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Abstract: Excessive alcohol intake will aggravate the health risk between the liver and intestine and
affect the multi-directional information exchange of metabolites between host cells and microbial
communities. Because of the side effects of clinical drugs, people tend to explore the intervention
value of natural drugs on diseases. As a flavor substance, spices have been proven to have medicinal
value, but they are still rare in treating hepatointestinal diseases caused by alcohol. This paper
summarized the metabolic transformation of alcohol in the liver and intestine and summarized
the potential value of various perfume active substances in improving liver and intestine diseases
caused by alcohol. It is also found that bioactive substances in spices can exert antioxidant activity
in the liver and intestine environment and reduce the oxidative stress caused by diseases. These
substances can interfere with fatty acid synthesis, promote sugar and lipid metabolism, and reduce
liver injury caused by steatosis. They can effectively regulate the balance of intestinal flora, promote
the production of SCFAs, and restore the intestinal microenvironment.
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1. Introduction

The liver and gut undergo constant and complex role changes during human health
and disease, and there is a bidirectional relationship between the intestine and its micro-
biota and the liver in response to dietary, genetic, and environmental signals [1–3]. This
relationship is exhibited by material transport, with the portal vein acting as the primary
anatomical structure for the communication between the liver and the intestine; dietary
components, symbionts, and their metabolites circulate between them through the portal
vein blood. Simultaneously, bile secreted by the liver is absorbed by the intestine and enters
the portal vein blood, contributing to the bidirectional circulation of the liver and intes-
tine [1–3]; this relationship is also apparent in immunomodulation, during which intestinal
substances interact with hepatocytes, other hepatic parenchymal cells, and hepatic immune
cells through blood flow in hepatic sinuses [4]. In spite of this, the liver can recruit and
activate immune cells in response to intestinal metabolism or pathogen-derived signals [5].
Besides, bile acid (BA) is very important in regulating hepatointestinal homeostasis and
promoting glucose and lipid metabolism, and completes circulation after passing through
the liver, gallbladder, small intestine, colon, and plasma [6]. Intestinal flora, as an important
part of enterohepatic circulation, regulates homeostasis through complex interaction with
the host immune metabolism system [7]. Interestingly, the synergistic combination of BAs
and intestinal flora is often an important basis for the clinical treatment of hepatointestinal
diseases [6,8,9]. Additionally, the intestinal barrier can affect metabolism and immune
regulation in the hepatointestinal axis [9–11]. The hepatotestinal axis is a dynamic system,
and any part of it may cause disorder in the system.
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It is reported that diet is the leading cause of hepatointestinal diseases, and exces-
sive drinking has gradually become a chronic killer of human health. Alcohol and its
metabolites will destroy the normal enterohepatic circulation function of the human body,
increasing oxidative stress and lipid peroxide production, even causing intestinal microecol-
ogy imbalance and increasing intestinal mucosal permeability, intestinal endotoxemia, and
inflammatory factors. Typical diseases are alcoholic liver disease (ALD) and nonalcoholic
liver disease (NAFLD) [12]. Drinking has become an expected behavior during social occa-
sions and to relieve emotions. Excessive drinking can amplify the degree of free radicals
and dangers to human fitness in the physique. Globally, an estimated 741,300 new cancer
cases in 2020 were caused by drinking [13]. At the same time, the liver is the main organ of
alcohol metabolism, and alcohol, as a xenobiotic, can be converted into acetaldehyde in the
process of liver metabolism. This highly reactive substance can covalently bind with protein
in the liver to change the functional structure, thus hindering alcohol metabolism [14],
mainly manifested in decreased biological activities of antioxidant enzymes and signal
transduction substances and the necrosis of liver cells. At the same time, excessive free
radicals can cause lipid peroxidation and a decrease in mitochondrial respiration, thus
aggravating liver damage [15]. Interestingly, alcohol can also affect the diversity of intesti-
nal flora and even induce the production of a large amount of lipopolysaccharide (LPS),
which binds with toll-like receptor 4 (TLR4) and enters the liver. While activating Kupffer
cells, it also produces a variety of inflammatory factors. Liver injury [16] results in liver
steatosis, steatohepatitis, liver fibrosis, cirrhosis, and even liver cancer [17,18]. At present,
the main clinical treatment strategies are divided into anti-inflammatory cytokines and
antioxidants, activating the immune system and changing intestinal flora. Among them,
widely accepted schemes include abstinence from alcohol, corticosteroids, biological agents
(such as anti-TNF-α drugs and accelerating the elimination of alcohol in the blood), and
liver transplantation. Nevertheless, their functions are not comprehensive and even have
many side effects on human health [19].

At present, there is no scientific remedy for hepatointestinal diseases caused by alcohol,
and abstinence from alcohol is one of the primary means to alleviate the damage of alcohol
to the liver and intestine [20]. In recent years, with the rapid development of natural
products research, many plant extracts have entered the consumer market and played an
increasingly important role in the treatment of alcoholic hepatointestinal diseases [21]. For
example, bioactive substances such as polyphenols and polysaccharides in plants have
been shown to improve liver damage, reduce the content of inflammatory factors, promote
glucose and lipid metabolism, significantly regulate intestinal flora, and enhance intestinal
mucosa [22]. Spices are a kind of food flavor substances that widely come from the roots,
leaves, and fruits of plants. Nevertheless, many studies show that the active substances in
spices have high medicinal value [23]. Recently, active ingredients in spices have been used
in interventions for hepatointestinal diseases (Figure 1). However, few researchers have
comprehensively described the active ingredients of spices and alcoholic hepatointestinal
diseases. At the same time, the specific molecular mechanism needs to be well explained.
Based on the above research gaps, this paper focuses on alcohol metabolism in the liver and
intestine, including bile acids, hepatointestinal receptors, and intestinal flora. It summarizes
the potential value of active substances in spices in improving hepatointestinal diseases.
It provides a theoretical basis for further application in food and drug processing and
clinical treatment.
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compared with light drinkers (male: 0.1 to 19.9 g/day; female: 0.1 to 9.9 g/day), heavy 
drinkers (male: ≥40.0 g/day; female: ≥20.0 g/day) have an increased risk of metabolic syn-
drome [24]. ALD is a typical example of the liver and intestinal diseases caused by alcohol. 
ALD initially shows asymptomatic steatosis, which is related to the formation of lipid 
droplets in the liver. Once more than 5% of liver cells contain lipid droplets, the disorder 
is classified as alcoholic fatty liver or steatosis [25,26]. ALD is a constellation of many dis-
eases, from initial steatosis to steatohepatitis, liver fibrosis, and cirrhosis, and finally, liver 
cancer. It involves different pathological processes, mainly because alcohol can change the 
amount of fat produced in liver cells and induce intestinal secretion of endotoxins, thus 
promoting steatosis, oxidative stress, and liver cell damage [27]. 

Alcohol metabolism is closely associated with liver diseases. In general, the poison-
ous outcomes of alcohol on the body are related to the metabolic site. The gastrointestinal 
tract quickly absorbs alcohol entering the body. Approximately 10% of ingested alcohol is 
eliminated through sweat, breathing, and urine, and the liver oxidizes the rest; therefore, 
the liver is the hub of alcohol and its metabolites [28]. Alcohol abuse is reported to be 
directly related to fat metabolism in the liver, which may be because of the metabolic path-
ways of alcohol, namely oxidative metabolism and non-oxidative metabolism (Figure 2). 
That is, by inhibiting the activities of alcohol oxidase through components such as alcohol 
dehydrogenase (ADH), cytochrome P450, and catalase under aerobic conditions, alcohol 
metabolism changes from aerobic to anaerobic metabolism, thus increasing the content of 

Figure 1. Regulatory mechanisms and potential value of active substances in 12 aromatic spices as
interventions in alcoholic liver disease and liver and intestinal disorders.

2. Metabolic Mode of Alcohol in Liver

Exogenous alcohol smoothly enters the gastrointestinal tract after passing through
the oral esophagus, is digested and absorbed into the blood, and most of the alcohol is
metabolized in the liver. Of course, liver damage is directly related to the amount and
frequency of alcohol use. In the investigation of Seulggie Choi and others, it is found that
compared with light drinkers (male: 0.1 to 19.9 g/day; female: 0.1 to 9.9 g/day), heavy
drinkers (male: ≥40.0 g/day; female: ≥20.0 g/day) have an increased risk of metabolic
syndrome [24]. ALD is a typical example of the liver and intestinal diseases caused by
alcohol. ALD initially shows asymptomatic steatosis, which is related to the formation
of lipid droplets in the liver. Once more than 5% of liver cells contain lipid droplets, the
disorder is classified as alcoholic fatty liver or steatosis [25,26]. ALD is a constellation of
many diseases, from initial steatosis to steatohepatitis, liver fibrosis, and cirrhosis, and
finally, liver cancer. It involves different pathological processes, mainly because alcohol
can change the amount of fat produced in liver cells and induce intestinal secretion of
endotoxins, thus promoting steatosis, oxidative stress, and liver cell damage [27].

Alcohol metabolism is closely associated with liver diseases. In general, the poisonous
outcomes of alcohol on the body are related to the metabolic site. The gastrointestinal
tract quickly absorbs alcohol entering the body. Approximately 10% of ingested alcohol is
eliminated through sweat, breathing, and urine, and the liver oxidizes the rest; therefore, the
liver is the hub of alcohol and its metabolites [28]. Alcohol abuse is reported to be directly
related to fat metabolism in the liver, which may be because of the metabolic pathways
of alcohol, namely oxidative metabolism and non-oxidative metabolism (Figure 2). That
is, by inhibiting the activities of alcohol oxidase through components such as alcohol
dehydrogenase (ADH), cytochrome P450, and catalase under aerobic conditions, alcohol
metabolism changes from aerobic to anaerobic metabolism, thus increasing the content of
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fatty acid ethyl esters (FAEEs) in the body. In this chapter, the metabolic mechanism of
alcohol in the liver is expounded from the perspective of biomolecules.
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Figure 2. The two different metabolic pathways of alcohol in the liver, oxidative and non-oxidative.
Alcohol is converted to acetaldehyde, a hepatotoxic compound, by the oxidation of ADH, CYP2E1,
and catalase, and also produces large amounts of ROS. In the non-oxidative pathway, alcohol is
combined with endogenous metabolites. Various enzymes are produced, including FAEE, PEth, EtG,
and EtS.

2.1. Oxidative Metabolic Pathway

When a small amount of alcohol is exposed to the surface of hepatocytes, hepatocytes
secrete ADH and oxidize alcohol to form acetaldehyde, which causes the loss of hydrogen
through the action of acetaldehyde dehydrogenase (ALDH) and coenzyme nicotinamide
adenine dinucleotide (NAD+) to form acetate and nicotinamide adenine dinucleotide
(NADH). Then, acetic acid is converted into acetyl coenzyme A, which is oxidized in the
triphosphate cycle [29]. ADH and ALDH need NAD+ to transfer oxygen and reduce
it to NADH [30]. Then, NADH and NAD are rapidly oxidized through the respiratory
pathway to minimize the toxic effects of ethanol and related substances. Cytochrome
P4502E1 (CYP2E1) and catalase (CAT) are also involved in alcohol metabolism [31]. Studies
have shown that the peroxisome proliferator-activated receptor α (PPARα) can completely
transform the pathway of reactive oxygen species (ROS) production induced by CYP2E1
into the pathway of ROS elimination induced by catalase during alcohol metabolism, thus
accelerating alcohol elimination [32]. When hepatocytes are continuously exposed to alco-
hol, ethanol is converted into acetaldehyde through an enzymatic pathway, which reduces
the ratio of NAD+/NADH and produces many ROS to destroy the body’s antioxidant
function [33], thereby inducing the formation of lipid free radicals, destroying polyunsat-
urated fatty acids on hepatocyte membranes, causing lipid peroxidation, destroying cell
membrane fluidity, and inducing mitochondrial damage to aggravate lipid accumulation
in hepatocytes [34].

2.2. Non-Oxidative Metabolic Pathway

Abuse of alcohol increases the workload of the non-specific enzyme system, which
results in the production of a large number of cytotoxic substances and causes liver and
intestine dysfunction. Non-oxidative alcohol metabolism utilizes the combination of alcohol
and endogenous metabolites such as glucuronic acid, sulfate, phospholipid, and fatty acid
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to produce ethyl glucuronide (EtG), ethyl sulfate (EtS), phosphatidylethanol (PEth), and
fatty acid ethyl ester (FAEE) [35]. The retention time of non-oxidative alcohol metabolites
in physique fluids and tissues is much longer than that of ethanol. Hence, they are often
used as biomarkers for evaluating, screening, and diagnosing patients with excessive
drinking in forensic medicine or the clinic [35,36]. EtG and EtS are stable and water-soluble.
They are produced by the combination of ethanol and glucuronic acid through the action
of uridine diphosphate glucuronosyltransferase (UGTs) and ethanol and sulfate through
the action of cytoplasmic sulfotransferase (SULTs), singly [35,36]. Studies have shown
that non-oxidative alcohol metabolites can also interfere with cell signal transduction and
membrane-associated protein dysfunction [37,38].

3. The Influence of Alcohol Metabolism in Enterohepatic Circulation

The liver and intestine are the main battlefields of alcohol metabolism and absorption.
The two-way communication between the intestine and the liver promotes the exchange
of various substances, including alcohol metabolites, which is the direct reason alcohol
affects the hepatointestinal axis. Of course, this process will change the nature and con-
tent of endogenous substances. For example, alcohol metabolism may lead to abnormal
changes in the content and composition of BAs in the human body. In addition, drinking
alcohol will change the composition and function of intestinal flora, thus affecting the
production of short-chain fatty acids and the integrity of the intestinal barrier, and have a
subtle impact on health [39,40]. However, at the molecular level, the crosstalk of alcohol
on the hepatointestinal axis is still unclear. Therefore, this chapter will summarize the
substance transformation, signal transduction, and intestinal flora changes of alcohol in the
hepatointestinal axis (Figure 3).

3.1. Association between Alcohol and BAs

BAs are a group of amphipathic metabolites decomposed by cholesterol. It is an
essential active component in bile and a critical nutritional signal transduction hormone
derived from cholesterol [6,8,9,20]. It plays a vital role in maintaining the homeostasis of the
body’s internal environment [22], promoting glucose and lipid metabolism [23], mobilizing
immune function [41], affecting energy metabolism [42], and mediating inflammatory re-
sponse [43]. Bile acid is an essential medium in enterohepatic circulation, and its transport
is very subtle. Firstly, primary BAs were actively transported from hepatocytes to tubule
space under the synergistic effect of the bile salt export pump (BSEP), multidrug resistance
protein 3 (MDR3), and multidrug resistance protein 2 (MRP2) [44]. After reaching the intes-
tine, the primary BAs produce metabolites (such as secondary BAs) under intestinal flora’s
action to change the BA pool’s composition, make it more diversified and hydrophobic,
and thus regulate the sugar and lipid metabolism of the host [45]. Finally, with the help
of sodium taurocholate cotransporter polypeptide (NTCP, also known as SLC10A1) and
organic anion transporter polypeptide 1 (OATP1), BAs were transported back to the liver
through the superior mesenteric vein for subsequent circulation, and the unabsorbed BAs
entered the colon. They were excreted in feces or dehydrogenated by intestinal bacteria [46].
This process is called enterohepatic circulation. As shown in Figure 4, BAs exist as signal
molecules for the whole process, promoting homeostasis, substance metabolism, and trans-
portation in the liver by activating nuclear and membrane G protein-coupled receptors [47].
The intestinal nuclear receptor ligand is mainly secondary BA reabsorbed by the intestine.
It can interact with farnesol X receptor (FXR) [48], vitamin D receptor (VDR) [49], and preg-
nane X receptor (PXR) [50]. Through interactions between the heterodimer and retinoid X
receptor (RXR), transcription factors are further activated, resulting in upregulation and
downregulation of transcription by binding hormone response element (HRE) to promote
the expression of related genes [51].
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Figure 3. Pathophysiology of the enterohepatic circulation imbalance in alcoholic liver disease. Long-
term intake of alcohol can lead to changes in intestinal permeability and the intestinal microflora,
leading to increased secretion of inflammatory cytokines.

At present, the influence of alcohol on bile acids is very complicated, and many studies
are mainly elaborated from these aspects. First, alcohol will promote the expression of the
BA synthesis gene. This process is mainly due to the oxidative stress induced by alcohol in
the liver, which activates cyclic adenylate response element binding protein H (CREBH)
and changes the expression of many genes involved in BA metabolism [52]. For example,
alcohol can promote CB1R signal transduction in the liver by up-regulating the endogenous
cannabinoid 2-AG and inducing BA enzyme gene expression, thus leading to alcoholic
steatohepatitis [53]. Secondly, drinking alcohol can disrupt the balance of bile acids by
inducing the imbalance of intestinal flora involved in bile acid metabolism. Studies have
proved that alcohol exposure can reduce the levels of taurine-bound Bas (TDCA, TCA, and
TLCA) in the liver, duodenum, and ileum of rats and increase the levels of non-bound
BAs and glycine-bound Bas (GCDCA, GDCA, GHDCA, and GLCA) with more substantial
toxicity, which proves that the metabolism of BAs is related to alcoholic liver injury [54].
Muthiah et al. showed that the contents of taurocholate chenodeoxycholic acid (TCDCA)
and taurocholate (TUDCA) in plasma were directly related to the severity of ALD. On
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the contrary, ursodeoxycholic acid in feces is negatively correlated with the severity of
ALD [55]. Thirdly, alcohol can affect the expression of BA transporter and metabolism. In
Guo et al.’s research, it was found that ethanol treatment can increase the mRNA level of
BA efflux transporters (BSEP, MRP3/4, OSTα/β) in rats. On the contrary, the expression
of NATC, another BA transporter, was inhibited [56]. In addition, liver cancer caused
by drinking is closely related to the metabolic pathway of bile acids. For example, the
research in Wenbo Chen et al. shows that alcohol not only activates oncogenes but reduces
the expression of tumor suppressor genes. The bile salt export pump (BSEP) significantly
reduced the activity of BAS transport. Nevertheless, the bile acid transporter gene also
changed significantly [57]. Fourthly, drinking alcohol causes bile acid balance disorder by
regulating bile acid receptor FXR. For example, research by Mingxing Huang and others
showed that FXR knockout mice were more sensitive to ethanol-induced liver steatosis
and inflammation. At the same time, ethanol treatment changed lipid metabolism, BAs
homeostasis, and the expression of ethanol degradation genes in the liver [58].
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Figure 4. The dual function of FXR in the liver and intestine is mainly manifested in the transport and
inhibition of bile acids. In hepatocytes, FXR can inhibit Cholesterol 7a-hydroxylase (CYP7A1) tran-
scription and BAs synthesis by inducing SHP and can also promote BAs secretion by inducing bile salt
export pump (BSEP). FXR induces fibroblast growth factor 15/19 (FGF15/19) in the intestine. Under
the action of DIET1, FGF15/19 enters the portal vein blood and circulates to the liver. FGF4/β klotho
binds to FGF15/19 to inhibit the synthesis of BA. Interestingly, FXR can induce hetero-organic solute
transporter-α/β (OST α/β) and promote the entry of binding bile acids and non-binding bile acids
into hepatocytes. At the same time, FXR can also maintain intestinal homeostasis and the integrity of
the intestinal epithelial barrier and even inhibit the transcription of proinflammatory factors.
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Bile acid has been proven effective in regulating glucose, lipid metabolism, and im-
mune homeostasis. Long-term drinking almost disrupts all aspects of liver lipid metabolism,
such as inhibiting fatty acid oxidation and increasing abnormal lipid accumulation and
triglyceride synthesis [59]. Studies have shown that alcohol can induce abnormal changes
in genes involved in bile acid metabolism and even regulate FXR and TGR5 signal transmis-
sion, thus causing bile acid balance disorder, that is, changing the size of the bile acid pool in
the liver and increasing the contents of the triglycerides and cholesterol [60]. Additionally,
insulin resistance is a metabolic reaction of the body’s carbohydrates, lipids, and pro-
teins [61]. There is a correlation between IR and BAS. For example, the research of Haeusler
and others shows that the composition of the peripheral blood BA pool will change dur-
ing IR, leading to the increase in 12a-hydroxylated BA (CA, DCA, and their combined
forms) [62]. This increase can induce cholesterol absorption and aggravate dyslipidemia,
diabetes, and obesity [63]. Similarly, in the experiment of Tiangang Li et al., it was found
that the overexpression of CYP7A1 can promote the catabolism of liver cholesterol and
the level of bile acid pool, increase the secretion of low-density lipoprotein, maintain the
plasma triglyceride homeostasis, and even reduce the expression level of liver messenger
RNA of several essential lipogenic and gluconeogenic genes, thus preventing IR to some
extent [64].

3.2. Interactions between Alcohol and Intestinal Flora

There is a close relationship between intestinal microbial homeostasis and host health [65].
It is an important participant in enterohepatic circulation, and can affect the liver through
different mechanisms, such as the production of metabolites (short-chain fatty acids),
immunomodulation (immune response of the liver to intestinal-derived factors, such as
lipopolysaccharide), bile acid metabolism (production of secondary bile acids) and changes
in barrier integrity (tight junction protein). Previous studies have found that alcohol has
changed the diversity of intestinal microbial communities, mainly by increasing the num-
ber of Bacteroides and reducing the ratio of Firmicutes to Bacteroides (F/B value) [66].
This result is also manifested in the human body. Bode et al. confirmed through culture
experiments that alcohol leads to aerobic and anaerobic bacteria growth in the jejunum.
Moreover, the aspirate of patients with alcoholism was found to contain high levels of
gram-negative anaerobic bacteria and endospore rods [67]. Mutlu et al. found that the
colonic microflora of alcoholics was disordered, and the median abundance of Bacteroides
was low. In contrast, the median abundance of Proteus was high. Furthermore, changes in
the colonic microflora in some alcoholics were persistent [68].

Alcohol can trigger insulin resistance through the type and metabolism of intestinal
flora. Researchers have found that LPS and its cell surface receptor, toll-like receptor 4,
(TLR4) can damage the sensitivity of alcohol-fed mice to insulin and increase resistance [69].
At the same time, Tiangang Li et al. found that insulin resistance can be reduced, and
insulin receptor and receptor substrate expression can be increased by regulating intestinal
flora and inhibiting LPS/TLR4/TNF-α signal transduction in the liver [70]. Importantly,
Tadashi Takeuchi and others found that individuals with a high content of Chaetomium in
the human intestine often have higher insulin resistance and higher fecal monosaccharide
content; however, individuals with more Bacteroides have lower insulin resistance and
lower monosaccharide content in feces [71]. Nevertheless, Yin-Yi Ding and others have
proved through experiments that insulin resistance can be prevented by reducing the
content of Firmicutes and increasing the content of Bacteroides and wart microflora [72].
These results indicate that increasing the number of intestinal-associated flora and reducing
proinflammatory signal transduction can effectively intervene in insulin resistance. At the
same time, alcohol intake can inhibit the related metabolic expression of bactericidal Lep-
rosy C regenerated islet-derived protein 3b (Reg3b) and Reg3g in the small intestine, thus
increasing the risk of ALD [73]. Moreover, long-term exposure to ethanol can increase the
permeability of the intestinal mucosa and change the intestinal flora, thus intensifying the
production of proinflammatory endotoxins [74], followed by migration of intestinal LPS to
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the liver and binding with LPS protein (LBP), differentiation cluster-14 (CD14), and myeloid
differentiation factor-2. Activated KCs produce many ROS, inflammatory cytokines, and
chemokines. An increased launch of proinflammatory cytokines and infiltration of other
inflammatory cells eventually leads to liver damage [75].

The influence of alcohol on intestinal fungi is inevitable. Studies have shown that
alcohol administration can increase the fungal community and the transfer of fungal
products (β-glucan) to systemic circulation in mice. At the same time, β-glucan induces
liver inflammation through CLEC7A, a lectin-like receptor on Kupffer cells and other
possible bone marrow-derived cells. Subsequently, the increase in IL-1β expression and
secretion leads to hepatocyte injury and promotes the development of ethanol-induced
liver disease [76]. It is understood that the essential symbiotic fungal species in the human
intestine are Candida, Saccharomyces cerevisiae, and Malassezia. Under the long-term
symbiotic mode, the body is tolerant to fungi. However, when the intestinal barrier is
broken, the human intestine becomes the primary target for fungi and their products [77].
An-Ming Yang et al. showed that Ethanol administration led to the overgrowth of intestinal
fungi and increase in β-glucan plasma stages in mice and that the wide variety of fungi
in the feces of mice increased significantly. Ethanol consumption increased the richness
and diversity of fungal species, and the proportion of Pythium, Fusarium, and Aspergillus
increased significantly; in contrast, the proportion of Candida decreased. Fungi and their
metabolites can additionally cause liver cell damage [76]. Nevertheless, intestinal bacteria
and fungal pathogens interact through related molecular patterns (PAMPs) to influence
alcohol damage to the liver and intestine [78]. It can be proved that dynamic changes in
the intestinal flora can reflect the severity of hepatointestinal sickness. For example, the
relative abundance of Akkermansia decreases, and Veillonella increases in the intestines of
patients with alcoholic hepatitis, which can indicate more severe illness [79].

3.3. Alcohol and the Influence of the Intestinal Mucosa

There is an essential intermediate boundary in the hepatointestinal axis, that is, the
intestinal mucosal barrier. It is a congenital barrier that maintains intestinal homeostasis
and isolates pathogenic bacteria and toxins [80]. It mainly consists of four parts, namely,
mechanical, chemical, microbial, and immune barriers. The mechanical barrier is a selective
permeability barrier composed of tight junctions (atresia protein, tight junction protein,
and atresia zona 1 [ZO-1]), adhesive junctions, and desmosomes. The most significant
effect is blocking the entry of bacteria, viruses, and endotoxins [81]. The chemical barrier
consists of mucus secreted with intestinal epithelial cells, digestive juice, and antibacterial
materials secreted via everyday bacteria [82]. The microbial barrier comprises the intestinal
flora, mainly the mucosal and intestinal flora. The mucosal flora is composed primarily of
Bifidobacterium and lactic acid bacteria. In contrast, the intestinal flora is mostly Escherichia
coli and Enterococcus, which adhere to the intestinal mucosa and form multiple layers [83].
The immune barrier comprises intestinal-related lymphoid tissues, including intraepithelial
lymphocytes, lamina propria lymphocytes, and intestinal lymph nodes. It contains the
most immunoglobulin-secreting cells in the whole body and responds to the stimulation
of the intestinal mucosa by antigens derived from bacteria, viruses, and toxins in the
environment [65].

Alcohol abuse may destroy the characteristics of the intestinal mucosal barrier, includ-
ing intestinal barrier tissue and mucosal-associated invariant T (MAIT), threatening the
body’s immune system. Parlesak and others found that the concentration of endotoxin in
the plasma of alcoholics improved by using greater than five times (p < 0.01) relative to that
of non-alcoholics. Alcohol has been proven to break down the intestinal mucosal barrier
and cause endotoxins to overflow [84]. At the same time, MAIT cell dysfunction can also
contribute to innate and adaptive immune dysfunction induced by alcohol, which may
lead to pathological changes in end organs [85]. Previous studies have shown that alcohol-
related endotoxemia is mainly due to intestinal barrier dysfunction, which displaces LPS
content from the intestinal cavity to systemic circulation [86]. Long-term drinking can lead
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to the thickening of the intestinal mucosa and, to an extent, in the expression of mucins
such as mucin-2-2 (MUC2), which can aggravate damage to the intestinal barrier. Alcohol
intake is also related to a decrease in Notch signaling and degrees of Notch ligands Dll1
and Dll4 in the ileum and colon and, to an extent, in the expression of Notch series genes
such as Math1 and Spdef, which are specific to goblet cells [87]. It further interferes with
intestinal antigen homeostasis in other ways. In response to alcohol intake, dendritic cells
on the intestinal mucosa may be transported to mesenteric lymph nodes (MLNs) through
mesenteric lymphatic vessels (MLVs), which promotes the proliferation of adipose tissue
regulatory T cells (Treg) and promotes intestinal antigen homeostasis. Similarly, the change
in intestinal permeability will further put the whole body in a state of low inflammation
through metabolic endotoxemia, further aggravating the deterioration of glucose homeosta-
sis and insulin resistance [88]. This process is due to the specific binding of LPS with TLR4,
which triggers the activation of NF-κB and the release of proinflammatory factors in cells
and activates serum kinases (JNK and IKK), which further induces serine phosphorylation
of the insulin receptor substrate and intensifies insulin resistance [89].

3.4. Relationship between Alcohol and Receptor Function in the Liver and Intestine

Alcohol is the fuse to induce hepatointestinal diseases, and transmission of signals
between the hepatointestinal axes and toxic metabolites produced by various cells are the
media that trigger the body to open a line of defense, which further aggravates metabolic
disorders of the hepatointestine and inflammatory reactions in the body. Abuse of alcohol
can promote the destruction of the intestinal mucosal barrier, making it difficult for recep-
tors on intestinal walls to complete signal transduction [90]. These receptors include the
aromatic hydrocarbon receptor (AHR), nucleotide binding domain-like receptor protein 3
(NLRP3), peroxisome proliferator-activated receptor (PPAR), FXR, toll-like receptor (TLRs),
VDR, and other receptors.

AHR is an essential ligand-activated transcription issue in the liver and intestine.
It is mainly expressed in epithelial and innate immune cells and is involved in many
functions, including microbial defense, cell proliferation, immune regulation, and NAD
metabolism [91]. It is found that AHR is the target for regulating the homeostasis of
alcohol on the hepatointestinal axis. For example, the absence of specific AHRs in the
intestinal epithelial cells of mice aggravated liver injury. At the same time, the levels of
Helicobacter pylori and isobutyric acid (IBA) in the intestine increased along with the
expression of bacterial genes (ilvE, bkdA, and pdhD) that metabolize valine into IBA. After
the administration of an AHR agonist, alcohol-induced liver injury improved, indicating
that AHR may be a regulator of hepatointestinal axis homeostasis [92]. It can significantly
reverse the damaged intestinal barrier, reducing insulin resistance and related inflammatory
expression [93].

NLRP3 is an essential member of the inflammatory family as a component of intracel-
lular pattern recognition in the innate immune system, which can activate the release of
caspase-1 and pro-inflammatory cytokines (IL-1β and IL-18) and promote the apoptosis of
inflammatory cells [94], thus increasing inflammation, steatosis, and fibrosis of the liver.
Previous research has proven that activation of NLRP3 in hepatic macrophages and molec-
ular chaperone heat shock protein 90 (HSP90) is associated with the induction of Alcoholic
liver disease [95]. Choudhury and others reported that HSP90 promoted activation of
NLRP3 inflammatory bodies during infection and inflammatory diseases and induced
and regulated pro-inflammatory cytokines, tumor necrosis factor α, and IL-6 in Alcoholic
liver disease. In addition, the expression of HSP90 and NLRP3 inflammatory body genes
was positively correlated with alcoholic cirrhosis as well in a NIAAA-Gao binge mouse
model [96]. More importantly, NLRP3 is the direct driving factor of IR, and it is highly
expressed in NALD patients and high-fat mouse models. This is because NLRP3 directly
binds and promotes the activation of protein kinase Epsilon (PKC ε), thus damaging insulin
signal transduction and increasing liver steatosis [97].
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PPARα and PPARγ are affiliates of the nuclear hormone receptor superfamily, ex-
pressed in adipocytes, and they can modify glucose and lipid metabolism [98]. Expression
in macrophages can participate in inflammation [99]. It was found that liver fatty acid
oxidation protected mice from alcohol-induced fatty degeneration. In contrast, a mouse
model exposed to long-term alcohol intake showed a reverse in NIK-mediated liver fatty de-
generation and fatty acid oxidation dysfunction when administered PPARα agonists [100].
Therefore, the pathological impact of NIK in ALD may be attributable to the inhibition
of PPARα. Nevertheless, Nannan Sun et al. found that the promoter of peroxisome
proliferator-activated receptor α (PPARα) can directly bind with KLF16 to accelerate fatty
acid oxidation, reduce oxidative stress in HFD mice, and reduce lipid deposition and
improve insulin resistance [101].

FXR is a ligand-activated transcription component and nuclear hormone receptor
superfamily member. It is an imperative receptor for BA and lipid homeostasis regulation
and can inhibit fatty degeneration and fibrosis [102]. Of course, FXR is often related to the
formation and regulation of BAs. Studies have shown that FXR deficiency will change the
composition of the BA pool in the serum and liver and aggravate the liver injury caused by
chronic alcohol. It even includes increasing the possibility of hepatic steatosis and primary
and secondary BAS levels, thus aggravating the deterioration of hepatotoxicity [103]. At the
same time, Sabrina Cipriani and others’ experiments showed that the activation of FXR can
effectively reduce the level of high-density lipoproteins, reduce the synthesis of free fatty
acids, prevent fat deposition in the liver and muscle, and reverse insulin resistance [104].

TLRs in the liver can effectively regulate the level of inflammatory factors induced
by alcoholic hepatitis [105]. With long-term drinking of alcohol, the expression of various
TLR receptors such as TLR1, TLR2, TLR6, TLR7, and TLR8 in the liver increased, and
the expression of related ligands for mRNA and proinflammatory factors such as TNFα,
MCP-1, and iNOS increased, which is harmful to patients with hepatitis [106]. Similarly,
a change in intestinal barrier function can stimulate TLR4 ligands such as endotoxins
and transport them to Kupffer cells in the liver, mainly to activate nuclear factor-κB (NF-
κB). Additionally, these ligands can induce the launch of proinflammatory mediators and
increase the incidence of liver inflammation and fibrosis [107].

VDR helps to regulate body-related immune responses, including congenital and
adaptive. Studies have shown that variations in VDR-related genes are related to the
severity of liver disease, and drinking alcohol can seriously reduce the level of vitamin D in
serum and enhance the synergistic effect of specific VDR haplotypes, thus accelerating the
development of hepatocellular carcinoma [108]. In addition, it can form heterodimers with
RXR and combine with DNA reaction elements in target genes to contribute to the biological
effects of vitamin D. Of course, it was found that the activation of VDR can significantly
improve the inflammatory response and steatosis induced by hepatic macrophages, as well
as insulin resistance [109].

4. Functions of Active Ingredients in Spices in the Alcohol–Liver–Intestine Axis

Long-term alcohol intake will increase the incidence of hepatointestinal diseases.
At present, drugs for clinical treatment generally include antioxidants, growth factors,
anti-caspase, anti-inflammatory molecules, anti-fibrosis drugs, toll-like receptor (TLR)
antagonists, and antibiotics [110]. Although it can achieve the purpose of symptomatic
treatment, the side effects of drugs are inevitable. At the same time, drug therapy generally
intervenes selectively according to the degree of the disease. For example, in patients with
alcoholic hepatitis, abstinence and nutritional therapy are suitable for the early stage of the
disease, which can improve the clinical symptoms of the disease and improve the quality
of life [111]. Patients with severe alcoholic hepatitis and liver cirrhosis should be treated
with drugs according to the treatment guidelines. At the end of the disease, normal drugs
generally have little effect on disease intervention. Transplantation is an effective treatment
to improve the survival rate, but the source of liver donors is a difficult problem [112]. In
recent years, natural extracts have been regarded as substitutes for clinical drugs, which
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are based on special chemicals in extracts, such as silymarin, quercetin, glycyrrhizic acid,
and so on. They have remarkable effects in inhibiting inflammation, accelerating alcohol
metabolism, resisting oxidation, and regulating intestinal microenvironment homeostasis.
As we all know, spices give food a unique flavor, and have high medicinal value. According
to in vitro and in vivo experiments, the bioactive components in spices can treat and
prevent diseases. This chapter expounds on the value of spices in antioxidation, lowering
blood sugar, regulating intestinal flora, and strengthening the intestinal barrier from the
perspective of the “alcohol–liver–intestinal axis”. Table 1 summarizes the effects of different
spice extracts on liver and intestinal diseases.

Table 1. Function of active ingredients in spices in liver and intestine a.

Category
Active Substance,

Administration Dose
and Period

Effects Ref.

Capsicum
Frutescens

Extract

0.01% capsaicin
(15 mg/kg b. wt/d),

gavage,
24 weeks.

↑TRPV1, Phospho-HSL, CPT-1, PPARδ, LC3-II, Beclin1, Atg5, Atg7
↓FFAs, Hepatic enzymes, Inflammatory factor [113]

Capsaicin
(10 or 20 mg/kg b.

wt/d),
gavage,
10 days.

↑MMP/TIMP balance, Mitochondrial respiratory enzyme activities, GSH
↓CYP2E1, ROS, NF-κB (p65), Lipid peroxidation [114]

0.075% capsaicin
(100 mg/kg b. wt/d),

gavage,
8 weeks.

↑Adiponectin level, AMPK, CPT-1, CD36,
↓β-oxidation, Fat accumulation, ACC, FAS, PEPCK-C, G6Pase, AST, ALT [115]

0.015% capsaicin,
gavage,

10–20 weeks.

↑PGC-1α, TRPV-1
↓TNFα, MCP-1, IL-6, Leptin, Insulin resistance [116]

Dihydrocapsiate
(100 mg/kg b. wt),

gavage,
12 weeks.

↑UCP1, PGC1α, COX7a, TMEM26, ACOX1, TRPV-1, SCFAs
↓PLIN1, MCP1, LPS, NO, Insulin resistance, SREBP1, FABP4, ADI POQ,

LEPTIN, TNFα, ROS, PEPCK, G6Pase
[117]

Capsaicin
(15, 150 and 1500 µg/kg),

oral and intraperi
gavage,

4 h.

↑MDA, GSH, TRPV-1
↓ALT, AST, ALP, NO, TNF-α [118]

0.01% capsaicin, gavage,
12 weeks

↑Butyrate-producing bacteria, SCFAs
↓CB1 expression, Proinflammatory cytokines, gut permeability, LPS [119]

Garlic
Extract

Garlicin
(5 and 20 mg/kg b.

wt/d),
gavage,
4 weeks.

↑GSH, CAT, SOD
↓TNF-α, IL-1β, IL-6, AST, ALT, Hepatic triacylglycerol,

SREBP-1
[120]

Garlicin
(25 and 50 mg/kg b.

wt/d),
gavage,
4 weeks.

↓ROS, CYP2E1, GRP78, CHOP proteins levels, p-IRE1α, p-ASK,
TRAF2, MAPK/NF-κB/NLRP3 signal pathways [121]

Garlic extract
(4% w/w),

gavage,
7 weeks.

↑Bifidobacterium, Clostridium cluster XVIII, Prevotella
↓Insulin resistance, TG [122]
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Table 1. Cont.

Category
Active Substance,

Administration Dose
and Period

Effects Ref.

Garlic oil
(20 and 40 mg/kg/d),

gavage,
10 weeks.

↑SOD, GSH-Px, Sirt1, PGC-1α, ZO-1, Claudin1 proteins
↓Triglyceride levels, MDA, FoxO1 [123]

Garlicin
(5 and 20 mg/kg/d),

gavage,
4 weeks.

↑ALDH
↓LPS, CD14, TLR4, TNF-α, IL-1β, IL-6, F/B ratio [124]

1% m/m allicin,
gavage,

13 weeks.

↑F/B ratio, SCFAs, IL4, IL10, IL13
↓Insulin resistance, IL6, IL1β, IL16, MCP1, TNFα [125]

Turmeric
Extract

Curcumin
(60 mg/kg b. wt),

gavage,
4 weeks.

↓Fatty acids synthesis, Biosynthesis of unsaturated fatty acids,
Fatty acid synthase, ALT, Steatosis [126]

Curcumin
(150 mg/kg b. wt/d)

gavage,
8 weeks.

↑PON1, HTLase,
↓Triglyceride, VLDL, ALT, AST, HDL-C, ROS [127]

Curcumin
(100, 200 and 400

mg/kg/d),
gavage,
4 weeks.

↑Nrf2/P53
↓HMGB1, RIP3, MLKL, JNK [128]

Curcumin
(50 mg/kg),

gavage,
10 days.

↑AMP, AMPK
↓NF-κB, cAMP, DAG, PKCε, Insulin resistance [129]

Curcumin
(200 mg/kg/d)

gavage,
4 weeks.

↑ZO-1, Occludin, Allobaculum, Bacteroides, Blautia,
Phascolarctobacterium, SCFAs
↓ALT, AST, NF-κB, TLR4, LPS

[130]

Curcumin
(75 and 150 mg/kg/d)

gavage,
4 weeks.

↑MMP, ATPase activities, SOD, GSH-Px
↓MPTP, MDA, PGC-1α, NRF-1, Mn-SOD, GRP78, NF-κB, PERK,

IRE1α, IκBα, TNF-α, IL-1β, IL-6
[131]

Cinnamon
Extract

Fennel Cinnamic acid
(40 or 80 mg/kg b.

wt/d),
gavage,
5 days.

↑GSH, GPX, Catalase activities, Nrf2,
↓ADH, CYP2E1, ROS, GSSG, IL-6, TNF-α, PGE2, NO, NOS,

COX-2, iNOS, COX-2, NF-κB p65
[132]

Cinnamic acid
(100 and 200 mg/kg/d),

gavage,
8 weeks.

↑HDL-C
↓TNF-α, IL-1β, IL-18, Insulin resistance, Ly6c, LDL-C [133]

Cinnamic acid
(100 and 200 mg/kg/d),

gavage,
4 weeks.

↑Firmicutes’ composition and abundance, AA, BA, VA, 5-HT
↓VIP [134]
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Table 1. Cont.

Category
Active Substance,

Administration Dose
and Period

Effects Ref.

Cinnamaldehyde
(100 and 200 mg/kg b.

wt/d),
gavage,
29 days.

↑LC3II/I radio,
↓Triacylglycerol, Insulin resistance, Srebp1c, Acaca, IRE1α, EIF2α [135]

Passion Leaf
Extract

Thymus vulgaris leaves
alcoholic extract
(500 mg/kg/d),

gavage,
21 days.

↑SOD, CAT, GR, GST, GPx, GSH, HDL-C
↓AST, ALT, MDA, LDL-C [136]

Geraniol
(200 mg/kg/d),

gavage,
10 weeks.

↑CPT-I, PPARα
↓Caspase-9, Caspase-3, ROS, UCP2, CYP2E1, iNOS, MDA, 3-NT, TNFα,

IL-6
[137]

Geraniol
(100 and 200 mg/kg/d),

gavage,
1 week.

↑DENA
↓ALP, TBL, GGT, DENA, CCl4, LPO, ODC, TNF-α, IL-1β, NF-κB [137]

Geraniol
(100 and 200 mg/kg b.

wt/d),
gavage,
10 days.

↑PPAR-γ,
↓P38-MAPK, JNK, ALT, AST, ALP, NF-κB, TNFα, IL-6, COX-2,

iNOS
[138]

Geraniol
(250 mg/kg/d),

gavage,
14 days.

↓TGA, IL-1β, IL-6, Mrp2, TNF-α, [139]

Thymus
quinquecostatus

Celak extract
(60 mg/kg/d),

gavage,
6 weeks.

↑The abundance of Firmicutes, Bacteroidetes, Proteobacteria,
Parabacteroides, Bacteroides, Peptococcus, Muribaculum, Tyzzerella,

Ruminococcaceae UCG-013, Leuconostoc,
↓LPS, TLR4, ROS

[140]

a Note: PON1, paraoxonase 1; HTLase, homocysteine thiolactonase; HMGB1, High mobility group box 1;
RIP3, Receptor-interacting protein 3; MLKL, mixed lineage kinase domain-like pseudokinase; JNK, p-c-Jun
N-terminal kinase; AMP, Adenosine monophosphate; AMPK, Adenosine 5′-monophosphate (AMP)-activated
protein kinase; PKCε, Protein Kinase C epsilon; MMP, Matrix metalloproteinases; NRF-1, nuclear respiratory
factor 1; GPX, glutathione peroxidase; iNOS, inducible nitric oxide synthase; COX-2, cyclooxygenase-2; VIP,
Vasoactive Intestinal Peptide; EIF2α, eukaryotic initiation factor 2 alpha; CPT-I, Carnitine palmitoyltransferase-I;
UCP2, Uncoupling protein 2; 3-NT, 3-nitrotyrosine; DENA, diethylnitrosamine; TBL, Transducin beta-like; GGT,
γ-glutamyl transferase; ODC, ornithine decarboxylase; Mrp2, ABC transporters multidrug resistance associated
protein 2.

4.1. Capsaicin

Capsaicin, a kind of “shocking” bioactive substance, is contained in the fruits of
Capsicum plants. It is a derivative of vanillin, and its chemical name is 8-methyl-N-vanillyl-
6-nonenamide. Capsaicin, the most common alkaloid in peppers, accounts for 70% of the
active substances in these plants and is the primary source of their spicy taste. A polar
amide team and a benzene ring are at the hydrophobic carbon end of its long chain; hence,
capsaicin has fat-soluble characteristics and a robust, irritating smell [141]. It is reported
that capsaicin can promote the secretion of acetylcholine and norepinephrine in the body,
thus accelerating fat metabolism [142] and glycogen decomposition [143] and preventing
the invasion of fungal pathogens [144]. In addition, capsaicin has anti-inflammatory [145],
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anti-cancer [146], and antibacterial functions [147], regulates the biological activity of the
endocrine system [148], can reduce blood sugar and maintain stability in insulin secretion,
thus slowing the development of diabetes [143], and can be used treat cardiovascular and
cerebrovascular diseases [149].

As an antioxidant, capsaicin can inhibit free radicals induced by alcohol to alleviate
the symptoms of hypertension, dyslipidemia, and obesity caused by oxidative stress,
which may be related to the expression of cytochrome P450 2E1 (CYP2E1) and related
receptors. For example, Lei Zhang and others found that taking capsaicin can significantly
enhance the expression of 7α-hydroxylase and TRPV1 by reducing cholesterol through
upregulation of 7α-hydroxylase expression and increasing the content of total BAs in
feces [150]. More importantly, capsaicin activated TRPV1 and reduced intracellular lipid
droplets induced by free fatty acids (FFAs), thus preventing the occurrence of fatty liver
in vivo [151]. Moreover, in related reports, capsaicin supplementation was shown to
regulate mitochondrial damage caused by alcohol, increase mitochondrial activity and
function in the liver cells of a mouse model (acute alcohol feeding), increase mitochondrial
GSH levels, and restore mitochondrial respiratory enzyme activity, thus inhibiting liver
injury caused by alcohol [113]. Capsaicin can effectively balance matrix metalloproteinases
and inhibit the expression of NF-κB. Through this means, it can eliminate the extracellular
matrix (ECM) of alcoholic liver fibrosis and significantly reduce alcoholic liver injury in
mice [114]. In addition, capsaicin is an agonist of the vanillin 1 (TRPV1) ion channel, which
can affect membrane fluidity, ion flux, and cell ROS levels [115,152]. Studies have shown
that capsaicin can counteract lipid accumulation induced by ethanol in rat livers, promote
the secretion of triglycerides from the liver to plasma, and reduce the concentrations of
triglycerides, cholesterol, and alcohol in serum [153]. Moreover, Ji-Hye Kang and others
found that capsaicin can significantly reduce the damage to glucose tolerance and the
expression of proinflammatory factors. It can even enhance fatty acid oxidation in adipose
tissue and the liver, which together affect insulin resistance, mainly due to the activation of
PPARγ and TRPV-1 by capsaicin [116].

Long-term intake of alcohol can increase intestinal permeability and make gram-
negative bacteria and their metabolites enter the blood in large quantities, which results in
significantly higher levels of plasma LPS in sufferers with ALD. Meanwhile, combining
LPS and TLR4 can increase the expression of pro-inflammatory elements and aggravate the
development of alcoholic hepatitis [154]. Besides, capsaicin can decrease the concentration
of TNF-a, IL-6, and nitric oxide in the plasma of septic rats, reduce leakage of liver en-
zymes ALT and ALP into the blood, and reduce the toxic effect of LPS on liver tissue [118].
Increased intestinal permeability is frequently related to an imbalance in the intestinal
flora, mainly due to an increased abundance of LPS-producing bacteria and changes in
LPS biosynthesis and short-chain fatty acid (SCFA) production [155]. Interestingly, in an
experiment by Kang et al., the intake of capsaicin was found to effectively increase the
amount of butyric acid-producing flora (Ruminococcus and Mucor) in the intestine. This
was in direct proportion to the concentration of butyrate in feces. In contrast, capsaicin
leads to a limit in the degrees of S24_7 and PAMP, which are contributors to the LPS family
and weaken the TLR4 pro-inflammatory reaction [119]. As we all know, capsaicin can
activate TRPV1, an extended member of endogenous cannabinoid (income). Suppose mice
lacking cannabinoid 1 receptor (CB1R) in intestinal epithelial cells show the aggravation
of intestinal barrier dysfunction induced by diet. In that case, studies have shown that
capsaicin can affect the expression of CB1R to reduce intestinal barrier damage and en-
dotoxin production. To sum up, capsaicin can effectively prevent microbial imbalance,
intestinal barrier dysfunction, and chronic inflammation caused by alcohol or another
dietary intake [119].

4.2. Allicin

Garlic is a common substance in spices. Garlic juice contains a bioactive substance,
allicin, whose chemical name is diallyl thiosulfinate. There are two substances in different
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compartments of garlic cloves, namely alliin and alliinase, when chopped, crushed, chewed,
and mixed evenly, thus producing a significant amount of allicin in less than 6 s [156].
The sulfur atoms in allicin are highly active. They can be easily decomposed to produce
secondary organic sulfur compounds under certain processing and storage conditions, such
as a specific concentration, pH value, and temperature [157]. Allicin has broad-spectrum
antibacterial activity and can inhibit various drug-resistant bacterial strains, including
Escherichia, Staphylococcus, Proteus, Pseudomonas, and Enterococcus [158]. Allicin is also
widely used in antifungal studies and can effectively inhibit Candida and Aspergillus [159].
In addition, allicin has the effects of lowering blood pressure [160], resisting cancer [161],
improving antioxidant activity [162], improving insulin resistance [163], and alleviating
steatosis [164].

Long-term alcohol consumption can lead to the disease of fat metabolism, which
manifests as a decrease in mitochondrial lipid peroxidation and an increase in triglyceride
synthesis. Simultaneously, TNF-α upregulates (sterol regulatory element-binding protein
1) SREBP-1, aggravating the liver disease [165]. Studies have shown that allicin can signif-
icantly improve the effects of fatty metabolism disorder and alcoholic fatty liver disease
(AFLD) symptoms in mice by reducing the levels of aspartate aminotransferase, alanine
aminotransferase, and triglyceride in the liver and the relative weight of the liver [120].
Long-term alcohol intake will increase the ROS level, increasing the reactive oxygen species
and pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) in AFLD patients’ livers com-
pared with ordinary people. Nevertheless, taking allicin can reduce the initiation of ROS
and the expression of the CYP2E1 protein, thus reducing oxidative stress. At the same
time, allicin can significantly reduce the inflammatory reaction of the liver by inhibiting the
activation of the inflammatory body of NLRP3 and reducing the expression of caspase-1
and the secretion of IL-1β, IL-18, IL-6, and TNF-α [121]. Studies have shown that the
oxidation balance in the liver of AFLD patients is dysregulated, which leads to a high level
of glutathione catalase (GPx), with liver glutathione (GSH) transformed into glutathione
disulfide (GSSH) under the action of GPx. Allicin can increase the degrees of GSH and
catalase (CAT) in the liver to some extent, thus alleviating liver injury in patients with
AFLD [120]. In addition, allicin can induce the up-regulation of ABCA1, promote choles-
terol excretion, reduce lipid accumulation through PPARγ/LXRα signal transduction, and
reduce alcohol damage to the liver [166]. At the same time, allicin can reduce serum glucose
and insulin levels and reduce triglyceride and digestive tract fatty acid absorption, thereby
improving insulin resistance and impaired glucose tolerance [122].

In recent years, many studies have pointed out the liver protection advantages of
allicin from the perspective of its molecular action, and a few studies have focused on
the role of allicin and intestinal flora. This may be because allicin has specific antibiotic
characteristics [167]. However, it differs from antibiotics in the market, mainly because
allicin is unstable and metabolized into other bioactive substances such as diallyl sulfide,
diallyl disulfide, and diallyl trisulfide [168]. Based on the functional characteristics of
intestinal flora, whether allicin intake can restore the microecological balance has become
a topic of interest for researchers. Panyod and others found that allicin can effectively
inhibit the formation of TMAO, enhance the variety of intestinal microbial flora, and
enlarge the relative abundance of advisable organisms after administering garlic juice
for 1 week [169]. Moreover, Gao et al. used an IPEC-J2 cell monolayer to simulate the
intestinal barrier and verified through experiments that allicin has an intervention impact
on LPS-induced intestinal epithelial barrier injury, which was mainly due to allicin’s
extent in transepithelial resistance (TEER), reduction in paracellular permeability, and
enhancement of zona clostridium 1 (ZO-1) integrity of the IPEC-J2 cell monolayer, as well
as preventing LPS-induced activation of the Nrf2/HO-1 pathway-dependent antioxidant
system [170]. In addition, the study also found that the F/B ratio in the intestine of AFLD
mice was significantly reduced after the administration of allicin [124]. Furthermore, AGMT
(intestinal flora induced by allicin transplanted into mice with HFD) significantly increased
Blautia (microbial population producing SCFA) and Bifidobacterium numbers in HFD mice
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and improved SCFA in the cecum [125]. Most experiments have shown that allicin does
not disturb the intestinal microecological balance and has specific pharmacological value
for AFLD and hepatointestinal complications.

4.3. Curcumin

Curcumin is a nutritional and dietary polyphenol derived from the tuber Curcuma
longa. Its chemical name is difuranformylmethane, and it is among the most widely
studied substances among the active ingredients of spices. Curcumin displays vigorous
anti-inflammatory activity and can effectively intervene in inflammatory diseases [171].
It can also regulate cardiovascular diseases, improve endothelial function, and promote
heart and vascular internal membrane health [172]. Curcumin has a significant effect on
cancer, helping to slow the spread of tumor cells and forestall the formation of tumors [173].
Curcumin can also promote glucose and lipid metabolism, enhance the body’s antioxidant
activity, and has specific therapeutic and preventive effects on diabetes [174]. In addition,
the functional characteristics of curcumin include preventing Alzheimer’s disease [175],
treating depression [176], improving skin health [177], and fighting free radicals [178].

The synthesis of fatty acids and unsaturated fatty acids is positively correlated with
ethanol-induced hepatic steatosis, in which ethanol can increase the contents of stearic
acid, oleic acid, and linoleic acid, thereby inducing fatty acid ethyl ester, fatty liver, and
alcoholic liver injury. Experiments have shown that curcumin intake can interfere with
the synthesis of fatty acids and unsaturated fatty acids and forestall the progress of fatty
liver [126]. In addition, curcumin can regulate stearic acid, oleic acid, and linoleic acid
and drastically inhibit the manufacturing of fatty acid synthase. Nevertheless, curcumin
showed a potential inhibitory effect on the synthesis of triglycerides and very low-density
lipoproteins in the liver and prevented chronic alcohol from inducing and destroying the
liver. At the same time, curcumin can alleviate liver damage precipitated through continual
ethanol [127]. It is well known that in the presence of ω-3 PUFA, ethanol induces CYP2E1
to produce more ROS, which leads to oxidative stress. Curcumin treatment can increase the
activity of PON1 and the value of -SH in the liver while reducing the oxidative sensitivity
of LDL [179]. Alcohol intake can promote the production of pro-inflammatory markers
and apoptosis in hepatocytes [180]. Among these effects, the expression of related genes
mediated by NF-κB is often linked to the pathogenesis of ALD. Curcumin can effectively
block the activation of NF-κB mediated by endotoxin and inhibit the expression of cytokines,
chemokines, COX-2, and iNOS in Kupffer cells, preventing ALD [181]. A study by Lu et al.
demonstrated that curcumin reduces alcohol-induced hepatocyte necrosis by activating
nuclear issue erythroid 2-related factor 2 (Nrf2) [128]. Surprisingly, curcumin reduces
endoplasmic reticulum stress through the cAMP/PKA pathway and reduces FFA inflow
into the liver by blocking FFA transport, thus improving insulin sensitivity and inhibiting
glucose production [129].

Interactions of the intestinal flora mediate the pharmacological activities of curcumin;
on the one hand, curcumin directly regulates intestinal microflora, and on the other hand,
intestinal microflora biotransforms curcumin and produces active metabolites [182]. An
experiment by Feng et al. confirmed that curcumin significantly changed the structure of
the intestinal microflora and changed microbial diversity at different classification levels,
such as significantly reducing the number of organisms positively related to obesity in
mice. Curcumin also increased the number of species of Gordon’s bacteria in the intestine;
curcumin administration facilitated an addition of 39 OTUs, among which members of
seven OTUs may produce SCFAs [130]. In addition to changes in the intestinal flora, the
protection of the intestinal barrier is also an evaluation index. In Wang et al.’s experiment,
curcumin was found to act on the intestinal epithelium and intestinal barrier mainly. Fur-
thermore, curcumin intake can significantly limit the destruction of the intestinal epithelial
barrier induced by LPS, reduce the secretion of IL-1β and activation of p38 MAPK induced
by IL-1β, increase phosphorylation of tight junction proteins, and destroy its standard
arrangement [183]. Similarly, in an experiment by Liu et al., curcumin supplementation
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was shown to alleviate inflammatory reactions in rats with heterogenous sepsis, upregu-
late expression of intestinal tight junction proteins ZO-1, occludin, and claudin-1, protect
intestinal barrier function, and regulate the ERK/JNK signaling pathway to inhibit activa-
tion and apoptosis due to NF-κB p65 [184]. The outstanding performance of curcumin in
antioxidant, anti-inflammatory, antibacterial, and hypoglycemic effects provides clinical
ideas for improving alcoholic hepatointestinal diseases.

4.4. Cinnamine or Cinnamic Acid

Cinnamon bark is a common spice in stewed food. It can also be used to extract
cinnamon oil and synthesize cinnamic acid. There are two main active substances in cin-
namon bark: cinnamic acid and cinnamaldehyde. The latter mainly oxidizes the former.
Cinnamaldehyde and cinnamic acid both have antibacterial [185], anti-inflammatory [186],
and anti-oxidation [187] properties, and can regulate sugar and lipid metabolism in the
liver [188]. In recent years, researchers have treated and prevented ALD and its complica-
tions with active substances in cinnamon.

Cinnamic acid is an active phenolic acid in plant food with many functional character-
istics that can protect the liver. In an experiment by Yan et al., providing a specific dose
of cinnamic acid to a mouse model with alcoholic hepatitis toxicity led to reduced gene
expression of CYP2E1, p47phox, gp91phox, COX-2, and NF-kB induced by ethanol. It also
enhanced the expression of Nrf2 in the cytoplasm and nucleus because p47phox inhibits the
ubiquitination of Nrf2 and activates NRF 2. In addition, cinnamic acid can interfere with
alcohol-induced oxidative stress, reducing the release of ROS, oxidized glutathione (GSSG),
IL-6, TNF-α, and prostaglandin E 2 (PGE 2) in the liver, thereby reducing alcohol-induced
hepatotoxicity [132]. Moreover, cinnamic acid reduces inflammatory cell infiltration into
liver tissue. Alcohol can aggravate the fatty degeneration of the liver, leading to the se-
cretion of a giant variety of chemokines, recruitment of inflammatory cells to infiltrate
into adipose tissue and liver, transformation of these cells into inflammatory macrophages,
and activation and release of proinflammatory factors. Interestingly, Lee and others found
that cinnamic acid can reduce complications caused by obesity, such as glucose tolerance,
dyslipidemia, and fat deposition, without showing hepatorenal toxicity. Further, cinnamic
acid can reduce the number of Ly6c+ monocytes and M1 macrophages, expression of TNF-α
induced by steatosis, and infiltration of macrophages in liver tissue [133]. At the same time,
Da-Wei Huang and others found that cinnamic acid can promote tyrosine phosphorylation
of insulin receptors, up-regulate the expression of insulin signal-related proteins, including
insulin receptor, phosphatidylinositol 3 kinase (PI3K), glycogen synthase (GS) and glucose
transporter 2 (GLUT2), and increase glucose uptake, thus reducing insulin resistance in
cells [189].

Based on the antibacterial and anti-inflammatory activities of cinnamic acid and cin-
namaldehyde, their effects on the intestinal flora are often studied. For example, Jiang
et al. used a clomipramine-induced STC model in mice and cinnamic acid as the inter-
vention medium. Their research found that, first, cinnamic acid can significantly improve
the diversity and richness of beneficial microbial communities, such as increasing the
composition and quantity of Firmicutes, Verrucous Microorganisms, Lactococcus, Acker-
mann, Lactuccia, and Acinetobacter; second, cinnamic acid also significantly promoted
the production of single-chain fatty acids such as acetic acid, butyric acid, propionic acid,
and valeric acid [134]. Since cinnamaldehyde is easily oxidized in the outside world, it
must be combined with microcapsule technology to improve stability and prevent environ-
mental pressure. In Xiao et al.’s research, microencapsulated cinnamaldehyde increased
the antioxidant potential of the liver, duodenum, and colon. In addition, 16S rRNA gene
sequencing statistics showed that microencapsulated cinnamaldehyde considerably reg-
ulated the intestinal flora and its metabolites, increasing the abundance of Bacteroides,
Bacteroides/Cladosporium, unclassified Lactobacillus, Lactobacillus, and Brautia, and
decreasing the abundance of Lactococcus, UCG-014, fecal, and Brautia [190]. Considering
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the low toxicity and high biological activity of cinnamic acid and cinnamon, it is necessary
to make them dietary supplements for patients with alcoholic hepatointestinal diseases.

4.5. Geraniol

Fragrant leaves, thyme, and citronella are a kind of common spices. Their aromatic
properties are mainly attributable to the volatility of geraniol. In recent years, many
researchers have centered on the active function of geraniol in the body, that is, its antibacte-
rial [191] and anti-inflammatory [192] functions, improvement of oxidation resistance [192],
potential to treat Parkinson’s disease [193], promotion of liver regeneration [194], and poten-
tial anti-tumor properties [195]. Geranyl is a group derived from vanillin by the removal of
hydroxyl, with geranyl pyrophosphate (GPP) and geranyl pyrophosphate (GGPP) among
the leading derivatives of geranyl. These compounds are also essential intermediates in
cholesterol biosynthesis.

Long-term drinking will lead to a significant decrease in total protein and its compo-
nents, albumin and globulin. Even the liver cells are distorted, accompanied by a significant
increase in oxidative stress parameters (MDA and H2O2). The experiments of Samah A
et al. showed that the ethanol extract of Thyme leaves could effectively interfere with
alcohol-induced hepatotoxicity in rats, such as reducing the activities of alkaline phos-
phatase (ALP), aspartate aminotransferase (AST) and alanine aminotransferase (ALT),
increasing the production of total protein, albumin and globulin, and even improving
the oxidative stress response and protecting the liver [136]. At the same time, the same
result was obtained in the research of Hasan et al.; geraniol has been proven to effec-
tively decrease the levels of lipid peroxidation and serum toxicity markers (AST, ALT,
LDH) while increasing the activities of catalase, glutathione peroxidase (GPxs), glutathione
reductase (GR), superoxide dismutase (SODs), glutathione, and related enzymes, thus
significantly improving 2-AAF-induced oxidation. At the same time, Geraniol treatment
can also downregulate the caspase-3,9, COX-2, NFkB, PCNA, iNOS, and VEGF expres-
sion [196]. Surprisingly, geraniol was shown to maintain mitochondrial function in patients
with steatohepatitis, reducing mitochondrial formation, enhancing adenosine triphosphate
formation and membrane integrity, and restoring mitochondrial electron transport chain
enzyme activity. It also decreased the expression of uncoupling protein 2 in the liver and
enhanced the mRNA expression of PPAR and the function of carnitine palmitoyl transferase
I (CPTI) in mitochondria. Geraniol can also reduce the formation of malondialdehyde
(MDA) and 3-nitrotyrosine in the liver, enhance the function of glutathione-S-transferase
(GST), and downregulate the expression of INOS and CYP2E1 to reduce oxidative stress
in the liver [137]. Interestingly, geraniol can reduce TNF, IL-1, and NF-κB levels and the
formation of MDA induced by DENA, as well as increase the activities of GSH and antiox-
idant enzymes in the liver, consequently having a defensive effect on liver cancer [197].
Moreover, research by Mohammed shows that geraniol may protect the liver by inducing
activation of MAPK, p38, and JNK, reducing expression of the PPAR-γ protein, and revers-
ing inflammatory and oxidative stress reactions in the liver [138]. To address considerations
of dose and hepatotoxicity, Pavan and others found that mice taking a hundred and twenty
mg/kg geraniol for four weeks confirmed enhanced antioxidant defense ability and no
signs of hepatotoxicity [198].

Based on its hydrophobicity, geraniol effectively binds to bacterial cell walls, alters
their dynamic organization, and leads to ion loss and ATP depletion. The antimicrobial
activity of geraniol does not appear to have a specific target and may attack beneficial
flora in addition to killing pathogenic bacteria in the human gut. However, studies have
shown that human pathogenic organisms are more sensitive to geraniol than commensal
species, which indicates a possible mechanism underlying geraniol’s intestinal action.
Ricci et al. conducted a double-blind, randomized, managed trial via fifty-six patients
with inflammatory bowel syndrome (IBS), identified following the Rome III criteria, and
found that remission of IBS in vivo used to be notably higher in patients handled with
geraniol and that the treated vs. untreated patients showed significant differences in the
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composition of their intestine microbiota. In particular, there was a giant minimizing
effect in Oscillospira, a genus of the Lactococcaceae family (p = 0.01), and a trend towards
a decrease in the Danubacteriaceae and Clostridiaceae families (p = 0.1) was observed.
In contrast, a trend towards an increase was observed in the other Lactococcaceae taxa,
particularly in fecal E. coli (p = 0.09) [199]. Thapa et al. also showed that 500 ppm thymol
and geraniol could inhibit total bacteria and reduce the number of Clostridium difficile.
Previous experimental data showed that about 100 ppm of thymol and geraniol could
effectively inhibit pathogens in the small gut without worrying about diminishing beneficial
symbiotic colon organisms in the distal intestine [200]. In addition, geraniol has the effect
of downregulating MRP2, which can entirely and partially offset the increase in intestinal
IL-1β and IL-6 levels caused by fructose, even reducing the activities of lipid peroxide
products and superoxide dismutase and restoring the ratio of glutathione reduction to
glutathione oxidation, which improves the redox imbalance in the intestinal tract [139].
In summary, geraniol has been shown to improve the function of the hepatic-gut axis in
terms of antioxidant, anti-inflammatory, lipid modulation, and intestinal flora alteration
properties.

5. Conclusions

In modern society, overeating (excessive drinking or high-calorie intake) has become
the root cause of various diseases. Among them, metabolic diseases caused by drinking are
the main focus of attention. Generally speaking, the time of alcohol intake is closely related
to the development of the disease. This process often involves many factors, including the
activity of alcohol-metabolizing enzymes in the liver, the species distribution of intestinal
flora, the integrity of the intestinal barrier, and tissue inflammation. However, we still
lack enough information to grasp the healthy crosstalk between the alcohol–liver–intestine
axis. This uncertainty provides a hypothesis for us to explore the molecular interaction
mechanism further in the future. First, in vivo and in vitro combinations can effectively
evaluate alcohol–liver–intestinal health. Although the experiment from cells to mice can
not fully meet the clinical needs, it is still the first step for scholars to explore the mechanism
of a substance. For the bioactive substances and drugs that have not been studied, it is still
necessary to carry out cell tests in order to master the toxicity and mechanism of action of
the active substances. Secondly, for the mouse model, the amount and frequency of alcohol
use are significant. Besides the changes in body weight and blood sugar, organ diseases
and biochemical analysis can often be combined with cell experiments, so we must conduct
related experiments for different test purposes and properties.

With people’s increasing attention to diet and health, spices have been continuously
explored in many studies as a typical representative of the homology of medicine and
food. As mentioned in the article, the characteristics of its intervention on alcohol-induced
hepatointestinal diseases are as follows: First, the bioactive factors in spices can exert
antioxidant activity in the hepatointestinal environment and reduce the oxidative stress
response caused by diseases. Second, these factors can interfere with fatty acid synthesis,
promote glucose and lipid metabolism, and alleviate liver damage caused by steatosis.
Thirdly, they can effectively restore the intestinal microenvironment by regulating the
balance of intestinal flora, promoting the production of SCFAs, and even enhancing the
intestinal barrier function. However, the application of spice bioactive substances in
alcohol-induced hepatointestinal diseases is still limited, including the influence of alcohol
metabolizing enzymes in the liver, the difference of spice activity before and after digestion,
and the crosstalk between spice bioactive substances–alcohol–intestinal flora. Therefore, in
future research, we must design more systematic experimental models and clinical trials
to verify better the relationship between spice active substances and intestinal microbial
groups, metabolic groups, and immune groups. It helps us to identify specific spice-
active substances to intervene in the intestinal flora. At the same time, it can effectively
alleviate the problems of hepatointestinal diseases caused by alcohol by combining with
various omics technologies. Of course, precision medicine is gradually becoming the future
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treatment trend, and the development of spice-active substances has a high prospect based
on improving people’s attention to precision nutrition. These works laid a foundation for
the intervention of spice-active substances in hepatointestinal diseases caused by alcohol.
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