Full-length Zfra1-31 proteins bind
WWOX at the N-terminal WW1 domain and the C-terminal SDR domain [73], which was
established by yeast two-hybrid analysis. The binding of Zfra1-31 with the recombinant
WW1 domain is covalent [68] (Figure 4B). Whether the Zfra/SDR complex is covalent
needs investigation. When cell lines were used to analyze Zfra-mediated protein degra-
dation, Zfra peptides were added to the cell lysates. Covalent Zfra/WWOX or protein
complexes can be seen by observing banding patterns with reducing and non-reducing gels.
Compared to control cell lysates, Zfra enhances protein degradation with time. Known pro-
teinase inhibitors and a proteasome inhibitor MG-132 cannot block the protein degradation,
suggesting that a novel protease degrades the zfrated proteins.

5.4. Zfra4-10 Covalently Interacts with WWOX7-21

A portion of cytosolic WWOX is localized on the cell membrane, and WWOX7-21 is
a surface-exposed epitope [74]. Synthetic Zfra4-10 and WWOX7-21 peptides powerfully
suppress the growth and metastasis of 4T1 breast cancer cells in mice [68]. However,
when combined, both Zfra4-10 and WWOX7-21 peptides lose their function in blocking
4T1 growth in mice, suggesting that both peptides functionally antagonize each other via
covalent binding [68].

5.5. Zfra4-10 and WWOX7-21 Strengthen the Binding of Endogenous WWOX with Target
Proteins in Stem Cells, Microglia Cells, Astrocytes, and Treg Cells and in Exosomes In Vivo

We reported that the more strongly endogenous WWOX binds intracellular protein
partners, the more weakly the cancer cells can grow in vivo [68]. When mice receive
either Zfra4-10 or WWOX7-21 peptide via tail vein injections, endogenous WWOX strongly
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increases its binding (1- to 7-fold increases) with C1qBP, CD133, p21, JNK1, COX2, p-
ERK, Foxp3, and p53 in the spleen cells, as determined by co-immunoprecipitation using
organ lysates (Figure 5A,B). The binding correlates with suppression of cancer growth [68]
(Figure 5A–C). The stronger the pY33-WWOX binding of partner proteins, the better the
suppression of cancer growth in vivo [68] (Figure 5D). In stark contrast, when mice receive
both Zfra4-10 and WWOX7-21 peptides, a dramatically reduced binding of WWOX with
the target proteins occurs, down to the baseline level or none. In the lung, Zfra4-10 or
WWOX7-21 peptide alone also strongly enhances the binding of endogenous WWOX with
Iba1, Oct4, ERK1/2, NF-κB p65, GFAP, and p53 (2- to 5-fold increases).
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Figure 5. Zfra4-10 or WWOX7-21 upregulates the complex formation of WWOX with target proteins
in vivo. (A) BALB/c mice received tail vein injections of Zfra4-10 and/or WWOX7-21 peptides,
followed by inoculation with 4T1 breast cancer cells two weeks later and sacrifice 18 days later. By co-
immunoprecipitation, increased binding of WWOX with C1qBP and other indicated proteins was shown
in the spleen and lung. These complexes are present in indicated cells and exosomes. No induction of
complex formation was shown when mice received the mixture of Zfra4-10 and/or WWOX7-21 peptides.
Functionally, WWOX and p53 may synergistically induce apoptosis [30,48,49]. JNK1 counteracts WWOX
function in inducing apoptosis [48]. The binding of WWOX with JNK1 and ERK leads to inhibition of
these enzymes’ activity in hyperphosphorylating tau [23]. (B) Overall, when endogenous WWOX
binds strongly with interacting proteins, the extent of cancer growth is dramatically reduced in vivo.
(C) The functional properties of WWOX and target protein complexes are shown. (D) Zfra4-10
or WWOX7-21 induces anti-cancer responses, which is due to the increased binding strength of
pY33-WWOX with its partner proteins, which confers anti-cancer activity in vivo [68].

Upregulation of CD133 or OCT4 expression indicates expanding stem cell populations
in the spleen. Foxp3-positive T regulatory (Treg) cells are also expanded in the spleen.
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Interestingly, Iba1-positive microglia cells and GFAP-positive astrocytes are present in the
lungs. Whether these cells can relocate to the brain is unknown.

While we used organ lysates for co-immunoprecipitation, we will repeat the exper-
iments using tissue sections and examine the binding via antibody FRET imaging or
affinity proximity assay. This will detail not only the binding affinity, but also the extent of
prevalence in binding among cell types.

5.6. Inhibition of S14 Phosphorylation in WWOX by Zfra4-10 or WWOX7-21 Leads to
Reduced Neurodegeneration

Overexpressed pY33-WWOX is proapoptotic, whereas an optimal level of pY33-
WWOX is essential for maintaining normal physiology [48,49]. When the level of pY33-
WWOX goes down, the pS14-WWOX level goes up in vivo [70–72]. pS14-WWOX supports
the progression of cancer development, growth, and metastasis [70] and enhances the pro-
gression of AD [71,72]. pS14-WWOX is accumulated in the lesions of cancers and AD brains.
Zfra4-10 strongly reduces the level of pS14-WWOX and thereby abolishes cancer growth
and retardation of AD progression [70–72]. WWOX7-21 is also potent in blocking WWOX
phosphorylation at S14. Conceivably, both Zfra4-10 and WWOX7-21 induce or activate a
specific phosphatase(s) that causes pS14 dephosphorylation. The specific phosphatase(s)
has yet to be identified.

While the action of pS14-WWOX is still being determined, it is not appropriate to
consider pS14-WWOX as a disabled form. pS14-WWOX is needed for T/B cell differentia-
tion [45]. However, induced T/B cannot block cancer growth.

6. Dramatic Upregulation of pY33- and pY287-WWOX in the Brain Cortex of
Heterozygous Wwox Mice

Thus far, no reports have demonstrated that WWOX becomes aggregated in the brain.
Compared to wild-type mice, heterozygous Wwox mice express half as much WWOX
protein in tissues and organs. Most interestingly, WWOX undergoes enhanced phosphory-
lation at Y33 and Y287 in the brain cortex of heterozygous Wwox mice (~1-fold increase), but
not in the brains of wild-type mice [72]. The increased phosphorylation of Y33 and Y287 in
WWOX in the heterozygous mice is necessary to maintain normal physiological functions.
In general, heterozygous Wwox mice normally behave like wild-type mice, although these
mice have an accelerated neurodegeneration [71]. No increase in S14 phosphorylation of
WWOX is shown [78], suggesting an inter- or intra-molecular autoregulatory mechanism
for WWOX functional activation and turnover [57]. That is, binding interactions can be
found for the WW or SDR domains by itself or WW/SDR self-folding or intermolecular
interactions [57]. Both pY33- and pY287-WWOX do not exhibit aggregation in the brain
cortex. ACK-1 phosphorylates WWOX at Y287, and pY287-WWOX can be ubiquitinated
for proteasomal degradation [79]. Another report showed that when cells are under DNA
single-strand break checkpoint activation, WWOX is ubiquitinated at K274 by the ubiquitin
E3 ligase ITCH and interacts with ataxia telangiectasia-mutated (ATM) [53]. WWOX can
undergo modification by small ubiquitin-like modifier (SUMO) proteins. As a result, the
SUMOylated WWOX blocks prostate cancer growth [80].

6.1. pT12-WWOX Is an Aggregated form in the AD Brain Lesions

We have determined for the first time that pT12-WWOX aggregates or plaques are
found in the neocortices and cortices of 11-month-old heterozygous Wwox mice but not
in those of wild-type mice [72] (Figure 6A). The pT12-WWOX aggregates are about 30 to
60 µm in diameter, which are formed most likely at an earlier age in mice or at middle age
in humans. Presumably, pT12-WWOX aggregates cause the activation of the protein aggre-
gation cascade starting from the polymerization of TRAPPC6A∆ (or TPC6A∆), followed
by TIAF1 (TGFβ-induced antiapoptotic protein), and SH3GLB2 (SH3 domain-containing
GRB2 Like, endophilin B). The resulting complexes lead to caspase activation, degradation
of amyloid precursor protein (APP), generation of amyloid beta, and neuronal apopto-



Int. J. Mol. Sci. 2024, 25, 3507 11 of 21

sis [22,81,82] (Figure 6B). Compared to the wild-type, TPC6A∆ isoform has an internal
deletion of 14 amino acids in the N-terminus [45].
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Figure 6. pT12-WWOX as aggregates may initiate the cascade of protein aggregation, leading to
neurodegeneration. Identification of pT12-WWOX as aggregates in the brain cortices of 11-month-
old heterozygous Wwox mice. (A) Presence of pT12-WWOX aggregates is shown in the cortices of
heterozygous Wwox mice (see the red punctate). No pY287-, pY33- and pT12-WWOX aggregates were
found in either the wild-type or the heterozygous Wwox mice. (B) A schematic graph for the action of
pY33- and pT12-WWOX, which modulate the protein aggregation cascade of TPC6A∆, TIAF1, and
SH3GLB2. Stimulation of cells with a neurotoxin MPP+ causes neuronal apoptosis. Aggregation of
TPC6A∆, TIAF1, and SH3GLB2 occurs during MPP+-mediated cell death, suggesting that TPC6A∆ is
a common initiator for AD and PD [72].

6.2. pT12- and pS14-WWOX in Controlling Protein Aggregation?

The protein aggregation cascade may start in middle age and keep going for 20 to
30 years before the appearance of Alzheimer’s disease symptoms [22,81,82]. pS14-WWOX
is involved in disease progression [31,61]. While T12 and S14 are close to each other,
their relationship regarding phosphorylation and conformational changes of WWOX is
unclear. However, both amino acid residues are involved in AD progression. In prin-
ciple, pY33-WWOX blocks the aggregation of TPC6A∆ and related downstream pro-
teins [22,81,82]. pT12-WWOX is likely to stimulate the aggregation cascade of TPC6A∆,
TIAF1, and SH3GLB2. When neuroblastoma SK-N-SH cells are treated with neurotoxin 1-
methyl-4-phenylpyridinium (MPP+) for inducing PD-like symptoms, TPC6A∆ expression
is increased and becomes polymerized, which causes aggregation of TIAF1, SH3GLB2, Aβ,
and tau [72]. Similarly, transforming growth factor beta (TGF-β) stimulates the polymer-
ization of TPC6A∆, TIAF1, and SH3GLB2 in the aggregation cascade. Notably, Zfra4-10
peptide blocks the MPP+ effects and thereby sustains the survival of neurons.

Taken together, when WWOX protein is downregulated in the brain cortex, TPC6A∆
is expected to have an accelerated aggregation as shown in the Wwox knockout mice. The
aggregated TPC6A∆ is at the crossroad for leading to the progression of AD or PD [72].
How TPC6A∆ directs the signaling for going to AD or PD remains to be determined.
Alternatively, upregulation of pT12- or pS14-WWOX and downregulation of pY33-WWOX
may compete for turning on or off to the road for AD or PD.

7. WWOX in Embryonic Development and AD Progression

WWOX plays a crucial role in affecting embryonic development. Functional deficiency
or defects in the WWOX gene and protein lead to severe neural disorders, metabolic disor-
ders, mental retardation, neurodegeneration, immune defects, stunted growth, and early
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death [46,47,72,83,84]. WWOX gene deficiency from bi-allelic alterations in chromosome
16q leads to autosomal recessive spinocerebellar ataxia 12 (SCAR12) and WWOX-related
epileptic encephalopathy (WOREE) syndromes [46,47,72,83]. Children suffering from
SCAR12 have early childhood onset of cerebellar ataxia and difficulty in coordinating the
movement of their muscles. WOREE is caused by bi-allelic gene mutations. Newborn
patients suffer intractable epileptic seizures, severe defective development in the neural
system, and movement disorders.

The WWOX gene is also regarded as a risk factor for AD [85] and is associated with the
progression of PD [86]. In AD, downregulation of WWOX occurs in the hippocampus in
middle age, leading to very slow and gradual aggregation of a protein cascade group over
20 to 30 years [22,78,81,82]. Balanced phosphorylation among T12, S14, Y33, and probably
Y34 in the WW1 is critical to limiting disease manifestation [70,71]. For example, when Y33
phosphorylation in WWOX is downregulated, S14 phosphorylation is then upregulated.
Aggregation of pT12-WWOX is likely blocked by pS14- or pY33-WWOX. Conceivably,
pY34 inhibits the action of pY33. pS14-WWOX promotes the progression of cancer and
AD [70,71]. Nonetheless, these presumed functions remain to be established.

Furthermore, tau hyperphosphorylating enzymes JNK and ERK can be bound and
functionally blocked by Y33-phosphorylated WW1. WWOX prevents tau hyperphosphory-
lation by these enzymes [23]. The SDR domain binds GSK3β and the C-terminal region of
tau [23,87]. This binding leads to inhibition of tau hyperphosphorylation [23,87].

8. WWOX Antagonizes p53 for Inducing Neurodegeneration In Vivo

Protein functional antagonism may lead to the development of neurodegeneration. For
example, both p53 and WWOX may functionally antagonize in regulating cancer growth,
and the antagonism can lead to neurodegeneration in vivo [88]. To achieve the effect of
neurodegeneration, p53 and/or WWOX cDNA expression constructs are overexpressed in
p53-deficient lung cancer cells and are then inoculated in mice. Ectopic WWOX strongly
inhibits lung cancer growth and inflammatory reaction in vivo [88]. In contrast, p53 does
not have an inhibitory effect. In combination, the inhibitory function of WWOX is nullified
by p53. Most strikingly, when mice receive p53/WWOX-expressing lung cancer cells, these
mice are shown to have BACE (β-secretase 1) upregulation, APP degradation, tau tangle
formation, and amyloid β generation in the brain and lung [88]. Hence, the functional
opposition between p53 and WWOX leads to enhanced cancer growth and accelerated neu-
rodegeneration in vivo [31,46,88]. Under stress conditions, pS46-p53 physically interacts
with pY33-WWOX [49]. This strongly associated complex appears to be mainly responsible
for inducing apoptosis [49].

However, when pY33-WWOX is de-phosphorylated and S14 phosphorylated, the
pS46-p53/pS14-WWOX complex could have an opposite effect. Thus, upregulation of
pS14-WWOX facilitates the growth of cancer and the progression of AD [70,71]. The
specific kinase and phosphatase involved in pY33-WWOX dephosphorylation and pS14-
WWOX phosphorylation is unknown. Finally, Zfra4-10 or WWOX7-21 downregulates
pS14-WWOX [68,70,71], suggesting that either peptide may covalently bind pS46-p53/pS14-
WWOX complex for proteolytic degradation.

9. Membrane Epitopes WWOX7-21 and WWOX286-299 and Functional Implications

WWOX is located ubiquitously in intracellular locations. Computational prediction
does not show that WWOX protein has a membrane localization signal sequence. Mem-
brane Hyal-2 binds the WW1 domain and anchor WWOX to the membrane area [56,69].
In addition, WWOX is anchored by Ezrin to the cytoskeletal-membrane area [89]. WWOX
can undergo self-polymerization in the cell membrane, as confirmed by immunoelectron
microscopy [56,69]. The self-polymerization is due to binding of WW1 with WW1, SDR
with SDR, or WW1 with SDR in an intermolecular or intramolecular manner [57].
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9.1. WWOX7-21 Epitope Confers Cancer Suppression and Probably Blocks AD Progression

Structurally, there are two epitopes in the membrane-localized WWOX, which are
at amino acid 7 to 21 and 286 to 299. Synthetic peptides WWOX7-21 and WWOX286-299
and corresponding antibodies were used in functional characterization [57,90]. Treatment
of 4T1 breast cancer cells with antibody against the WWOX7-21 epitope makes the cells
susceptible to ceritinib, UV irradiation, and many chemotherapeutic drugs [73]. In contrast,
WWOX7-21 peptide significantly increases the death of cultured breast 4T1 cells and cell
sphere explosion mediated by ceritinib [73]. This peptide, which is as short as WWOX7-11,
has even stronger potency in suppression and prevention of the growth and metastasis
of melanoma and skin cancer cells in mice [73]. Both peptides probably mediate the
signaling from membrane Hyal-2/WWOX and then recruit Smad4 for blocking cancer
growth. WWOX7-21 peptide can self-polymerize [57,90], suggesting that the exogenous
WWOX7-21 peptide binds the membrane WWOX7-21 epitope and probably Hyal-2 for
initiating the signaling. Hyal-2 physically binds the N-terminal first WW domain in a Y33
phosphorylation dependent manner [56]. Alteration of Y33 in WWOX probably abolishes
its binding with Hyal-2.

Additionally, WWOX7-21 peptide reduces ERK phosphorylation, upregulates proapop-
totic pY33-WWOX, induces calcium ion influx, and abolishes IkBα/WWOX/ERK pro-
survival signaling [90]. Consequently, these events lead to cancer suppression. While
pS14-WWOX supports cancer growth and enhances AD progression, pS14-WWOX7-21
peptide significantly enhances cancer growth in vivo and blocks ceritinib-mediated apop-
tosis in vitro [73]. In parallel, antibody against pS14-WWOX7-21 peptide reduces cancer
growth [73]. Zfra peptide is potent in inducing neuroprotection [71]. Like Zfra pep-
tide, WWOX7-21 peptide activates the Hyal-2/WWOX/Smad4 signaling, suggesting that
WWOX7-21 can exert neuroprotection.

9.2. WWOX7-21 and WWOX286-299, along with Membrane Type II TGFβ Receptor (TβRII),
Control Cell Migration and Cell-Cell Recognition

Cells expressing functional WWOX (WWOXf) migrate collectively and can fend off
the individually migrating WWOX-deficient or -dysfunctional (WWOXd) cells to undergo
retrograde migration [57,90]. Interestingly, the retrograde-migrating WWOXd cells kill a
portion of WWOXf cells from a remote distance, without physical contact. Mechanistically,
WWOXd cells dramatically increase the redox activity in WWOXf cells, thereby causing
cell death [90]. WWOXd cells utilize the IκBα/ERK/WWOX signaling to survive [57,90].

Specifically, when cells have surface exposure to the WWOX7-21 epitope, these cells
attract any approaching WWOXf or WWOXd cells of the same or different species [57]. We
have identified MIF (macrophage migration inhibitory factor) as an extracellular sensing
molecule [90]. When cells are exposed to WWOX286-299 epitope on their surface, these cells
strongly fend off WWOXd cells [57]. Membrane WWOX also binds membrane type II TGFβ
receptor (TβRII). Stimulating WWOXf cells with TβRII IgG antibodies leads treated cells to
greet WWOXd cells to merge with each other. However, when WWOXd are pretreated with
TβRII IgG antibody, these cells lose recognition by WWOXf cells. WWOXf cells can kill the
TβRII antibody-treated WWOXd cells. The observations suggest that normal cells can be
activated to attack metastatic cancer cells. Together, membrane WWOX/TβRII complex is
needed for cell-to-cell recognition, maintaining the efficacy of Ca2+ influx and control of
cell invasiveness.

9.3. WWOX in Cortical Neuron Migration and Loss of WWOX Causes Neuronal Heterotopia

Whether WWOX participates in deciding neuronal migration and positioning in the
brain cortex during embryonic development is largely unknown. However, the fact is
that newborn patients with WWOX deficiency develop neuronal heterotopia and severe
epileptic seizures [83,84,91–93]. Without WWOX protein, neurons accelerate their migration
and accumulate in the neocortex, known as neuronal heterotopia [84,94,95]. Moreover,
reduced GABA-ergic inhibitory interneurons has been demonstrated in Wwox knockout
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mice [96]. Many genes in common fragile sites are unstable and tend to undergo deletions
and alterations [97]. WWOX, DAB1, and many proteins are in involved in neuronal
migration and lamination in the developing cerebral cortex [97–100].

Here, we propose that during cortical lamination, WWOX controls neuronal layer
development via transition between epitope exposure. For example, surface exposure of
the WWOX7-21 epitope in a group of cells allows the other cell group to migrate forward,
and the WWOX286-299 epitope signals the other cells to stop moving. This scenario is
based upon the aforementioned findings [57,90]. Nonetheless, the relationship can be
complicated by phosphorylation in the epitopes such as pT12, pS14, and pY287. Given the
role of Zfra in suppressing WWOX phosphorylation at T12, S14 and Y287 and inhibiting the
formation of neuronal heterotopia [84], Zfra is promising in restoring neuronal functions.

10. Z Cells Have Memory Function in Eliminating Cancer Cells
10.1. Z Cell Activation by Zfra4-10, WWOX7-21, and Sonicated Hyaluronan HAson8 to Kill
Cancer Cells and Retard AD Progression

Spleen Z cell activation is critical in killing cancer cells. Z cells can be activated by
Zfra4-10, Zfra1-31, and WWOX7-21 peptides [68,73]. In addition, 8-h-sonicated hyaluronan
(HAson8) and antibody against Hyal-2 or pY216-Hyal-2 activate Z cells to kill cancer
cells [68]. Native hyaluronan has no effect [68]. These agonists bind membrane Hyal-2 and
then activate the Hyal-2/WWOX/Smad4 signaling in Z cells [68]. Z cell activation requires
dephosphorylation of WWOX at S14, Y33 and Y61 [45,61]. Activated Z cells exhibit memory
function. How the agonists establish anti-cancer memory function in Z cells remains to be
determined, because Z cells do not require pre-exposure to cancer antigens. How Z cells
acquire cytotoxic capability in eradicating cancer cells in vivo and in vitro is also yet to be
revealed [68]. By the same token, we strongly believe that activated Z cells have the ability
to protect neurons from being damaged or degenerated.

10.2. Zfra4-10 Activates Z Cells in Immune Deficient NOD-SCID Mice

Zfra activates Z cells in normal mice and T/B cell-deficient NOD-SCID and T-deficient
nude mice [68,70,71]. Zfra-activated Z cells relocates to cancer lesion to eliminate cancer
cells in both immune efficient and deficient mice [68,70,71]. That is, activated Z cells restore
the immune response in immunodeficient mice to limit cancer growth and probably retard
age-dependent neurodegeneration.

A population of Z cells are located in the brain. This cell population can be isolated by
flow cytometry. Whether these cells come from other organs or are the residential cells in
the brain is unknown. Once transferred to tumor-growing mice, the purified brain-activated
Z cells cause cancer cell death. Their role in mitigating the AD-like symptoms in mice is
being investigated. Importantly, we are now able to activate the Z cell immune response
in so-called immune-deficient mice for protection against neurodegeneration, cancer, and
probably diabetes.

10.3. Zfra1-31 for Treating Hyperglycemia/Diabetes-Associated Neurodegeneration

A recent report determined that Zfra1-31 potently treats hyperglycemia/diabetes-
associated neurodegeneration [101]. Diabetic rats at six months old have high levels of
activated WWOX in the brain cortex and hippocampus compared to normal rats. The
association of WWOX with the regulation of glucose metabolism has been reported [102].
Indeed, the WWOX/HIF1A axis is involved in altering glucose metabolism [102–107].
Substantial evidence from a genome-wide association study (GWAS) revealed the critical
association of WWOX with diabetes and glucose metabolism [108–112]. For example, when
the WWOX/HIF1A axis is downregulated, glucose metabolism is altered, and the changes
may allow the development of metabolic disorders. Also, in early diabetic retinopathy,
the knockdown of WWOX by specific siRNA in vitro suppresses superoxide production
caused by the high glucose in photoreceptors from diabetic mice for two months [112].
Ablation of the WWOX gene in skeletal muscle leads to altered glucose metabolism [106].
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WWOX becomes Y33-phosphorylated in response to high glucose, which leads to
mitochondrial apoptosis. Indeed, overly expressed pY33-WWOX can induce apoptosis
in vivo [50,51,58]. Based upon our observations [68,70,71], Zfra blocks the phosphorylation
and covalently binds WWOX for degradation [46,72]. As a result, activated WWOX-
mediated mitochondrial apoptosis is blocked. Overall, this finding is important and yet
not surprising for Zfra. Zfra can be a universal drug for targeting many diseases via
Hyal-2/WWOX/Smad4 signaling.

11. Summary and Concluding Remarks

We explored the possibility of Zfra in restoring cell function under WWOX functional
deficiency or absent expression. We determined that Zfra overrides WWOX in suppress-
ing cancer growth and the progression of neurodegeneration. First, a key mechanism is
that Zfra4-10, WWOX7-21, and HAson8 induce the memory anti-cancer Z cells [24–28]
(Route i) (Figure 7). Whether other types of immune cells are involved remains to be
identified. Second, Zfra4-10 and WWOX7-21 induce the intracellular formation of the
WWOX complex with target proteins [68] (Route ii). The stronger the binding of WWOX
with target proteins, the better the suppression of cancer growth and retardation of neu-
rodegeneration [68]. The turnover rate of WWOX-regulated protein complexes is unknown
and remains to be elucidated. Finally, Zfra rapidly and covalently conjugates with target
proteins by zfration [70,71], and the resulting complexes undergo degradation indepen-
dently of ubiquitination and proteasomal degradation (Route iii). It is unclear whether the
WWOX-conjugated protein complexes are stable and resist zfration for further degradation
or the complexes are subjected to ubiquitination/proteasomal degradation. These scenarios
remain to be determined.
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Figure 7. Agonists for activating Hyal-2/WWOX/Smad4 signaling. Suppression of neurodegeneration
and cancer growth by Zfra4-10, WWOX7-21, or HAson8 involves (i) activation of Z cells [26], which
requires dephosphorylation of pS14, pY33, and pY61 in WWOX, (ii) enhanced complex formation of
intracellular WWOX with binding proteins; and (iii) rapid degradation of Zfra-conjugated proteins.

11.1. pT12-WWOX as an Initiator of Protein Aggregation Cascade?

pS14-WWOX supports the progression of many diseases such as cancer and Alzheimer’s
disease [70,71]. pS14-WWOX does not appear to undergo aggregation. A recent intriguing
discovery is that pT12-WWOX occurs as aggregates in the cortex of heterozygous Wwox
mice, but not in wild-type mice [78]. How pT12-WWOX becomes aggregated is unknown.
pT12-WWOX aggregates could be in the middle of an aggregation cascade. Alternatively,
as an initiator, phosphorylated-T12 in the first WW domain area undergoes non-stop
self-polymerization.
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Whether the co-presence of pS14, pY33, pY34, and pY287 with pT12 can occur in the
same WWOX molecule is unknown. Perhaps co-phosphorylation among all the phospho-
rylation sites in WWOX is necessary to stabilize the protein and prevent self-aggregation.
The WW1 domain has antiparallel β-sheets, which can undergo self-binding [57]. The
crucial conditions, such as changes in intracellular pH, ion concentrations, and abnormal
WWOX-binding proteins, may lead WWOX to extensively self-polymerize via the first WW
domain and aggregate eventually.

While T12 and S14 are close to each other, we suspect pT12 may nullify the pathogenic
function of pS14 in WWOX. Under this case, pT12 reduces the severity of pS14 in supporting
disease progression such as AD development [5,53,56]. What remains to be established are
the scenario and molecular mechanisms for the induction of TPC6A∆ polymerization by
pT12-WWOX aggregates and the degradation of pT12-WWOX aggregates by Zfra.

Another intriguing finding is that pY33-WWOX can be released from the neurons to
the extracellular matrix in the cortex [72]. pY33-WWOX is critical in maintaining cellular
functions and stabilizing the normal physiology of mitochondria with p53 [9]. A portion
of cytosolic pY33-WWOX is localized to the cell membrane [57]. Release of this protein is
likely. We will examine whether the released pY33-WWOX binds amyloid plaques in the
extracellular matrix.

11.2. Concluding Remarks

Synthetic Zfra peptides, Zfra1-31 or Zfra4-10, effectively prevent and block cancer
growth in vivo. Zfra4-10 strongly retards the progression of AD-like symptoms in 3xTg
mice during aging [71]. For treatment, Zfra4-10 peptide restores memory loss in 9-month-
old 3xTg mice by blocking the aggregation of a group of initiating proteins, which aggregate
like a cascade. Zfra activates Hyal-2+ CD3- CD19- Z cell to cause cancer cell death. Z
cells are downstream effectors of Zfra-mediated inhibition of neurodegeneration and
have great potential for cell therapy in AD or other neurodegenerative diseases. WWOX-
deficient newborns suffer severe neurodegeneration. Zfra may override WWOX deficiency
in restoring normal physiological functions.
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