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Abstract: This state-of-the-art review explores the emerging field of regenerative hydrogels and their
profound impact on the treatment of skin wounds. Regenerative hydrogels, composed mainly of
water-absorbing polymers, have garnered attention in wound healing, particularly for skin wounds.
Their unique properties make them well suited for tissue regeneration. Notable benefits include
excellent water retention, creating a crucially moist wound environment for optimal healing, and
facilitating cell migration, and proliferation. Biocompatibility is a key feature, minimizing adverse
reactions and promoting the natural healing process. Acting as a supportive scaffold for cell growth,
hydrogels mimic the extracellular matrix, aiding the attachment and proliferation of cells like fibrob-
lasts and keratinocytes. Engineered for controlled drug release, hydrogels enhance wound healing
by promoting angiogenesis, reducing inflammation, and preventing infection. The demonstrated
acceleration of the wound healing process, particularly beneficial for chronic or impaired healing
wounds, adds to their appeal. Easy application and conformity to various wound shapes make
hydrogels practical, including in irregular or challenging areas. Scar minimization through tissue
regeneration is crucial, especially in cosmetic and functional regions. Hydrogels contribute to pain
management by creating a protective barrier, reducing friction, and fostering a soothing environment.
Some hydrogels, with inherent antimicrobial properties, aid in infection prevention, which is a crucial
aspect of successful wound healing. Their flexibility and ability to conform to wound contours
ensure optimal tissue contact, enhancing overall treatment effectiveness. In summary, regenerative
hydrogels present a promising approach for improving skin wound healing outcomes across diverse
clinical scenarios. This review provides a comprehensive analysis of the benefits, mechanisms, and
challenges associated with the use of regenerative hydrogels in the treatment of skin wounds. In
this review, the authors likely delve into the application of rational design principles to enhance
the efficacy and performance of hydrogels in promoting wound healing. Through an exploration of
various methodologies and approaches, this paper is poised to highlight how these principles have
been instrumental in refining the design of hydrogels, potentially revolutionizing their therapeutic
potential in addressing skin wounds. By synthesizing current knowledge and highlighting poten-
tial avenues for future research, this review aims to contribute to the advancement of regenerative
medicine and ultimately improve clinical outcomes for patients with skin wounds.
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1. Introduction

The skin, due to its position, has an important role in human health and an essential
function in the protection of the body. Therefore, it is important to maintain its integrity.
Any injury that affects the integrity of this vital organ represents a risk factor for the
body and sometimes for its survival. The regeneration capacity of the skin is affected by
numerous factors (age, physiological state, associated conditions, the severity of injury)
and can be accelerated with the help of therapeutic formulas with local and systemic action.
The use of dermato-cosmetic and therapeutic preparations based on hydrogels is often an
effective method, accepted and tolerated very well by patients, with quick effects. Most
problems are generally caused by chronic injuries, especially those that occupy large areas,
some of which even put the patients’ lives at risk. Modern formulations aim to create a
protective film that is resistant, compatible with the skin, and has the active ingredients. This
will increase the therapeutic efficiency of the preparation by accelerating healing in the most
effective form and in terms of the absence of signs with an unsightly effect. The introduction
of hydrogel bases, including biodegradable and biocompatible polymer hybrid hydrogels,
has resulted in remarkable achievements in regenerative therapies. These innovative
materials represent a convergence of cutting-edge science and engineering principles,
offering unparalleled versatility and efficacy in a variety of biomedical applications. By
seamlessly integrating with biological tissues and providing a conducive environment for
cellular proliferation and tissue regeneration, hydrogel-based therapies have demonstrated
extraordinary potential in addressing numerous clinical challenges, particularly in the
realm of wound healing. This paradigm shift towards advanced hydrogel formulations
underscores a transformative approach towards achieving optimal patient outcomes and
revolutionizing the landscape of regenerative medicine.

The skin, being the body’s largest organ, holds immense significance in maintaining
overall health. Its crucial functions and role as a shield against various environmental
elements, such as mechanical, chemical, and biological factors, emphasize the utmost
importance of preserving its integrity [1]. It plays a vital role in the homeostasis and
thermoregulation of the body, sensing the sensations of temperature, touch, and pressure,
reducing the harmful effects of UV radiation, and strengthening the immune system
to prevent infections [1]. Its self-healing capacity plays an important role in vitamin
production [2,3].

Structurally, human skin consists of three distinct layers: the epidermis, dermis, and
hypodermis (Figure 1). On the outside, there is an elastic layer (the epidermis) which is in
the process of continuous regeneration. This layer consists of different cells (keratinocytes,
corneocytes, melanocytes, Merkel cells, Langerhans cells) with the role of a protective
barrier. Approximately 80% of the epidermal cells are represented by keratinocytes, which
are constantly generated by division and gradually advance toward the surface of the
skin. When they reach the surface, the cells flatten, die, shed, and are eliminated by
natural exfoliation. The outer layer of the epidermis is relatively impermeable, keratinized,
and corneous. At the level of the epidermis, melanin is produced by melanocytes. The
pigment is involved in protection against ultraviolet radiation, Langerhans dendritic cells
(approximately 2–8% of the total epidermal cells) are involved in immune defense, and
Merkel cells (mechanoreceptors) have close connections with sensory neurons.

The epidermis which is not being vascularized receives nutrients by diffusion from
the underlying connective tissue. The dermis houses nerve endings [2,4–6] that largely
contribute to skin sensations, whereas touch sensations specifically stem from free nerve
endings located in the epidermis.
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Figure 1. Skin anatomy. Created with BioRender.com (accessed on 15 October 2023).

There are four main transition zones and one transition zone at the level of the epider-
mis located from the inside to the outside: the stratum basale, stratum spinosum (30% of
the thickness of the epidermis), stratum granulosum (10% of the thickness of the epidermis),
stratum lucidum (a thin translucent area, the area of the transition between the granular
and corneous layers), and stratum corneum [6].

There is an interface that acts as a separating membrane between the epidermis and
dermis called the dermo-epidermal junction (DEJ), which is a specialized component of
the extracellular matrix (ECM) and contains various proteins (laminin, nidogen, collagen
type I, III, IV, VII, and XVIII proteoglycans, tenascin, and fibrillin-1) [6–11]. Fibronectin, a
protein present in the dermo-epidermal junction, is the binder for basal keratinocytes [4,6]
and is also involved in primary immunity. The DEJ is presented as a fibrous structure,
plays an essential role in the regeneration process and cell migration, and has three layers
(the lamina lucida, lamina densa, and lamina reticularis).

Under the epidermis is the thickest layer of the skin (up to 4 mm thick), the dermis,
consisting of two layers: a layer rich in nerve endings and receptors and lymphatic and
blood vessels (papillary dermis) and a layer in the form of a network of elastic fibers of
collagen, elastin, and reticulin (synthesized by dermal fibroblasts) that form a support
structure (reticular dermis), thus giving the skin properties of elasticity and mechanical
resistance. At the level of the dermis, there is a rich network of nerves, blood vessels,
and lymphatic vessels [4,6,12,13], as well as other types of cells such as human dermal
microvascular endothelial cells (HDMECs), pericytes, and mast cells.

The deepest layer (the hypodermis), which accounts for approximately 20–25% of body
weight in women and 15–20% in men, is considered an integral part of the subcutaneous
adipose tissue.

The main component of the hypodermis is adipose tissue, which is accompanied by
connective tissue and conjunctive vascular septa containing fibrocytes and mast cells. The
functions of the hypodermis include the protection of the skin against musculoskeletal
structures such as bones and muscles and thermal regulation, which helps to reduce heat
loss [6,14,15].

Adipose tissue is white (WAT) or brown (BAT). The distinctive feature of brown
adipose tissue (which occurs in adults in limited areas such as the axilla, neck, and perirenal
area) consists of an increased density of mitochondria and cytochromes at the cell level,
as well as a well-developed vascular network. It serves as an important and immediate
source of heat production. Therefore, the hypodermis is recognized as an endocrine organ
responsible for energy storage [1,6,16,17].

Physiologically, the skin has a slightly acidic pH that serves as a protective barrier
against pathogen invasion and growth, and Langerhans cells in the epidermis are involved
in fighting infections [14,18,19].

Despite the vast physiological involvement of the skin analyzer in the prevention of
pathogen infections, there are situations where its extraordinarily laborious and compli-
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cated structure is compromised. The causes by which the skin can be compromised are
various and involve mechanical, chemical, thermal, and electrical factors.

Regenerative hydrogels are a type of hydrogel designed specifically for applications
in regenerative medicine and tissue engineering. These hydrogels possess unique charac-
teristics that make them well suited for promoting tissue regeneration by promoting cell
adhesion and growth. These hydrogels often contain bioactive components, such as growth
factors, peptides, or other signaling molecules, to actively stimulate and support cellular
activities crucial for tissue regeneration. Similar to conventional hydrogels, regenerative
hydrogels are highly hydrophilic, enabling them to retain water and create a moist environ-
ment that supports cellular activities. Regenerative hydrogels, engineered to emulate the
extracellular matrix (ECM) of tissues, exhibit a network of interlinked polymer chains adept
at retaining significant water content without compromising structural stability. They pro-
vide a three-dimensional scaffold that mimics the natural ECM of tissues, offering support
for cell attachment, migration, and tissue formation. Their composition renders them con-
ducive to addressing skin lesions, primarily due to several critical factors. The mechanical
properties of regenerative hydrogels can be tailored to match the mechanical characteristics
of the target tissue. Firstly, their inherent biocompatibility ensures a non-reactive interface
with living tissues, making them a viable choice for wound management applications.
Many regenerative hydrogels are designed to be biodegradable, allowing them to degrade
over time as new tissue forms. The degradation products should be non-toxic and eas-
ily metabolized by the body. Moreover, the hydrogels’ high water retention capability
facilitates a moist microenvironment akin to the ideal conditions necessary for optimal
wound healing. This moisture fosters crucial processes like cell migration, proliferation,
and subsequent tissue regeneration. The ability to tailor the mechanical characteristics
of hydrogels to resemble soft tissues is instrumental in providing a conducive milieu for
cellular growth and tissue recovery. This adaptability allows for these materials to conform
appropriately to wound contours, optimizing their therapeutic efficacy. Further enhancing
their utility, hydrogels can be laden with therapeutic substances, including growth factors
or pharmaceuticals, enabling controlled and sustained release directly at the wound site.
This controlled delivery mechanism significantly bolsters cellular proliferation and tissue
regrowth, expediting the healing process and providing a supportive environment for their
survival and function.

Moreover, through structural modifications, hydrogels can be engineered to integrate
cell-adhesive ligands, facilitating cell attachment, migration, and proliferation—vital processes
in tissue regeneration. Additionally, their role as a protective barrier shield against external
pathogens and environmental factors, mitigating infection risks and fostering an environment
conducive to healing. Also, certain regenerative hydrogels are designed to promote the
formation of new blood vessels (angiogenesis), a critical process for supplying nutrients
and oxygen to regenerating tissues. In conclusion, the physical and chemical properties of
regenerative hydrogels can be finely tuned to match the requirements of specific tissues or
applications by adjusting parameters such as stiffness, porosity, and degradation rate.

In the realm of skin lesions, regenerative hydrogels serve as pivotal facilitators in
the wound healing process by establishing an environment conducive to tissue regener-
ation. Their distinctive structural composition and versatile properties underscore their
significance across diverse medical applications, spanning from advanced wound dress-
ings to intricate tissue engineering endeavors, effectively supporting the body’s innate
mechanisms for recuperation and repair.

In the present study, the characteristics of skin lesions or wounds, the dangers that may
appear in skin lesions or wounds, the stages of regeneration processes, the characteristics
and clinical applications of regenerative hydrogels, and the advantages of their use in the
wound healing process are presented. Skin wound treatment has long been a challenge in
healthcare, with traditional methods often falling short in promoting optimal healing and
tissue regeneration. In this landscape of unmet clinical needs, the emergence of regenera-
tive hydrogels presents a promising avenue for advancing wound care practices. These
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innovative biomaterials offer unique advantages, such as their ability to provide a moist
wound environment conducive to healing, their tunable physical and chemical properties,
and their potential to deliver bioactive agents to the wound site. However, despite their
considerable potential, the full scope of benefits and applications of regenerative hydrogels
in skin wound treatment remains to be fully elucidated. In this comprehensive review,
we aim to address this gap by providing a thorough examination of the advancements in
regenerative hydrogels and their specific benefits in skin wound treatment. By critically
analyzing the latest research findings, discussing practical implications, and highlight-
ing future directions, we aspire to offer valuable insights for researchers, clinicians, and
healthcare practitioners seeking to optimize wound healing outcomes.

2. Characteristics of Skin Wounds

The characterization of skin wounds is a multifaceted process crucial for guiding effec-
tive treatment strategies tailored to individual patient needs. It entails a comprehensive
assessment of diverse wound parameters to elucidate the underlying pathophysiology,
assess healing progression, and identify potential complications. Central to this process is
discerning the cause of the wound, whether it be traumatic, surgical, or related to underly-
ing medical conditions such as diabetes or vascular insufficiency. The wound’s location on
the body is also pivotal, as it influences healing dynamics and susceptibility to mechanical
stress or infection. Moreover, the precise measurement of wound size and depth provides
critical information about tissue loss and enables the accurate monitoring of the healing tra-
jectory over time. The assessment of the wound bed’s appearance, including the presence
of granulation tissue, necrosis, or slough, offers insights into tissue viability and the local
microenvironment conducive to healing. Equally important is the evaluation of wound
edges and the surrounding skin for signs of inflammation, maceration, or compromised
perfusion, which may impact healing outcomes. The detection of infection, characterized
by erythema, warmth, purulent exudate, and systemic symptoms, warrants prompt inter-
vention to prevent further tissue damage and systemic spread. Additionally, categorizing
wounds based on their healing stage (e.g., inflammatory, proliferative, remodeling) guides
appropriate therapeutic interventions to facilitate progression through the healing contin-
uum. Collectively, the thorough characterization of skin wounds serves as the cornerstone
for formulating evidence-based treatment plans aimed at optimizing healing outcomes and
promoting patient well-being. Wounds or skin lesions represent damage to the structural
and functional integrity of tissues, including skin, mucous membranes, and organ tissues,
and are a major risk for the spread of infectious agents [14,20,21]. The characteristics of skin
wounds depend on factors such as the wound’s cause, size, depth, and the individual’s
overall health. Understanding the characteristics of skin wounds is essential for appropriate
wound management and treatment. Timely and proper care can contribute to optimal
healing outcomes and minimize complications such as infection and scarring.

The Centers for Disease Control and Prevention (CDC) categorizes lesions into four pri-
mary classes (Table 1):

The characterization of skin wounds involves assessing several key factors critical for
understanding the nature and progression of the injury. Firstly, identifying the cause of the
wound, whether traumatic, surgical, or associated with underlying conditions, provides
valuable insights into the healing process. The wound’s location on the body influences its
susceptibility to mechanical stress and infection, guiding treatment decisions. The accurate
measurement of size and depth is essential for monitoring healing progress and determining
appropriate interventions. The evaluation of the wound bed’s appearance, along with the
condition of its edges and surrounding skin, offers clues to tissue viability and the local
wound environment. Detecting signs of infection is paramount for timely management
and the prevention of complications. Additionally, categorizing wounds based on their
healing stage aids in selecting optimal therapeutic approaches to promote effective wound
closure. Overall, the comprehensive characterization of skin wounds enables clinicians to
devise targeted treatment plans, ultimately enhancing patient outcomes and recovery.
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Table 1. Wound classification according to CDC criteria [21,22].

Injury Classification Grades (I–IV)

Grade/Class Name Remarks

Class I Clean
Closed, non-infected, and non-inflamed wounds. If the drainage of these wounds is

necessary, a closed drainage method is required. In addition, these wounds do not enter
the respiratory, digestive, genital, or urinary tract.

Class II Clean contaminated Wounds that were made under controlled conditions without unusual contamination.
They enter into the respiratory, digestive, genital, and urinary tracts.

Class III Contaminated Recent, open wounds result from accidents or a deviation from sterile techniques during
operations. These incisions show no obvious signs of acute or purulent inflammation.

Class IV Dirt-infected

These injuries are the result of the neglect of traumatic wound care. They are older
wounds where the tissue is devitalized, and there may be pre-existing clinical infections
or even organ perforations. The presence of pathogenic microorganisms worsens the

prognosis of the wound.

Depending on the nature of the healing process, wounds can be divided into two main
categories: acute wounds and chronic wounds.

Acute injuries are wounds that heal completely in about 8–12 weeks, leaving minimal
scarring, and are mostly the result of mechanical injuries (rubbing the skin against hard
surfaces such as knives or sharp edges) and surgical cuts. They can also be chemical injuries
or burns caused by exposure to corrosive substances, radiation, electricity, or extreme
temperatures (thermal injuries) [14]. In contrast, chronic wounds are characterized as
wounds that do not normally heal in an orderly manner and within an adequate time frame.
Typically, chronic wounds remain in the inflammatory phase of the healing process, with
tissue repair delayed beyond 12 weeks from the initial time of trauma (Figure 2). As a result,
chronic wounds attract high concentrations of pro-inflammatory cytokines, proteolytic
enzymes (proteases), reactive oxygen species/free radicals (ROS), and senescent cells,
which contribute to the maintenance of persistent infection and stem cell deficiency [23].
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These wounds are mostly caused by repeated tissue insults or certain conditions,
such as diabetes, the impairment of locoregional angiogenesis and innervation, or cell
migration [24]. Other causes may be malignant tumors, infections, poor primary treatment,
and other patient-dependent factors [25].
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Keloid and hypertrophic scars represent an aberrant response to the normal wound
healing process [26,27]. These scars are characterized by abnormal, irregular growth
with excessive collagen formation and can be esthetically and functionally disruptive to
patients. Although research in this field has aimed at identifying and approaching an
optimal treatment for structural and functional tissue recovery, a unique, reliable, and
effective treatment protocol for this type of scar is not yet known. However, it seems
that surgical therapy consisting of excision followed by intralesional steroid injection in
the postoperative period would have a reasonable outcome with a low recurrence rate.
However, keloid and hypertrophic scars remain a challenge both for the medical staff
who strive to apply an effective treatment and for the patient who has to continue their
daily life with a diminished local functional capacity and low self-esteem due to esthetic
changes [26,28].

Considered a major public health problem, burns are responsible for approximately
11 million annual casualties worldwide, resulting in 180,000 deaths, as well as significant
morbidity, psychological trauma, and economic losses [29]. In Romania, the mortality rate
due to burns is 4.41 times higher than that in the USA [30]. For example, between 2006
and 2015, there were 2666 deaths caused by burns, with an annual average of 267 [30]. In
patients with burns, an excessive inflammatory state is maintained, there is an increase
in the metabolic rate secondary to the acute inflammatory response with a persistence of
up to 3 years, and there is a change in the physiology of blood coagulation through the
imbalance of circulating proteins (protein C, protein S, antithrombin III, coagulation factor
XIII, and coagulation factor VIIIa and Va) [31–38].

The Healing Process of Skin Wounds

Following an injury to the skin, multiple organized reactions occur around the in-
jured tissue, culminating in tissue healing. This complex and dynamic physiological
phenomenon consists of four stages (three according to some authors, since hemostasis is
considered to be part of the inflammatory phase), namely, hemostasis, the inflammatory
phase, the proliferation phase (tissue growth), and the maturation and remodeling phase
tissue [1,14,39,40].

Following an injury, a finely orchestrated sequence of actions is set in motion by
receptors and cells that participate in the processes mentioned above. Each of these
elements plays a pivotal role in advancing wound healing (Figure 3).

Thus, in the first minutes, vasoconstriction is performed to stop blood loss, and
platelets adhere to the wound and subendothelial structures (collagen, basement membrane,
and microfibrils). Later, platelet aggregation allows for platelets to join together with
the production of membrane changes that lead to the grouping of IIb–IIIa complexes
and the fixation of fibrinogen and calcium. Neutrophils and other inflammatory cells
move to the wound site, causing the release of mediators and cytokines that play roles
in angiogenesis, thrombosis, and re-epithelialization. In turn, fibroblasts stabilize the
extracellular components that later play a supporting role [41,42].

In the inflammatory phase, neutrophils, monocytes, macrophages, lymphocytes, and
other immune cells are recruited to the wound to phagocytose damaged or dead cells,
bacteria, and other pathogenic microorganisms, as well as local debris [41–43]. The inflam-
matory phase lasts from 1 to 4 days post-injury and prepares the wound for regeneration
through phagocytosis and waste removal [39,41,44,45].

After passing through the inflammatory phase, over a period of time between 5 and
20 days, there is the proliferation (proliferative phase) of vascular endothelial cells and
fibroblasts at the wound level because of the secretion of growth factors by the inflam-
matory cells. After fibroblasts multiply, granulation tissue development becomes pivotal
by generating extracellular matrix components such as proteoglycans, hyaluronic acid,
procollagen, and elastin [41]. These compounds serve as an ideal base for the creation of
new blood vessels (angiogenesis). The process of angiogenesis aims to supply oxygen and
nutrients to cells [42]. The next stage of the proliferative or re-epithelialization phase is sig-
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nificant, namely, the migration of epithelial cells from the periphery of the wound/wound
edges to the surface of the granulation tissue to cover the defect, a process also known as
“re-epithelialization” [41,42,46,47].
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The final stage of the healing process is the tissue maturation and remodeling phase,
which begins approximately in the third week and can last up to 12 months. In this
phase, the re-epithelialization and recovery of the tensile strength of the dermis occur. The
resulting scar will be approximately 80% of its original strength. However, the scar will
continue to remodel over a period of several months to several years [1,14,41,48].

In adults, the wound healing process is relatively slower than that in infants and
often results in scarring (healing by fibrosis) rather than regeneration, further requiring
innovative strategies for optimal and scar-free wound healing [49].

In general, age is one of the factors that influence the healing process. The ability
to heal a wound is impaired by aging, leading to decreased skin strength and elasticity,
decreased blood flow to the extremities, and psychological stress [41,50–52].

Other factors that alter the healing process include the sex of the individual, stress,
bacterial colonization, reperfusion injuries, altered cellular response, collagen synthesis
defects, obesity, smoking, alcoholism, vascular insufficiency, and certain pathologies such
as diabetes, along with compromised nutritional or immunological status, which are major
causes of non-healing skin wounds. Local factors that can influence the healing process
include prolonged or repeated local pressure, hypoxia, ischemia, tissue edema, infections,
maceration, and dehydration [41,50–52]. The healing process is dynamic and can vary
based on the type and extent of the wound, as well as individual factors. Proper wound
care, hygiene, and medical intervention, when necessary, can support natural healing
mechanisms and contribute to optimal outcomes.

3. Applications of Hydrogels in Wound Regeneration

Hydrogels occupy a fundamental role in the landscape of regenerative medicine
owing to their multifaceted advantages. Their propensity for biocompatibility allows for
the emulation of the natural extracellular matrix, fostering an environment conducive to
cellular growth, differentiation, and tissue regeneration. Notably, their high water content
and porous structure closely mirror the native tissue milieu, facilitating crucial functions
like nutrient exchange and cellular communication vital for tissue regeneration processes.
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Functioning as carriers, hydrogels enable the controlled and localized delivery of
growth factors, proteins, and therapeutic agents to specific sites, thereby augmenting
tissue regeneration while mitigating systemic side effects. Acting as scaffolds, they offer
mechanical support and spatial guidance, facilitating cellular proliferation and the assembly
of new tissue, thereby assisting in the regeneration of compromised tissue.

The customizable properties of hydrogels, including stiffness, porosity, and degrada-
tion rates, afford adaptability to meet specific tissue requisites, optimizing the regenera-
tive process across diverse applications. Certain formulations exhibit anti-inflammatory
attributes, modulating immune responses to create a more conducive environment for
tissue regeneration.

Their minimally invasive applicability in injectable, implantable, or topical forms
enables precise localization at injury sites or tissue defects, enhancing targeted therapeu-
tic interventions. In the domain of tissue engineering, hydrogels serve as foundational
platforms facilitating cell attachment, growth, and differentiation, thereby contributing
significantly to the creation of artificial tissues and organs.

Moreover, hydrogels exhibit versatility in supporting the regeneration of a broad
spectrum of tissues, encompassing bone, cartilage, skin, neural, and cardiovascular tissues,
catering to varied clinical demands. The controlled degradation rates of hydrogels allow
for temporary structural support during tissue healing, gradually integrating with newly
formed tissue and obviating the necessity for removal surgeries.

The amalgamation of these attributes distinctly positions hydrogels as versatile and
promising tools within the realm of regenerative medicine. Their utilization offers com-
pelling solutions for tissue repair, organ regeneration, and the advancement of therapeutic
outcomes across diverse medical conditions and injuries.

3.1. Regenerative Hydrogels: Chemical Composition and Mechanisms of Action Involved in
Wound Healing

Hydrogels, due to their specific structure and properties, have an extremely strong
potential to become the future of regenerative medicine. Their properties of the mechanical,
electrical, and chemical replication of the human skin give them an advantage over other types
of dressings. They can be applied either topically or by spraying or in some selected cases, by
injection (especially when it is necessary to administer some drugs/active substances).

The wound healing process is a complex one involving multiple factors (both in-
ternal and external), and the wound microenvironment significantly influences healing
time. Therefore, in recent years, the use of advanced biomaterials has been intensively
researched for therapeutic effects, especially anti-inflammatory ones, in the treatment of
chronic wounds.

Ever since their discovery in the 1960s, synthetic hydrogels have been increasingly
used in the engineering of biological systems [53].

Traditional/conventional wound dressings mainly focus on passively protecting
wounds against external pollutants and invaders and cannot actively stimulate the wound
healing process [54]. Traditional dressings are not effective in adequately treating chronic
wounds, such as infections and wounds associated with diabetes. Therefore, it has become
necessary to develop a new generation of dressings with functional properties that not
only protect against physical injury but also accelerate the tissue regeneration process to
facilitate wound healing [55,56].

Hydrogel-based dressings outshine conventional options such as bandages and gauze
because of their remarkable characteristics, compatibility with bodily tissues, and ex-
ceptional ability to retain water. They maintain a moist environment for wounds and
consistently absorb exudate [57]. Hydrogel-based dressings are also advantageous because
of their ability to biodegrade, which prevents secondary deterioration during dressing
replacement. This impressive capacity makes them ideal materials for wound care [58–61].
The ability to absorb water and swell in an aqueous environment is due to hydrophilic
groups such as -NH2, -COOH, -OH, -CONH2, -CONH, and -SO3H [62–69].
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In contrast to foams and films, hydrogels feature a three-dimensional porous structure
akin to the natural extracellular matrix (ECM), offering an advantageous environment
for cell growth and movement. These dressings can be custom-designed structurally and
biochemically, allowing for diverse properties, with their anti-inflammatory function being
widely used and prominent [55,70–74]. Over the past 60 years, hydrogels have been de-
signed to be topically applied, injectable, and sprayed on many organs and tissues [75–78].

The categorization of hydrogels (illustrated in Figure 4) relies on various factors includ-
ing their source, preparation methods, dimensions (macrogels, microgels, nanogels), compo-
sition (homopolymers, multipolymers or heteropolymers, copolymers [79], interpenetrating
polymer networks, hybrids, composites), crosslinking, properties [80], responsiveness to
environmental stimuli (physical, chemical, biochemical) [81,82], structure (amorphous or
semicrystalline), degradation extent (biodegradable, bioabsorbable, bioerodible, controlled
degradation) [83], and ionic charge (nonionic, ionic, zwitterionic, amphoteric) [84,85].
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There are four types of natural biodegradable polymers used to make hydrogels used
in clinical applications (the first two are from the polysaccharide category) [85–92]:

(1) Homopolysaccharides (cellulose and derivatives, pullulan and derivatives, dextran,
gellan, carrageenans and sulfated derivatives, glycogen, inulin, gum guar, Acacia
gum, pectin, and starch);

(2) Heteropolysaccharides (chitosan/chitin and derivatives, hyaluronic acid, chondroitin
sulfate and other derivatives, xanthan gum, heparin, pectin, glycosaminoglycans/mu-
copolysaccharides, glucomannans, laminarin, proteoglycans, agar, gum arabic, gum
tragacanth, and arabinoxylans);

(3) Polypeptides/proteins (gelatin, collagen, albumins, elastin, fibrin, fibronectin, fibrino-
gen, immunoglobulins, lactoferrin, casein, zein, soy protein, whey protein, calmodulin,
prolamins (gluten and gliadin), protamines, lysozyme, histones, enzymes, hemoglobin,
cytochrome C, and interferon);

(4) Polynucleotides and others (deoxyribonucleic acid/DNA and ribonucleic acid/RNA
and lignin) [85–92].

The most used synthetic polymers for obtaining hybrid hydrogels can be classified
into three main categories as follows: biodegradable, non-biodegradable, and bioactive
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polymers [85,93–96]. The most popular and widely used synthetic polymers are poly
(ethylene glycol) (PEG), poly (lactic acid) PLA, copolymers, and poly (vinyl alcohol) (PVA)
for the production of biodegradable hydrogels [85,97–101].

Hybrid polymer hydrogels are known for their biodegradability and biocompatibility,
as well as the ability to allow for the passage of oxygen (increased permeability and
sensitivity), nutrients, and water-soluble metabolites. They represent a promising option
for cell encapsulation and show remarkable similarity to natural soft tissues. In the field of
regenerative medicine, polymer hybrid hydrogels have demonstrated significant efficiency
in tissue remodeling and the development of therapeutic delivery systems, facilitating
cell attachment and proliferation [85,102,103]. By combining the properties of natural and
synthetic polymers for the formation of hybrid hydrogels, an innovative approach with
bioactive action in the field of tissue engineering is achieved. Thus, hybrid hydrogels
are gaining popularity among researchers in this field who want to identify the best
combinations and methods of administration for maximum efficacy.

3.2. The Role of Reactive Oxygen Species (ROS) from Regenerative Hydrogels in the Wound
Healing Process

Reactive oxygen species (ROS) play a role in the field of regenerative hydrogels,
particularly in the context of wound healing and tissue regeneration. In recent research,
the focus has shifted toward understanding the role of reactive oxygen species (ROS),
chemokines, and macrophage phenotypes as crucial elements contributing to heightened
inflammation seen in skin or organ injuries [55,57,70,73,104,105]. Natural or synthetic
polymers undergo physical rearrangement or chemical crosslinking to acquire diverse
functions and properties. Crosslinking agents are used to form a three-dimensional network
within the hydrogel. This network structure affects the hydrogel’s mechanical properties,
stability, and drug release kinetics. Physically, hydrophobic associations, hydrogen bonds,
and ionic interactions form, while chemically, polymers link via covalent bonds in chemical
crosslinks, which may include disulfides, Schiff bases, and borate ester bonds. The methods
of crosslinking vary based on the polymers’ nature [104,105].

Anti-inflammatory hydrogel dressings combine specific drugs, small bioactive molecules,
and innovative biomaterials within a hydrogel matrix (as depicted in Figure 5). They can
eliminate excess free radicals, sequester chemokines, and promote the polarization of M1-
M2 macrophages, thus having the effect of reducing excessive inflammation in wounds
and facilitating the healing process. These dressings act by stimulating angiogenesis
(the formation of new blood vessels to improve locoregional vascularization), collagen
deposition, epithelial cell migration, reduction in fibrosis (the exaggerated pathological
development of connective tissues), and extracellular matrix remodeling [57].
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Free radicals (ROS) are represented by hydroxyl radicals (OH), hydroxyl ions (OH-),
superoxide anion (O2−), and peroxide (O2

2−) [106,107]. Different studies have indicated
that lower levels of reactive oxygen species (ROS) support the healing of tissues. Ab-
normal responses like heightened inflammation, seen in hypoglycemic conditions and
infections, involve the substantial infiltration of inflammatory cells like neutrophils and
macrophages, resulting in elevated ROS levels. This increase in ROS can have deleterious
effects such as damage to DNA structures, membrane lipids and proteins, cell damage, and
apoptosis [108–113].

3.3. Compounds with Antioxidant Properties used in Formulation of Regenerative Hydrogels for
Wound Healing Process

It is known that an excess of ROS can have negative effects on the healing process.
The use of compounds with antioxidant properties in hydrogels through various processes
such as combination, modification, and polymerization has shown promising results in
neutralizing excess ROS and promoting effective wound healing. Depending on their
nature, these compounds have been classified into five categories as follows: (1) natural
polyphenols, (2) polysaccharides, (3) amino acids, (4) synthetic polymers, and (5) novel
metallic nanomaterials [114,115].

3.4. Natural Polyphenols

Phenolic hydroxyl groups from natural polyphenols have the ability to stabilize ROS
through chemical modifications such as hydrogen shifts and electron transfer [116]. More-
over, natural polyphenols chelate transition metals and exert a protective and activating
role on antioxidant enzymes by inhibiting oxidative enzymes resulting from oxidative stress
but are also involved in antimicrobial protection [117–119]. Natural polyphenols are mainly
compounds from the category of flavonoids (quercetin, catechin, catechol, curcumin) and
acid ester polyphenols (ferulic acid, gallic acid, tannic acid, ester derivatives) [116–125].

For example, curcumin, the primary active component found in turmeric, possesses
robust anti-infective, antioxidant, and anti-inflammatory attributes, making it a promising
candidate for topical application on wounds [126]. In a study conducted by di Luca et al.,
a multifunctional compound was devised, merging curcumin-loaded hydrogels with mi-
croparticle systems incorporating polyphenols known for their antimicrobial properties
and quercetin [124]. The final results demonstrated that the designed system reduced
H2O2-induced oxidative cellular stress as well as the proliferation of methicillin-resistant
Staphylococcus aureus. Another antioxidant bioactive compound is resveratrol (RSV),
a polyphenol with excellent capacity for tissue regeneration, for modulating cytokine
production, and insulin sensitivity [127]. Gallic acid, an important polyphenolic compo-
nent, exhibits special properties, namely anti-inflammatory, antimicrobial, antibacterial,
and ROS neutralization properties, thus considerably accelerating the wound healing
process [122,128]. Ferulic acid is an organic phenolic compound derived from hydrox-
ycinnamic acid, found in the cell wall of most plant species, linked to molecules such as
arabinoxylans [129]. Wei et al. investigated the properties of ferulic acid by including it as
a bioactive substance in a hydrogel with the aim of rapid wound healing [121]. The results
were promising, as the antioxidant capacity of ferulic acid improved epithelial and connec-
tive tissue regeneration. Another natural polyphenol derived from plant species, widely
used in bioengineering, is tannic acid. Hydrogels containing this bioactive compound, due
to its valuable properties, show important characteristics such as adhesion, antibacterial
activity, and an antioxidant effect. They lead to accelerated collagen deposition at the lesion
and stimulate vascular endothelial growth factor (VEGF) expression while reducing tumor
necrosis factor-alpha (TNF-α) levels [125,130].

3.5. Polysaccharides

Polysaccharides find wide applications across multiple medical domains like drug
delivery, wound care, bioimaging, and tissue engineering. Thanks to their structure, which
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involves hydroxyl and carboxyl groups, polysaccharides possess the ability to participate
in hydrogen and electron transfer reactions [131]. Importantly, polysaccharides exhibit
significant antioxidant properties by directly or indirectly counteracting reactive oxygen
species (ROS). They have the capacity to enhance the function of antioxidant enzymes
while also impeding the activity of enzymes that promote oxidation. Thus, polysaccharides
contribute to maintaining the redox balance in the body and protect against oxidative
stress [131–135]. Among the polysaccharides with antioxidant effects that are incorporated
into hydrogels are dextran, alginates extracted from seaweed, cellulose, chitin, chitosan,
hyaluronic acid, and paramylon [136–141].

3.6. Amino Acids

Certain amino acids and peptides have the ability to directly interact with reactive
oxygen species (ROS) via functional groups like amino (-NH2), hydroxyl (-OH), carboxyl
(-COOH), and sulfur bonds. Specifically, amino acids that include hydroxyl or sulfhydryl
(-SH) phenolic groups display a more notable antioxidant effect [142]. Among the amino
acids incorporated in hydrogels that exert antioxidant and antibacterial effects are arginine,
silk fibroin peptides, and pearl peptides [143–149].

It is important to note that the balance of ROS is critical, as excessive oxidative stress
can lead to tissue damage. Regenerative hydrogels aim to harness the positive aspects of
ROS while mitigating potential negative effects, contributing to the overall success of tissue
regeneration and wound healing. The field of redox-responsive hydrogels continues to
advance, offering innovative solutions for controlled and targeted therapeutic delivery in
regenerative medicine.

All the natural materials mentioned above show good biocompatibility. However, one
of their main disadvantages is increased enzymatic degradation as well as low physical
and chemical stability. These aspects may limit their use in certain medical applications, as
material durability and strength are critical factors for long-term therapeutic success [57].
However, these problems can be avoided or controlled by using synthetic materials, which
will be discussed next.

3.7. Synthetic Polymers

In the field of synthetic polymers, research efforts have focused on the development of
materials that compensate for the disadvantages of natural bioactive substances. Hydrogels
containing synthetic polymers (polyvinyl alcohol/PVA, polyacrylic acid/PAA, polyamide
polyesteramides/PEA, dopamine, puerarin) show high hygroscopic properties, antioxidant,
antibacterial, and antimicrobial properties, and an acceleration of the wound healing
process (cell proliferation, regeneration tissue, reducing the inflammatory phase of the
healing process) [150–155].

3.8. Novel Metallic Nanomaterials

Recent studies have revealed that materials and their oxides can exhibit antioxidant
properties when used in the form of nanomaterials. Specific metal oxide nanoparticles, like
CeO2, selenium (Se), and Cu5.4O, demonstrate capabilities akin to antioxidant enzymes
such as superoxide dismutase (SOD), catalase, and glutathione peroxidase [156–158]. Se-
lenium nanoparticles (SeNPs) are acknowledged for their robust anticancer, antibacterial,
antimicrobial, antiviral, anti-inflammatory, and antioxidant characteristics, all of which
notably influence the process of wound healing. They are highly sought after due to
their ability to support and accelerate tissue regeneration and promote effective wound
healing [159–163].

CeO2 nanoparticles are currently used for a multitude of medical applications, drug
therapy administration, and biosensing (biosensing, the detection of target molecules based
on the principles used by a living system, such as the immune system) [57,164]. Hydro-
gels incorporating CeO2 nanoparticles are effective in wound healing due to antioxidant,
antibacterial and antimicrobial effects [165].
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Regarding Cu5.4O nanozymes, they were investigated for their ROS neutralization
effect as well as in combination with heparin for chemokine sequestration. The hydrogel
showed success in suppressing inflammatory cell migration (inflammatory chemokines
such as monocyte chemoattractant protein-1 [MCP-1] and interleukin-8 [IL-8]) but also in
neutralizing ROS from wound exudate with decreased oxidative stress cellular through
the controlled release of Cu5.4O [166]. An intimate cellular mechanism that contributes to
the acceleration of the wound healing process is the sequestration of chemokines, which
leads to the reduction in local inflammation. Chemokines (chemotactic cytokines) are a
superfamily of small proteins with a signaling role through G protein-coupled heptahe-
lical chemokine receptors on the cell surface. They stimulate the directed movement of
leukocytes (white cells) and endothelial and epithelial cells. Therefore, chemokines are
of particular importance in the development and maintenance of the homeostasis of the
immune system, being involved in all immune and inflammatory responses, whether
protective or harmful in nature [167].

Chemokine receptors can bind multiple types of chemokines, while the same chemokine
can interact with multiple types of receptors. This complex interaction between chemokines
and receptors plays a fundamental role in the pathophysiological processes of chronic in-
flammation, tumorigenesis (tumor formation), and autoimmune diseases. Thus, chemokines
are involved in the regulation and control of these pathological processes, having a signifi-
cant impact on the functioning of the immune system and general health [168,169]. Being
involved in all four phases of healing (hemostasis, the inflammatory phase, proliferation
phase, and tissue maturation and remodeling phase), chemokines influence these phases
through complex cellular mechanisms that determine angiogenesis, collagen deposition, and
re-epithelialization, all of which have the same purpose, namely wound healing [170–172].

The persistence of chemokines and excessive infiltration into wound areas can have
a negative impact on the wound healing process. Although chemokines are necessary in
the initial stages of healing to recruit certain cells, an excessive and long-term presence can
inhibit tissue regeneration and delay healing. This persistent infiltration can be associated
with chronic inflammation and the formation of excess scar tissue, adversely affecting the
healing process. Therefore, the regulation and balance of chemokine levels may play a
crucial role in achieving efficient wound healing [173–175]. As a result of advanced research,
effective therapeutic strategies have been identified to regulate the excessive proliferation
of chemokines in wounds. These strategies include the use of monoclonal antibodies, small
molecule antagonists, and glycosaminoglycans (GAGs) that have the ability to interfere
with the distribution and activity of chemokines [170]. GAGs are negatively charged
carbohydrate macromolecules (polysaccharides) that constitute important components
of the ECM in connective tissues. GAGs (glycosaminoglycans) play roles in numerous
pathological conditions like cardiovascular diseases, neurodegenerative diseases, and
tumor processes [176,177].

In more complex wound scenarios, like diabetic wounds or burns, the local infiltration
and persistence of inflammatory cells result in a significant release of pro-inflammatory
chemokines such as MCP-1 and IL-8. These chemokines contribute to intensifying the
invasion of inflammatory cells into the wound area, thus amplifying the cycle of chronic
inflammation and perpetuating it over time [178,179].

It appears that GAG-based hydrogels with anti-inflammatory properties represent
one of the leading therapeutic strategies for wound healing. They achieve beneficial
interactions between GAGs and chemokines, thereby sequestering excess chemokines
locally and ultimately contributing to the promotion of tissue healing [178,180,181].

It is important to highlight that the role of chemokines in the wound is extremely
important and complex, and anti-inflammatory hydrogels are not aimed at sequestering or
eliminating all chemokines but only those in excess such as MCP-1 and IL-8, thus promoting
wound healing. Xu et al. fabricated a biomimetic hydrogel using polyvinyl alcohol (PVA)
and chitosan (CS) as hybrid materials but loaded with chemotactic factor (SDF-1) for the
rapid stimulation of hematogenous marrow mesenchymal stem cell (BMSC) recruitment
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in situ, for speeding up the tissue repair and regeneration process [182]. The loaded
chemokines can be released in a controlled manner from the hydrogel and can recruit
BMSCs both in vitro and in vivo. Incorporating specific chemokines that aid in wound
healing into hydrogel dressings can significantly accelerate the overall healing timeline.

Macrophages participate in engulfing apoptotic neutrophils during the initial stages
of healing, promoting angiogenesis, collagen deposition, and the migration of epithelial
cells. Macrophages have been classified into pro-inflammatory macrophages (M1) and
anti-inflammatory macrophages (M2), although this classification is a matter of debate. M1
macrophages produce ROS, nitric oxide (NO), interleukin-6 (IL-6), tumor necrosis factor-
alpha (TNF-α), and matrix metalloproteinase 9, playing a crucial role in recognizing and
removing pathogens, cellular debris, and apoptotic neutrophils during the early stages of
the healing process. M2 macrophages support elevated levels of growth factors like platelet-
derived growth factor (PDGF) and insulin-like growth factor-1 (IGF-1) while expressing
arginase-1 (Arg-1), minimizing fibrosis and promoting collagen deposition, angiogenesis,
and migration epithelial cells [183–185]. Some macrophages display both pro-inflammatory
and anti-inflammatory phenotypes and may even exert other biological effects.

The phenomenon of macrophage polarization is strongly influenced by the specific
microenvironment of the wound, which undergoes dynamic changes during the healing
process, having a direct impact on the phenotype and functions of macrophages [186]. An
urgent critical issue is that adverse factors such as hyperglycemia and bacterial infections
prevent the transformation of pro-inflammatory (M1) macrophages into anti-inflammatory
(M2) macrophages. As a result, the wound gets trapped in an inflammatory state, hin-
dering epithelial regeneration, collagen formation, and angiogenesis. This obstacle pre-
vents the shift toward the healing phase. Consequently, the sustained polarization of
pro-inflammatory macrophages (M1) in wounds emerges as a critical concern demanding
immediate attention [187].

Recent years have witnessed the development of various dressing types tailored to
regulate the cellular environment (microenvironment) in chronic wounds. Their specific aim
is to facilitate macrophage polarization during the latter stages of the healing process. One
of the types of dressings that has attracted the most attention is represented by hydrogels.
The use of hydrogels enables the immunomodulation of chronic wounds by releasing
bioactive molecules, including antimicrobial substances, immunomodulatory components,
growth factors, genes, and cells, which help promote the transition of macrophages from
the M1 to M2 stage. Consequently, all of these accelerate the physiological process of tissue
regeneration with wound healing [188–195].

Lactic acid-producing bacteria, often used as probiotics, have significant beneficial
effects on protecting the host against harmful microorganisms, strengthening the host
immune system, and reducing metabolic disorders [196]. In a study by Lu et al., a thermore-
sponsive hydrogel was formulated with heparin and poloxamer, which included a delivery
method of live Lactococcus bacteria [197]. The lactic acid produced by these probiotic bacteria
can cause macrophages to phenotypically transform into the M2 type, significantly favoring
the angiogenesis process in diabetic wounds. Also, the resulting hydrogel can stimulate the
production and protection of the growth factor VEGF, leading to the increased proliferation,
migration, and tube formation of endothelial cells [197].

The specific physicochemical properties of any type of hybrid hydrogel are outstand-
ing thermodynamic stability, high solubilization capacity [167], density, swelling/deflating
capacity, high water content and permeability, low surface tension and low relative vis-
cosity [175], rigidity, specific structure, sensitivity [127], biocompatibility and biodegrad-
ability (thus avoiding accumulation in organs) [195], non-immunological response, and
the ability to undergo sterilization techniques, all of this of course alongside the elastic
capacity and structural similarity to the ECM [48]. These properties can be improved
by selecting the components that make up the hydrogel (the chemical composition, hy-
drophobic/hydrophilic ratio, and other complex biochemical interventions). Depending
on their chemical processing to meet the needs of the clinical application, the degree of
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swelling/deflation, mechanical properties (a harder material is required for bone tissue
compared to that used for adipose tissue), reactivity to external stimuli (the development
of immunological reactions to contact with allergens from outside), and permeability can
be modified [85,198].

Figure 6 shows the functional properties of a hydrogel-based dressing, with proper-
ties necessary to accelerate the wound healing process without complications (bacterial
infections, unsightly tissue retraction, excessive bleeding) [61].
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3.9. Clinical Applications of Regenerative Hydrogels

Hydrogels possess the capacity to function as carriers for pharmaceutical agents,
enabling the localized and controlled delivery of medications. These systems can be
tailored to facilitate drug release triggered by specific stimuli such as variations in pH,
temperature alterations, or enzymatic activity, thereby exhibiting suitability for targeted
therapeutic interventions. Moreover, hydrogel-based dressings foster a conducive envi-
ronment for wound recovery by ensuring the moisture retention of the wound bed. This
aids in the facilitation of autolytic debridement and acts as a protective barrier against
extraneous contaminants. Additionally, certain hydrogel formulations incorporate antimi-
crobial components, augmenting their utility in averting infections. Hydrogels have a
three-dimensional structure and a network of hydrophilic polymers capable of absorbing
water in addition to biological fluid [199–207]. Thus, they can build a soft and wet 3D
structure, which is similar to that of the extracellular matrix, available to encapsulate the
cells. This important aspect leads to those hydrogels enjoying increased popularity in
application as wound healing dressings [208,209].

Hydrogels used for tissue regeneration are often designed to provide a physico-
chemical environment conducive to cell growth and differentiation and subsequent tissue
regeneration (Figure 7). These modifications mainly consist of chemical regulation on the
porosity, cell adhesion ligands, and viscoelasticity of the hydrogels [210–213].

The mechanical properties of the hydrogel significantly affect local cell recruitment
and differentiation. For example, soft hydrogels have been shown to promote adipogen-
esis, while stiffer hydrogels induce stem cell osteogenesis [214,215]. Also, hydrogels are
increasingly modified and designed to specifically recruit local immune cells and exert
immunomodulatory effects, for example, for cancer therapy [216–220].

Hydrogels have several applications for treating imbalances or trauma that can lead
to tissue damage, such as skin or organ damage. They can be used as mechanical support
for the regeneration and healing of damaged tissues. In addition, hydrogels can be used for
the controlled release of drugs or cells [221–240], local cell recruitment [216–219,221,241], or
repeated localized radiotherapy [242,243], providing a precise and efficient way to deliver
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them to affected areas. This ability to deliver active substances or cells in a controlled
manner to specific tissues makes hydrogels a promising option in regenerative medicine
and therapy.
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The characteristics of hydrogel-based dressings (a hemostatic effect, the stimulation
of angiogenesis, and antibacterial, antimicrobial, and anti-inflammatory properties) make
them ideal for wound healing, the prevention of subsequent infections, and the prevention
of unsightly scar formation. Natural polymers, such as cellulose, chitosan, collagen, and
hyaluronic acid, contain endogenous factors with a bioactivation role; therefore, they are
exceptional substances for speeding up the healing process and maintaining a reduced
microbial status at the wound level.

Ying H. et al. succeeded in adapting a hydrogel based on collagen and hyaluronic acid
to promote spontaneous wound healing. At the same time, this hydrogel also exerted an
antibacterial effect by inhibiting the growth of Escherichia coli and Staphylococcus aureus [244].

In addition to hemostatic and wound healing-enhancing effects, hydrogels are syn-
thesized to exert antibacterial, antimicrobial, anti-inflammatory, and local adhesion effects
at the wound level [244–249]. By combining these multiple effects, hydrogels can provide
complete therapeutic support and facilitate effective wound healing.

Hydrogels can be used in addition to acute and chronic wound therapy, in more se-
rious conditions such as myocardial infarction [250–260], spinal cord injury [261–281],
intervertebral disc degeneration leading to low back pain (LBP) over time [282–287],
and stroke [288–294], in the administration of neuroprotective therapies to counteract
neurodegenerative diseases such as Parkinson’s disease and Huntington’s chorea (Hunt-
ington’s disease) [295–299], in the administration of therapy in oncological conditions
[221–231,238,240,241,300–307], eye disorders [308–322], bone disorders, and/or bone regener-
ation [323–329], and in the prevention of postoperative adhesions or complications [330–335].

Clinical studies exploring the regenerative capacity of healing hydrogels have shown
promising results across various applications. Table 2 summarizes the biological and
therapeutic effects of certain hydrogels according to the bioactive substances in their
composition, as well as by combining them with other substances to obtain a chemical
balance that reduces the risks of administration. The table summarizes the composition
of the hydrogels, the mode of administration, and the type of subject investigated in
the study (laboratory animal). Clinical studies on different experimental animals have
demonstrated the effectiveness of different regenerative hydrogels in accelerating the
wound healing process, some of the hydrogels also have a significant anti-inflammatory or
antimicrobial effect, stimulating collagen synthesis or even antioxidant effects determined
by the composition of the hydrogels, as can be seen from Table 2.
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Table 2. Therapeutic effects of different hydrogels with bioactive substances.

Bioactive Compound Hydrogel Composition Method of Application Experimental Subject Therapeutical Effect/Limitations Reference

PGE2
(Prostaglandin E2) PGE2/Chitosan (CS) Topical (in gel form) Lab rats

Faster decrease in ROS and pro-inflammatory cytokine
(IL-1β) levels;

Acceleration of wound healing by decreasing infiltration of
inflammatory cells at level of injury;

Increased gene expression for angiogenesis-related genes (PLGF,
VEGF-A, PDGF-BB, b-FGF, Ang-1, and Ang-2)

[194]

Resveratrol

RSV/(collagen–laminin based
dermal matrix)/Hyaluronic acid–
Dipalmitoylphosphatidylcholine

(HA-DPPC)

Topical (in gel form) Lab rats (Wistar Albino)
Strong antioxidant activity;

Acceleration of wound healing and tissue reconstruction in
diabetic wounds

[127]

Chitosan Quaternized chitosan–Matrigel–
polyacrylamide (QCS-M-PAM) Topical (in gel form) Lab rats (Sprague Dawley +

Kunming)
Antibacterial protection against Staphylococcus aureus (S. aureus)

and Staphylococcus epidermidis (S. epidermidis) [336]

Chitosan (CS) CS–Poly(vinyl alcohol) (PVA)
(SNPECHG) Local (bandage) Lab rats (Sprague Dawley)

Antimicrobial effect on S. aureus and S. epidermidis;
Controlled release of silver ions (Ag+) and epidermal growth

factor (EGF);
Collagen deposition;

Accelerating re-epithelialization process;
Efficacy in faster healing of diabetic ulcers

[337]

Chitosan (CS) CS/Agarose (CAH) Topical (in gel form) Lab rats (Wistar)
Improvement in re-epithelialization;

Reduction in inflammation secondary to trauma;
Antibacterial activity on S. aureus

[338]

Nanoparticles (NPs) CeO2
(CeO2 NPs) CeO2 NPs/Chitosan Topical (in gel form) Lab rats Acceleration of healing process especially of first stages;

Exceptional antibacterial and antioxidant properties [165]

Paeoniflorin (PF) HA-PF
(Hyaluronic acid-PF) Topical (in gel form) Lab rats (C57BL/6J)

Polarization of macrophages from M1 to M2;
Improving angiogenesis in diabetic wounds;

Promotion of collagen deposition and local re-epithelialization
[193]

Collagen (COL) COL-HA Topical (in gel form) Lab rats

Antibacterial effect on Escherichia coli (E. coli) and Staphylococcus
aureus (S. aureus) objectified by decreasing colony-forming

unit (CFU);
Promotion of rapid wound healing by accelerating coagulation
and cell adhesion processes, vascular cell growth, angiogenesis,

and re-epithelialization;
Formation of collateral circulation, epithelial layer, and

collagen fibers

[244]
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Table 2. Cont.

Bioactive Compound Hydrogel Composition Method of Application Experimental Subject Therapeutical Effect/Limitations Reference

Ciprofloxacin (CF) CF@GH (Graphen-oxide)/SF
(Silk fibroin) Topical (in gel form) Lab rats (Kunming)

Antibacterial effect on S. aureus and Pseudomonas aeruginosa
(P. aeruginosa);

Cell growth of fibroblasts, keratinocytes, and endothelial cells;
Improvement in cell proliferation and migration corresponding

to proliferative phase of wound healing;
High healing capacity in case of burns

[246]

Agar Agar-Fumaric acid (FA)–silver
nanoparticles (AgNPs) Topical (in gel form) Lab rats (Albino Wistar)

Antibacterial against E. coli, P. aeruginosa, S. aureus;
Accelerates healing rate of skin through epithelization,

angiogenesis, and decreased lipid peroxidation;
Organized collagen deposition

[339]

(Pearl peptides)

(Pearl
peptides/selenium-containing

block-functionalized
PEG)/Polypropylene glycol

Topical (in gel form) Lab rats
Reduction in cellular oxidative stress;

Improving resistance of skin fibroblasts;
Promoting angiogenesis for wound healing

[149]

Ferulic acid (Feruloyl-modified
peptide/glycol chitosan) Topical (in gel form) Lab rats (Sprague Dawley) Epithelial and connective tissue regeneration [340]

Tannic acid

Tannic acid/PVA (Polyvinyl
Alcohol)/PEG (Polyethylene

Glycol)/chitosan
carboxylate/HA

Topical (in gel form) Rabbits
Acceleration of collagen deposition;

Decrease in TNF-α levels;
Regulation of VEGF expression with a facilitating effect

[125]

Dopamine (Dopamine-substituted
multidomain peptide) Topical (in gel form) Lab rats (BALB/c)

Considerable shortening of inflammatory phase in process of
wound healing;

Antibacterial effect
[153]

Lactic acid Lactococcus/(heparin-
poloxamer) Topical (in gel form) Lab rats M2 phenotypic transformation of macrophages;

VEGF production and protection [195]

Vitamin E Chitosan/Alginate/Vitamin E Topical (in gel form) Lab rats (Wistar)
Accelerate wound healing process

Increase cell proliferation;
Promotion of granulation tissue formation

[341]

(Cerium oxide nanoparticles)
(CeONPs)

GelMA-DOPA
(Dopamine)—AMP

(Antimicrobial peptide)—CeONs

Topical (in the form of a
spray by spraying) Lab rats (Sprague Dawley)

Speeding up wound healing process;
Promoting tissue remodeling following healing;

Antimicrobial, adhesive, degradative, and
ROS-neutralizing properties

[342]

5 mg mL−1 fibrinogen and
25 U mL−1 thrombin with
mesenchymal stem cells

(MSCs)

Polymerized fibrin
gel/5 mg mL−1 fibrinogen s, i

25 U mL−1 thrombin with MSCs

Topical (in the form of a
spray by spraying) Lab rats

Reproduction of local culture system for MSCs to facilitate
wound healing;

Prevention of scarring
[343]
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Table 2. Cont.

Bioactive Compound Hydrogel Composition Method of Application Experimental Subject Therapeutical Effect/Limitations Reference

Silver nitrate (AgNO3)
PLGA (Poly(lactic-co-glycolic

acid))/PEG Polyethylene
Glycol)/Ag

Topical (in the form of a
spray by spraying) Pig Prevention of risk of infection;

Controlled release of antimicrobial silver [344]

Collagen COL-CS Injection Lab rats (Sprague Dawley) Antibacterial effect on E. coli and S. aureus;
Good hemostatic capacity, accelerate wound healing [245]

Quaternized chitosan (QCS) QCS/Curcumin/(benzaldehyde
terminated) Injection Lab rats (Kunming)

Improve granulation tissue formation;
Accelerate healing process;

Antioxidant properties;
Antibacterial properties on E. coli and S. aureus

[338]

Hyaluronic acid

Hydrogels (dual-crosslinking) by
the separate modification of HA

by adamantane and thiols
(Ad-HA-SH) or β-cyclodextrin
and methacrylates (CD-MeHA)

Injection Sheep Dorset

Maintenance of myocardial function (contractility) after
infarction;

Passive stiffness of treated infarct region was higher in test group
compared to control group

[250]

Derived from the myocardial
matrix

Derived from the myocardial
matrix Injection Pig

Beneficial effects on heart muscle; reduction in fibrosis after
infarction;

appearance of new vascularization foci at level of
subendocardial area;

prevention of left ventricular (LV) remodeling secondary to
myocardial infarction (MI)

[251]

Hyaluronic acid Ad-HA-SH + CD-MeHA Injection Sheep Dorset

Maintenance of myocardial wall thickness at 8 weeks compared
to other two groups examined;

Reduction in ventricular dilatation secondary to MI;
Attenuation of reduction in ejection fraction (EF) secondary

to MI

[252]

Carboxy betaine (CB)
Poly(carboxybetaine

methacrylate) (PCB)-acrylic
anhydrid

Injection Lab rats

Effects on cardiac tissue post-myocardial infarction;
Decrease in homocysteine concentration;

Cytoprotective action by preventing release into circulation of
myocardial cytolysis enzymes (creatine kinase/CK, lactate
dehydrogenase/LDH, aspartate aminotransferase/AST);

Decreased fibrosis;
Promotion of angiogenesis;

Preservation of ejection fraction;
Physiological structural maintenance of left ventricle by

arresting or slowing secondary MI remodeling;
Significant efficiency on free radicals

[345]
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Table 2. Cont.

Bioactive Compound Hydrogel Composition Method of Application Experimental Subject Therapeutical Effect/Limitations Reference

Chitosan CS–Dextran–dopamine Injection Lab rats (Sprague Dawley)

Antibacterial, adhesive, and angiogenic capacities;
Controlled release of AgNPs and deferoxamine in acidic media;

Deferoxamine release promoted angiogenesis by increasing
expression of hypoxia-inducible factor (HIF-1α) and vascular

endothelial growth factor (VEGF)

[346]

Chitosan
CS–Poly(d,l-lactide)-

poly(ethylene
glycol)-poly(d,l-lactide) (PLEL)

Injection Lab rats

Antibacterial and adhesive properties;
Promotes angiogenesis by regulating gene expression for VEGF

and b-FGF;
Significantly accelerates wound healing

[347]

Chitosan CS-Oxidized HA-graft-aniline
tetramer (OHA-AT) Injection Lab rats (Kunming)

Biodegradable, antibacterial, electroactive, and antioxidant
properties;

Promotes neovascularization;
Accelerated wound healing by increasing granulation tissue

thickness, collagen deposition, and angiogenesis

[348]

Pullulan
Pullulan/horseradish peroxidase

(HRP)/hydrogen peroxide
(H2O2)

Injection Lab rats (Sprague Dawley) Prevention of adhesion of abdominal tissue following surgery [349]

(Silk fibroin peptide)

(Silk fibroin peptide-grafted
hydroxypropryl

chitosan)/oxidized
microcrystalline

cellulose/tetramethylpyrazine

Injection Lab rats
Strong antioxidant capacity;

Accelerating healing process of wounds, preventing formation
of scars

[350]

Polyvinyl alcohol (PVA)
PVA/GM-CSF

(granulocytic-macrophage colony
stimulating factor)/mupirocin

Injection Lab rats

Reduction in ROS levels;
Promotion of angiogenesis and collagen deposition

around wound;
Percentage increase in M2 macrophages;

Acceleration of wound healing in healthy and diabetic mice

[150]

Chitosan
CS/HAox/CT/Fe

(Chitosan/oxidized hyaluronic
acid/catechol terpolymer/iron)

Subcutaneous implantation Lab rats (Albino Wistar)

Anti-inflammatory, adhesive, and antioxidant properties;
Promotes growth, migration, and proliferation of mesenchymal

stem cells;
Protects cells from oxidative stress through controlled release

of catechol;
It regulates activity of pro-inflammatory cytokine IL-1β

[351]

Abbreviations: PGE2 = Prostaglandin E2; CS = Chitosan; RSV = Resveratrol; HA-DPPC = Dipalmitoylphosphatidylcholine; QCS-M-PAM = Quaternized chitosan–Matrigel–
polyacrylamide; PVA = Poly(vinylalcohol); NPs = Nanoparticles; PF = Paeoniflorin; HA = Hyaluronic acid; COL = Collagen; CF = Ciprofloxacin; GH = Graphen; SF = Silk fibroin; FA = Fu-
maric acid; PEG = Polypropylene glycol; DOPA = Dopamine; AMP = Antimicrobial peptide; MSCs = Mesenchymal stem cells; PLGA = Poly(lactic-co-glycolic acid); QCS = Quaternized chi-
tosan; Ad-HA-SH = Adamantane-Hyaluronic acid-Thiols; CD-MeHA = β-cyclodextrin-Methacrylates-Hyaluronic acid; CB = Carboxy betaine; PCB = Poly(carboxybetaine methacrylate);
PLEL = Poly(d,l-lactide)-poly(ethylene glycol)-poly(d,l-lactide); OHA-AT = Oxidized HA-graft-aniline tetramer; HRP = Horseradish peroxidase; GM-CSF = Granulocytic-macrophage
colony-stimulating factor; HAox = Oxidized hyaluronic acid; CT = Catechol terpolymer.
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Although clinical research has demonstrated potential, the efficacy of hydrogels can
be contingent upon variables such as their composition, structural attributes, and particular
therapeutic use. Further investigations are imperative to refine hydrogel compositions,
dosage strategies, and delivery techniques to achieve optimal regenerative results across
various injury types and tissue repair contexts. Moreover, extensive longitudinal studies
are required to evaluate the long-term durability and enduring efficacy of regenerative
therapies employing hydrogel-based interventions.

Self-healing hydrogels exhibit distinctive attributes that distinguish them within di-
verse applications. These hydrogels possess inherent capabilities for autonomous damage
repair, manifesting the spontaneous restoration of their structural integrity upon compro-
mise. Often reliant on dynamic crosslinking mechanisms, these gels feature reformable con-
nections between polymer chains, facilitating structural reinstatement after post-breakage.
Importantly, they demonstrate the capacity for enduring multiple healing cycles, offering
successive repairs even after sustained damage events. Their robustness enables resilience
against mechanical stress, ensuring the maintenance of structural integrity [352,353].

Furthermore, the adaptability of self-healing hydrogels allows for tailoring to specific
applications, enabling adjustments in mechanical properties, responsiveness to stimuli, and
healing proficiency. Some variants exhibit responsiveness to particular stimuli, such as alter-
ations in temperature, pH, light exposure, or chemical cues, initiating the healing process upon
the occurrence of damage. Notably, their biocompatibility renders them suitable for diverse
biomedical applications, including drug delivery, tissue engineering, and wound healing [354].

Ongoing research focuses on environmentally sustainable formulations, integrating biodeg-
radable or renewable materials to foster the development of more eco-conscious self-healing
hydrogels. Their ability to prolong the lifespan of materials and devices by self-repair further
underscores their significance, potentially extending the utility of various products [355,356].

The unique characteristics intrinsic to self-healing hydrogels serve as a catalyst for
innovation across interdisciplinary domains like materials science, medicine, and engineer-
ing. This distinctiveness not only broadens their scope of application but also fosters the
exploration and advancement of novel technologies.

Self-healing hydrogels exhibit substantial promise in an array of clinical applications,
primarily attributable to their distinct properties. These hydrogels serve as versatile wound
dressings, fostering a protective milieu while stimulating wound healing through au-
tonomous repair mechanisms that restore the gel structure’s integrity. Moreover, their role
as proficient carriers for controlled drug delivery systems augments targeted therapies
by enabling the gradual release of medications or therapeutic agents, thereby mitigating
systemic side effects [357].

In the realm of tissue engineering, self-healing hydrogels assume a pivotal role as scaf-
folds facilitating tissue growth and regeneration. Their ability to emulate the extracellular
matrix enhances tissue repair and regeneration, particularly in applications concerning
cartilage, bone, and other tissue engineering pursuits. Additionally, their utility extends
to serving as biocompatible surgical adhesives, adept at sealing tissues and providing
dynamic support during surgical procedures while retaining self-healing capabilities.

These hydrogels find utility in soft robotics and biomedical devices owing to their
inherent capacity for damage repair, ensuring sustained functionality and durability within
such applications. Explorations in ophthalmology demonstrate the potential for appli-
cations like contact lenses and ocular drug delivery systems, leveraging the self-healing
attributes of these hydrogels for prolonged usability and enhanced comfort [358].

Their compatibility with neural tissues makes self-healing hydrogels promising in
neural interface applications, offering the prospect of mitigating implant-induced damage
and improving long-term biocompatibility and performance. Moreover, ongoing research
endeavors focus on harnessing these hydrogels for orthopedic implants, aiming to enhance
the longevity and functionality of such implants within the body [359].

Overall, the inherent self-healing properties of these hydrogels significantly augment
the efficacy, durability, and safety of diverse clinical interventions across multifaceted medical
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disciplines. Ongoing research endeavors continue to explore and optimize their application
in varied clinical settings, promising advancements and innovations in healthcare practices.

The constituents and arrangement of self-healing hydrogels demonstrate variability
contingent upon the targeted application and desired functionalities. The essential ele-
ments and methodologies consistently employed in their formulation encompass distinct
components [360,361]:

Polymeric matrix: Self-healing hydrogels predominantly rely on polymers as their
fundamental matrix. Natural polymers such as alginate, chitosan, and collagen, alongside
synthetic counterparts such as polyethylene glycol (PEG), polyvinyl alcohol (PVA), and
polyacrylamide, define the hydrogel’s structure, porosity, and mechanical attributes.

Crosslinking mechanisms: Crosslinking agents play a pivotal role in establishing a
network within the polymer matrix, bestowing stability and coherence upon the hydrogel.
Chemical agents like glutaraldehyde or physical crosslinkers responsive to temperature,
pH alterations, or light stimuli are commonplace in this regard.

Self-healing attributes: Integrating self-healing agents within the hydrogel formulation
is critical for conferring its reparative properties. These agents encompass diverse mech-
anisms such as reversible covalent bonds (e.g., disulfide bonds), host–guest interactions
(like cyclodextrin-encapsulated guest molecules), and physical interactions (e.g., hydrogen
bonding or π-π stacking).

Solvent medium: Hydrogels are typically conceived in aqueous solutions or solvents
to maintain their heightened water content, an imperative aspect for emulating the native
tissue environment and fostering cellular proliferation.

Supplemental additives: Tailoring the hydrogel often involves the inclusion of additives
designed to impart specific functionalities. For biomedical applications, the integration of
bioactive components like growth factors, drugs, or nanoparticles facilitates functionalities
such as targeted drug delivery or augmented tissue regeneration.

Catalysts or initiators: In instances where hydrogel formation necessitates specific
reactions, catalysts or initiators serve as catalysts to instigate the crosslinking process,
notably in procedures like photo-polymerization.

The fabrication techniques employed for self-healing hydrogels encompass a spectrum of
methodologies, spanning physical blending, chemical reactions, and advanced methodologies
like 3D printing, offering precise control over the hydrogel’s structure and attributes [362].

The meticulous customization of the formulation and composition remains pivotal
to attain the desired mechanical robustness, biocompatibility, responsiveness to external
stimuli, and self-repair capabilities aligned with the envisioned clinical or biomedical utility.
The optimization of these constituents and their proportional ratios is a crucial determinant
for achieving the targeted performance benchmarks of the self-healing hydrogel.

Self-healing hydrogels have demonstrated various applications in therapeutic
domains [360,362–365]:

Wound healing dressings: Advanced wound dressings formulated with self-healing
hydrogels showcase autonomous repair capabilities. These dressings create a favorable
milieu for wound healing by fostering tissue regeneration while concurrently serving as a
protective barrier against infections.

Drug delivery systems: The utilization of self-healing hydrogels as carriers for controlled
drug delivery is notable. Their integration with therapeutic agents within the hydrogel
matrix allows for precise and sustained release, amplifying therapeutic efficacy while
mitigating systemic side effects.

Tissue engineering scaffolds: Within tissue engineering paradigms, self-healing hydro-
gels serve as pivotal scaffolds for tissue growth and regeneration. Offering mechanical
support and an environment conducive to cell proliferation, they facilitate the restoration
of damaged tissues, including cartilage, bone, and dermal structures.

Biomedical implants and devices: The integration of self-healing hydrogels into biomedi-
cal devices and implants capitalizes on their reparative capacity, ensuring device longevity



Int. J. Mol. Sci. 2024, 25, 3849 24 of 47

and functionality. Their incorporation in orthopedic implants or neural interfaces bolsters
biocompatibility and durability.

Ophthalmic applications: Self-healing hydrogels find utility in ophthalmology, particu-
larly in innovations like contact lenses or ocular drug delivery systems. Their innate ability
for self-repair extends wearability and augments comfort for patients.

These instances underscore the manifold therapeutic utility of self-healing hydro-
gels across diverse medical domains. Their deployment substantiates enhancements in
treatment methodologies, the facilitation of tissue restoration, and the augmentation of
therapeutic interventions’ durability and efficacy.

When natural sources are used to extract gelling substances (alginate, chitosan, gums,
etc.), the quality of the raw material and the absence of toxic contaminants (heavy metals,
pesticides, microplastics, etc.) are crucial [366–371].

Because of their specific structure and properties, hydrogels have an extremely strong
potential to become the future of regenerative medicine. Traumatic injuries of any nature
(mechanical, thermal, chemical, electrical) impose stress at the cellular level that can often
unbalance the normal functioning of the biochemical and physiological healing processes
of the skin lesions. Thus, a deficient healing process can lead to an abnormal closure of
the wound, infection with pathogenic agents, and other aspects that attract problems of an
esthetic nature but especially of a functional nature, because of the problem of affecting the
activities of everyday life [372,373].

However, we cannot assess with certainty the safety of applying these hydrogels to the
general population because most studies have been conducted on laboratory animals that
have physiology distinct from that of humans. It is necessary to conduct some protocols
and studies on the efficiency and safety of the application of hydrogels to accelerate the
healing process in human subjects because there is a risk of triggering certain exaggerated
responses of the immune system, such as allergies or even autoimmune diseases.

Creating a high-performance dressing requires a great deal of research work, well-
developed protocols, the evaluation of the safety of administration and use in human
subjects, and the detection of the most effective method of the application according to the
type of wound, the stage of healing the wound is in, and analyzing the factors that can
influence the healing process, all this combined of course with creativity.

Several hydrogel-based products have been commercialized and are available in the
market. (i) Many soft contact lenses are made from hydrogel materials. These lenses are
designed to provide comfort by retaining moisture and conforming to the shape of the eye.
(ii) Hydrogel dressings are widely used for wound care. They create a moist environment to
promote wound healing and may contain additives such as antimicrobial agents or growth
factors. (iii) Hydrogel-based drug delivery systems are utilized for various pharmaceutical
applications. These may include topical drug delivery, oral formulations, and injectable
systems. (iv) Some implants in the medical field, such as those used for tissue augmentation
or as supports in surgery, are made from hydrogel materials. In Table 3, some hydrogels
currently used in the market are summarized.

The development and future perspectives concerning hydrogel-based dressings with mul-
tiple functions in wound monitoring and treatment purposes can be summarized as follows:

(i) Progress in multifunctional hydrogel-based dressings is the next step in future re-
search. The design of hydrogel dressings to display and monitor the microenviron-
ment of the wound with outstanding anti-inflammatory, mechanical, antibacterial,
injectable antifeeding, and self-healing properties must be advanced.

(ii) The requirement in the design/synthesis of hydrogel-based dressings with complete
involvement in the whole complex wound healing process is imperative and repre-
sents a pathway for further research in the clinical domain.

(iii) A great awareness to advance a hydrogel wound dressing that can simultaneously display
the microenvironment of wounds and treatment functions may be the future tendency.

In Table 4, some hydrogels used in clinical trials on humans and their therapeutical
effects are summarized and also the possible advantages and disadvantages.
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Table 3. The currently used hydrogels in the market.

Bioactive Compound Hydrogel
Composition Method of Application Advantage(s) Disadvantage(s) Therapeutical Effect References

Hydrosorb Polyurethane–
polyurea hydrogel Topical (in gel form)

Preserve moisture, facilitate vapor and
oxygen exchange, and support tissue

debridement

The accumulation of fluids can
result in skin maceration or

susceptibility to infection, causing
mechanical weakness

Wounds or cavities with
low-to-medium exudate,

necrotic wounds
[374,375]

Restylane Hyaluronic acid Subcutaneous injection
Nonpermanent properties and the
possibility to use hyaluronidase for

product removal

Additional treatment is necessary
to sustain the initial effect

Restoring facial volume and
reducing the appearance of

wrinkles
[376]

Suprasorb® X + PHMB Gel
Polyhexamethylene

biguanide Topical (in gel form) Antimicrobial action, efficient
absorption

Antimicrobial action and
the absorption of exudate [377]

Synvisc Hyaluronic acid Intra-articular injections
Long-lasting relief, helps enhance joint
function and mobility, contributing to
an improved quality of life for patients

Possible injection site reactions,
may not be suitable for

individuals with certain allergies
or pre-existing medical conditions

The treatment of
osteoarthritis [378]

Surgifoam Gelatin Topical Hemostatic efficacy, biodegradable
A possible risk of allergic

reactions, potential for adhesion
formation

Hemostatic agent [379]

Integra® Flowable Wound
Matrix

Collagen,
glycosaminoglycans Topical

The flowable nature of the matrix
allows for easy adaptation to irregular

wound shapes, contains collagen,
which supports tissue regeneration

and wound healing,
well tolerated

Proper application requires
medical expertise, and incorrect
application may affect outcomes

Supporting the regeneration
of blood vessels and tissue

during plastic
reconstruction

[380]

Cohera® TissuGlu® Lysine-urethane
Abdominoplasty

procedures, (surgical
adhesive)

Reduce or eliminate the need for
postoperative drains, minimizes

seroma formation

Proper application requires
surgical expertise, and incorrect
application may affect outcomes

Specific to abdominoplasty
procedures [381]

Strataderm
Polydimethylsiloxanes,
siloxanes, alkylmethyl

silicones
Topical (in gel form)

Strataderm is designed to assist in the
management of postoperative scars

and other types of scars

Treatment response can vary
among individuals, and some
scars may respond better than

others

Improve scars by
maintaining an optimal
environment for healing,
providing hydration, and

protection

[382]
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Table 4. Hydrogels used in clinical trials on humans and their therapeutical effects and possible advantages and disadvantages.

Bioactive
Compound

Name/Commercial
Name

Method of
Application Study Design Therapeutical Effect Advantages Disadvantages References

Nanofibrillar
cellulose FibDex® Dressing

Prospective single-center
clinical trial;

Up to 6 months follow-up;
Human subjects

(n = 19; female = 6,
male = 13)

Comparable wound healing time to the
commonly used copolymer dressing (mean

healing time for both dressings was 18.5 days);
Complete epithelialization at 6 months;

The Patient and Observer Scar Assessment Scale
(POSAS) suggested some advances in scar

quality with NFC dressing, particularly in terms
of thickness and vascularity, compared to the

copolymer dressing.

Biocompatibility;
Sustainability;

No cytotoxic effects;
Comparable wound healing;
Scar quality improvement;
Ease of storage (at room

temperature).

Limited availability;
Cost-effectiveness not

determined yet;
Adverse events (partial
sliding off the donor site
and suspected infection)
that may impact patient

outcomes;
Superficial residual

wounds;
Limited clinical

validation (larger
sample sizes and

longer-term follow-up
are needed).

[383]

Olea europaea leaf
extract (OELE) EHO-85 Gel

Pivotal clinical trial;
8 weeks follow-up;

Human subjects
(n = 69; female = 48

male = 21)

Superior effect in accelerating wound healing in
hard-to-heal ulcers evaluated by wound area

reduction (WAR) and healing rate (HR);
One in three patients treated with EHO-85

achieved a closure rate of at least 80%, compared
to only 9.1% in the VariHesive group;

Patients treated with EHO-85 showed a
significantly higher average daily reduction in

ulcer area;
Kaplan–Meier analyses showed that EHO-85
hydrogel treatments were associated with a

higher probability of achieving a WAR ≥ 40%,
≥ 60% and ≥ 80% compared to the

control group.

Superior wound healing
(WAR and HR);

Faster ulcer closure (almost
80% compared to the
standard hydrogel);
High healing rate;
Microenvironment

modulation (reduces ROS
through its antioxidant

properties);
Easy to apply on wounds.

Limited comparative
evidence;

Specific patient
population;

Need for further
research.

[384]

Hydrogel enriched
with sodium
alginate and

Vitamins A and E

- Dressing

Single-blind randomized
controlled trial;

12-week follow-up;
Human subjects (n = 26,
female = 9, male = 17).

No significant difference between the group
using the investigated hydrogel and the control

group using conventional dressing;
Despite the hydrogel’s composition, the study

failed to identify a positive effect of the treatment
with hydrogel in terms of wound closure or

overall wound healing outcomes.
Decreased inflammatory infiltrates after

12 weeks of treatment.

Reduced inflammation
infiltrates;

Ease of application.

Questionable
effectiveness of the

hydrogel in promoting
complete wound

healing within the study
duration.

[385]
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Table 4. Cont.

Bioactive
Compound

Name/Commercial
Name

Method of
Application Study Design Therapeutical Effect Advantages Disadvantages References

OELE EHO-85 Dressing

Prospective,
parallel-group,
randomized,

investigator-blinded,
multicenter clinical trial

Human subjects (n = 213)

Low viscosity at high shear rates;
Acceleration in wound healing, compared to

those treated with VariHesive;
Higher 26% average ulcer closure after 14 days

of application;
The daily wound healing rate was three times

higher in the EHO-85 group after
six applications.

Accelerated wound healing;
Moist environment;

Antioxidant properties;
Spreadability (easy to apply

on wounds with gentle
manual pressure)—it can

also enhance patient
compliance and facilitate

the uniform coverage of the
wound area;

Ease of application;
Biocompatibility.

Low cohesive energy
density. [386]

Hydrogel with urea
and papain - Dressing

Prospective, single-center,
randomized, double-blind

and comparative
clinical trial;

Two formulations: HGP2
(2% papain) (n = 32) and

HGP10 (10% papain)
(n = 30);

Human subjects (n = 62;
female = 37, male = 25).

Both HGP2 and HGP10 formulations were
effective in wound healing;

HGP10 proved to be more efficient, causing no
setbacks in the healing process and

demonstrating versatility in treating various
tissue types in the wound bed.

Easy application;
Spreadability;

No undesirable effects of
complications

Storage at room
temperature.

Autonomy in self-care for
patients.

A possible degradation
of hydrogel if exposed
to higher temperatures

during storage or
transportation;

Density variation;
Decrease in enzymatic

activity over
time—might impact the

hydrogel’s efficacy
during extended use.

[387]

Triticum vulgare
extract +

polyhexanide
Fitostimoline® Dressing

Monocentric, two-arm,
open-label, randomized,

controlled trial;
12 weeks of treatment;

Human subjects (n = 40;
female = 11, male = 29)

with type 2 diabetes
mellitus.

Important reduction in the score of erythema and
bleeding of the wound;

Reduction in signs and symptoms such as pain,
itching, and burning;

No complete healing of the wound.

Safety;
Tolerability;

Easy to apply;
Moist wound environment.

To be considered
regarding the trial:

Duration of the trial;
Small sample size;
Subjective scoring,

Potential bias;
Limited generalizability
(the study focused on
diabetic foot ulcers at

specific grades and
stages).

[388]

Hydrogel/nano-
silver based - Dressing

Randomized
controlled trial;

Human subjects (n = 60)
with type 2 diabetes

mellitus

Lower area of the ulcer;
Faster reduction in ulcer size, compared to

traditional dressing group;
Enhancing re-epithelialization and wound

contraction.

Lower cost;
Decrease in hospital stay;

Safety.

Regarding the trial:
Sample size;

Need for further
research.

[389]
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4. Techniques for Improving the Bioavailability of Active Ingredients from
Healing Hydrogels

Improving the bioavailability of active ingredients from healing hydrogels involves
optimizing the delivery system to enhance the absorption and efficacy of the therapeutic
compounds [390–394]. The process is crucial for enhancing therapeutic outcomes. Bioavail-
ability refers to the extent and rate at which a substance (e.g., a drug or bioactive compound)
is absorbed and becomes available at the site of action (Figure 8). There are several tech-
niques aimed at enhancing the bioavailability of active ingredients from healing hydrogels:
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4.1. Nanoencapsulation

Incorporating active ingredients in nano-sized carriers within the hydrogel structure
is a sophisticated approach that enhances drug delivery efficiency, controlled release, and
the overall therapeutic impact. This technique, known as nanoencapsulation, involves
encapsulating active compounds within nanoscale carriers, such as liposomes, micelles,
or nanoparticles, and embedding them in a hydrogel matrix, protecting them from degra-
dation and improving their stability [396,397]. The process of incorporating nanoencap-
sulated active ingredients in hydrogels offers some benefits: (i) it enhances the solubility
and bioavailability of poorly water-soluble active ingredients, promoting better absorption;
(ii) it protects the sensitive substances from external factors; (iii) it enables the controlled
and sustained release of active ingredients, preventing rapid diffusion and ensuring a pro-
longed therapeutic effect; (iv) the hydrogel matrix allows for targeted delivery to specific
tissues or cells, offering localized treatment and minimizing systemic side effects; and (v) it
can accommodate various types of payloads, including drugs, genes, or imaging agents,
providing versatility and allowing for synergistic therapeutic applications.

To encapsulate therapeutic compounds in nanocarriers within a hydrogel structure,
different techniques are employed.

- Nanoprecipitation which involves the rapid mixing of a drug solution with a non-
solvent in the presence of a stabilizer.

- Emulsion-solvent evaporation in which a solution of the active substance is emulsi-
fied in a water-immiscible solvent. The solvent is then evaporated, leaving behind
nanoparticles.

- Emulsion-solvent diffusion, which is similar to emulsion-solvent evaporation but in-
volves a slow diffusion process, resulting in smaller nanoparticles and more
controlled release.
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- Layer-by-layer assembly which involves the sequential adsorption of layers onto the
hydrogel surface layer-by-layer, incorporating nanoparticles or active substances for
controlled release.

- Electrospraying which can be used to create nanofibrous structures within the hydro-
gel, encapsulating nanoparticles and improving the surface area for drug release.

These methods are commonly used for the formation of nanoparticles, and when
combined with hydrogel matrices, they enhance drug delivery efficiency and controlled
release [398,399]. Incorporating active ingredients in nano-sized carriers within hydrogel
structures is a powerful strategy for optimizing drug delivery systems. This approach
offers numerous advantages, from enhanced stability and controlled release to improved
bioavailability and targeted delivery, making it a promising avenue for advanced and
effective therapeutic interventions.

4.2. Chemical Modification

The chemical modification of hydrogels involves altering their chemical structure to
enhance specific properties such as mechanical strength, biocompatibility, responsiveness,
or the ability to carry and release active compounds. This modification can be achieved
through various chemical processes, and the choice of method depends on the desired
properties and applications of the hydrogel [400,401]. The most common techniques used
for the chemical modification of hydrogels are as follows:

- Crosslinking which involves the creation of covalent bonds between polymer chains
within the hydrogel structure. Crosslinking enhances the mechanical strength, stability,
and durability of hydrogels;

- Functional group modification based on the alteration of the functional groups of the
hydrogel polymers to introduce desired properties. Functional group modification
can enhance biocompatibility, promote cell adhesion, or facilitate the attachment of
bioactive molecules;

- Surface modification which can modify the surface properties of the hydrogel to
control interactions with biological entities. Surface modification can improve cell
adhesion, protein adsorption, and bioactivity;

- Hydrogel copolymerization which combines different monomers to form copolymers
with varied properties. Copolymerization allows for the tailoring of hydrogel proper-
ties, such as the swelling behavior, responsiveness to stimuli, or mechanical strength;

- The incorporation of responsive elements or stimuli-sensitive groups into the hydrogel
structure. Responsive hydrogels can change properties (swelling, degradation, etc.),
in response to environmental stimuli, such as pH, temperature, or light.

Chemical modification allows for precise control over the properties of hydrogels,
making them versatile materials with applications across various fields, including drug
delivery, tissue engineering, and biosensors.

4.3. pH and Temperature Responsiveness

The pH and temperature responsiveness of hydrogels are valuable properties that
can be exploited for various applications, including drug delivery, tissue engineering,
and diagnostics. pH and temperature-sensitive hydrogels undergo reversible changes in
their physical or chemical properties in response to alterations in the surrounding pH or
temperature. Both pH and temperature responsiveness contribute to the adaptability and
versatility of hydrogels in the field of biomedicine, providing a platform for designing
advanced drug delivery systems and tissue engineering constructs [402].

Understanding and tailoring the pH and temperature responsiveness of hydrogels
enable precise control over their swelling behavior, stability, and drug release kinetics. These
properties are crucial for applications where environmental responsiveness is desired, such
as in drug delivery systems or smart biomaterials.
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4.4. Incorporation of Penetration Enhancers

The incorporation of penetration enhancers in hydrogels is a strategy aimed at im-
proving the permeation of active substances through biological barriers, such as the skin
or mucous membranes. Penetration enhancers, also known as permeation enhancers or
absorption enhancers, can facilitate the transport of drugs or therapeutic agents across
these barriers. There are some key aspects and considerations for incorporating penetration
enhancers into hydrogels:

(i) Chemical penetration enhancers: compounds that alter the physicochemical proper-
ties of the barrier, increasing the permeability, such as surfactants, fatty acids, and
certain alcohols.

(ii) Physical penetration enhancers: methods that physically disrupt or modify the bar-
rier, enhancing the transport of substances. These techniques include iontophoresis,
sonophoresis, and microneedle application.

Incorporating penetration enhancers in hydrogels requires a careful balance between
optimizing permeation and ensuring safety and biocompatibility. It is crucial to tailor
the choice of enhancers and their concentration based on the specific requirements of
the intended application and the nature of the active ingredients being delivered [403].
Incorporating penetration enhancers into responsive hydrogels offers a promising avenue
for improving drug delivery efficiency, especially in clinical applications where controlled
and targeted release is crucial for therapeutic success.

4.5. Hybrid Hydrogels

Hybrid hydrogels refer to materials that combine the characteristics of two or more
different components, resulting in a synergistic system that exhibits unique properties.
These hybrid structures often involve the integration of diverse materials, such as polymers,
nanoparticles, or biological components. Hybrid hydrogels have gained considerable atten-
tion in various fields due to their versatility and the ability to tailor their properties for spe-
cific applications and therapeutic requirements. There are three types of hybrid hydrogels:

(i) Polymeric hybrid hydrogels that combine different types of polymers with comple-
mentary properties able to create a hybrid matrix with improved mechanical strength,
stability, or responsiveness.

(ii) Nanocomposite hybrid hydrogels that integrate nanoparticles, such as nanoparticles
of metals, metal oxides, or carbon-based materials, into the hydrogel matrix to enhance
specific functionalities.

(iii) Biological hybrid hydrogels that combine hydrogels with biological components, such
as proteins, peptides, or cells, to create biomimetic or bioresponsive materials.

Hybrid hydrogels provide a platform for designing advanced materials with tailored
properties, making them suitable for a wide range of applications in medicine, environ-
mental science, and materials science. The diversity of hybrid hydrogel systems allows for
creative solutions to address specific challenges in various fields [404,405].

4.6. Surface Modification

The surface modification of responsive hydrogels is a crucial step to tailor their interac-
tions with biological systems, enhance functionality, and optimize performance for specific
applications. Surface modification can impart properties such as improved biocompatibility,
controlled drug release, or responsiveness to external stimuli. The surface modification of
hydrogels involves altering the outer layer of the hydrogel to impart specific properties,
such as enhanced biocompatibility, controlled release, or improved interaction with bio-
logical entities. This modification can be achieved through various techniques (chemical
grafting, physical adsorption, layer-by-layer assembly, plasma treatment) and can serve
diverse applications like surface grafting or coating to modify the surface properties of
hydrogel particles. The surface modification of hydrogels provides a versatile approach
to tailoring their properties for specific applications, making them more functional and
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adaptable in diverse fields. The choice of modification technique and molecules depends
on the desired functionality and the intended use of the hydrogel [406,407].

When implementing these techniques, it is important to consider the specific character-
istics of the active ingredients, the intended therapeutic application, and the physiological
environment in which the hydrogel will be used. Conducting thorough in vitro and in vivo
studies can help validate the effectiveness of these strategies in improving bioavailability.

5. Conclusions

Regenerative hydrogels present significant advantages in wound healing and demon-
strate compelling future prospects in healthcare. They foster an optimal microenvironment
by preserving moisture, thereby facilitating cell migration, proliferation, and tissue regener-
ation, effectively mirroring the natural healing process. Their adaptability for customization
enables tailoring to various wound types, sizes, and stages, accommodating diverse clin-
ical requirements, whether addressing acute injuries, chronic wounds, or specific tissue
demands. Moreover, their amenability to minimally invasive application techniques, such
as injectable or topical forms, ensures precise wound site targeting, reducing patient dis-
comfort and optimizing treatment precision. The incorporation of bioactive agents within
these hydrogels facilitates controlled and localized drug delivery, thereby attenuating
inflammation, fostering tissue regeneration, and preventing infections. Biocompatible
formulations play a pivotal role in minimizing adverse reactions and scar formation at
wound sites, culminating in improved healing outcomes and enhanced cosmesis. Function-
ing as scaffolds, these hydrogels facilitate tissue regeneration by mimicking extracellular
matrix components, aiding in the regeneration of distinct tissues such as skin, cartilage, or
internal organs.

Future avenues involve advancing biomaterials to develop hydrogels with heightened
mechanical robustness, enhanced bioactivity, and responsive properties, thereby optimizing
therapeutic efficacy. The integration of nanotechnology and smart materials into hydrogel
formulations holds promise for real-time wound healing monitoring, responsive drug
release, and tailored therapeutic interventions. Furthermore, synergistic amalgamations of
hydrogels with adjunctive therapies, encompassing growth factors, stem cells, or bioactive
molecules, stand poised to augment healing outcomes and expedite tissue regeneration.
Research endeavors directing attention towards bioengineered skin substitutes utilizing hy-
drogels aim to revolutionize wound care by crafting functional equivalents for severe burns
or chronic wounds. Anticipated progress in the clinical translation and commercialization
of regenerative hydrogels holds the potential for transforming wound care practices, poten-
tially yielding significant improvements in patient outcomes. The continued exploration
of regenerative hydrogels in wound healing heralds promise for pioneering therapies,
personalized medical approaches, and the evolution of advanced strategies in wound care.

6. Materials and Methods

We gratefully acknowledge the generous contributions from various sources that
facilitated the execution of this study. To review the literature regarding the possible appli-
cations of hydrogels, especially their implication in accelerating the physiological process
of wound healing, we performed a detailed search in the National Library of Medicine,
Science Direct, Wiley Online Library, and Semantic Scholar, using specific keywords such
as: ‘hydrogels’, ‘biomaterials’, ‘tissue engineering’, and ‘injectable hydrogels’. The search
algorithm was then completed by using the terms ‘for wound healing’, ‘in chronic wounds’,
and ‘for regenerative medicine applications’. After searching and filtering the articles, we
included 406 bibliographic references from the following: NCBI—185 (of which, the most
cited journals are as follows: ACS Applied Materials & Interfaces—9, Advances in Wound
Care (New Rochelle)—7, International Journal of Molecular Sciences—7, Biomacromolecules—5,
Gels—11, Journal of Materials Chemistry B—5, and Molecules—6), Science Direct—120 (Bio-
materials—21, Acta Biomaterialia—14, Carbohydrate Polymers—11, International Journal of
Biological Macromolecules—8, Materials Science and Engineering: C—7, and Bioactive Materi-
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als—6), Wiley Online Library—39 (Advanced Materials—6, Advanced Functional Materials—5,
Advanced Healthcare Materials—5, and Journal of Biomedical Materials Research—4), and Se-
mantic Scholar—7. We extend our sincere appreciation to all mentioned databases for
providing the cited references essential for the successful completion of this study.

Author Contributions: Conceptualization, G.O., S.M.N. and D.L.; methodology, M.M.; software,
E.C.L. and C.-B.I.-M.; validation, M.M., A.M.M. and D.L.; formal analysis, G.O.; investigation, M.M.;
resources, A.M.M.; data curation, C.-B.I.-M.; writing—original draft preparation, A.M.M. and F.A.J.;
writing—review and editing, A.M.M. and F.A.J.; visualization, G.O., S.M.N. and D.L.; supervision,
M.M.; project administration, G.O., S.M.N. and D.L.; funding acquisition, E.C.L. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Vig, K.; Chaudhari, A.; Tripathi, S.; Dixit, S.; Sahu, R.; Pillai, S.; Dennis, V.A.; Singh, S.R. Advances in Skin Regeneration Using

Tissue Engineering. Int. J. Mol. Sci. 2017, 18, 789. [CrossRef]
2. HSE—Skin at Work: Work-Related Skin Disease—Skin Structure and Function. Available online: https://www.hse.gov.uk/skin/

professional/causes/structure.htm (accessed on 19 March 2023).
3. Zhang, Z.; Michniak-Kohn, B.B. Tissue Engineered Human Skin Equivalents. Pharmaceutics 2012, 4, 26–41. [CrossRef]
4. Kolarsick, P.A.J.; Kolarsick, M.A.; Goodwin, C. Anatomy and Physiology of the Skin. J. Dermatol. Nurses Assoc. 2011, 3, 203–213.

[CrossRef]
5. Metcalfe, A.D.; Ferguson, M.W.J. Tissue Engineering of Replacement Skin: The Crossroads of Biomaterials, Wound Healing,

Embryonic Development, Stem Cells and Regeneration. J. R. Soc. Interface 2006, 4, 413–437. [CrossRef]
6. Saladin, K.S. Anatomy and Physiology: The Unity of Form and Function, 3rd ed.; Mc Graw-Hill: New York, NY, USA, 2004;

ISBN 978-0072919264.
7. Aumailley, M.; Rousselle, P. Laminins of the Dermo–Epidermal Junction. Matrix Biol. 1999, 18, 19–28. [CrossRef]
8. Timpl, R.; Brown, J.C. Supramolecular Assembly of Basement Membranes. BioEssays 1996, 18, 123–132. [CrossRef]
9. Gubbiotti, M.A.; Neill, T.; Iozzo, R.V. A Current View of Perlecan in Physiology and Pathology: A Mosaic of Functions. Matrix

Biol. 2017, 57–58, 285. [CrossRef]
10. Zhou, S.; Chen, S.; Pei, Y.A.; Pei, M. Nidogen: A Matrix Protein with Potential Roles in Musculoskeletal Tissue Regeneration.

Genes Dis. 2022, 9, 598. [CrossRef]
11. Goletz, S.; Zillikens, D.; Schmidt, E. Structural Proteins of the Dermal-Epidermal Junction Targeted by Autoantibodies in

Pemphigoid Diseases. Exp. Dermatol. 2017, 26, 1154–1162. [CrossRef]
12. Rittié, L. Cellular Mechanisms of Skin Repair in Humans and Other Mammals. J. Cell Commun. Signal. 2016, 10, 103–120.

[CrossRef]
13. Arda, O.; Göksügür, N.; Tüzün, Y. Basic Histological Structure and Functions of Facial Skin. Clin. Dermatol. 2014, 32, 3–13.

[CrossRef]
14. Tavakoli, S.; Klar, A.S. Advanced Hydrogels as Wound Dressings. Biomolecules 2020, 10, 1169. [CrossRef]
15. Yu, J.R.; Navarro, J.; Coburn, J.C.; Mahadik, B.; Molnar, J.; Holmes, J.H.; Nam, A.J.; Fisher, J.P. Current and Future Perspectives on

Skin Tissue Engineering: Key Features of Biomedical Research, Translational Assessment, and Clinical Application. Adv. Healthc.
Mater. 2019, 8, 1801471. [CrossRef]

16. Coelho, M.; Oliveira, T.; Fernandes, R. Biochemistry of Adipose Tissue: An Endocrine Organ. Arch. Med. Sci. 2013, 9, 191.
[CrossRef]

17. Saely, C.H.; Geiger, K.; Drexel, H. Brown versus White Adipose Tissue: A Mini-Review. Gerontology 2012, 58, 15–23. [CrossRef]
18. Massella, D.; Argenziano, M.; Ferri, A.; Guan, J.; Giraud, S.; Cavalli, R.; Barresi, A.A.; Salaün, F. Bio-Functional Textiles:

Combining Pharmaceutical Nanocarriers with Fibrous Materials for Innovative Dermatological Therapies. Pharmaceutics 2019,
11, 403. [CrossRef]

19. Clayton, K.; Vallejo, A.F.; Davies, J.; Sirvent, S.; Polak, M.E. Langerhans Cells-Programmed by the Epidermis. Front. Immunol.
2017, 8, 1676.

20. Wilkins, R.G.; Unverdorben, M. Wound Cleaning and Wound Healing: A Concise Review. Adv. Skin Wound Care 2013, 26, 160–163.
[CrossRef]

https://doi.org/10.3390/IJMS18040789
https://www.hse.gov.uk/skin/professional/causes/structure.htm
https://www.hse.gov.uk/skin/professional/causes/structure.htm
https://doi.org/10.3390/PHARMACEUTICS4010026
https://doi.org/10.1097/JDN.0B013E3182274A98
https://doi.org/10.1098/RSIF.2006.0179
https://doi.org/10.1016/S0945-053X(98)00004-3
https://doi.org/10.1002/BIES.950180208
https://doi.org/10.1016/J.MATBIO.2016.09.003
https://doi.org/10.1016/J.GENDIS.2021.03.004
https://doi.org/10.1111/EXD.13446
https://doi.org/10.1007/S12079-016-0330-1
https://doi.org/10.1016/J.CLINDERMATOL.2013.05.021
https://doi.org/10.3390/BIOM10081169
https://doi.org/10.1002/ADHM.201801471
https://doi.org/10.5114/AOMS.2013.33181
https://doi.org/10.1159/000321319
https://doi.org/10.3390/PHARMACEUTICS11080403
https://doi.org/10.1097/01.ASW.0000428861.26671.41


Int. J. Mol. Sci. 2024, 25, 3849 33 of 47

21. Herman, T.F.; Bordoni, B. Wound Classification. In Principles of Surgery Vivas for the MRCS; Cambridge University Press:
Cambridge, UK, 2022; pp. 323–328. [CrossRef]

22. Onyekwelu, I.; Yakkanti, R.; Protzer, L.; Pinkston, C.M.; Tucker, C.; Seligson, D. Surgical Wound Classification and Surgical Site
Infections in the Orthopaedic Patient. J. Am. Acad. Orthop. Surg. Glob. Res. Rev. 2017, 1, e022. [CrossRef]

23. Frykberg, R.G.; Banks, J. Challenges in the Treatment of Chronic Wounds. Adv. Wound Care 2015, 4, 560. [CrossRef]
24. Golinko, M.S.; Clark, S.; Rennert, R.; Flattau, A.; Boulton, A.J.; Brem, H. Wound Emergencies: The Importance of Assessment,

Documentation, and Early Treatment Using a Wound Electronic Medical Record. Wound Manag. Prev. 2009, 55, 54.
25. Moore, K.; McCallion, R.; Searle, R.J.; Stacey, M.C.; Harding, K.G. Prediction and Monitoring the Therapeutic Response of Chronic

Dermal Wounds. Int. Wound J. 2006, 3, 89–98. [CrossRef]
26. Berman, B.; Maderal, A.; Raphael, B. Keloids and Hypertrophic Scars: Pathophysiology, Classification, and Treatment. Dermatol.

Surg. 2017, 43 (Suppl. S1), S3–S18. [CrossRef]
27. McGinty, S.; Siddiqui, W.J. Keloid; StatPearls Publishing: Treasure Island, FL, USA, 2024. [PubMed]
28. Mofikoya, B.O.; Adeyemo, W.L.; Abdus-salam, A.A. Keloid and Hypertrophic Scars: A Review of Recent Developments in

Pathogenesis and Management. Nig. Q. J. Hosp. Med. 2007, 17, 134–139. [CrossRef]
29. Burns. Available online: https://www.who.int/news-room/fact-sheets/detail/burns (accessed on 20 March 2023).
30. Pieptu, V.; Moscalu, R.; Mihai, A.; Moscalu, M.; Pieptu, D.; Azoicăi, D. Epidemiology of Hospitalized Burns in Romania: A

10-Year Study on 92,333 Patients. Burns 2022, 48, 420–431. [CrossRef]
31. Lang, T.C.; Zhao, R.; Kim, A.; Wijewardena, A.; Vandervord, J.; Xue, M.; Jackson, C.J. A Critical Update of the Assessment and

Acute Management of Patients with Severe Burns. Adv. Wound Care 2019, 8, 607. [CrossRef]
32. Guilabert, P.; Usúa, G.; Martín, N.; Abarca, L.; Barret, J.P.; Colomina, M.J. Fluid Resuscitation Management in Patients with Burns:

Update. Br. J. Anaesth. 2016, 117, 284–296. [CrossRef]
33. Kim, A.; Lang, T.; Xue, M.; Wijewardana, A.; Jackson, C.; Vandervord, J. The Role of Th-17 Cells and Γδ T-Cells in Modulating the

Systemic Inflammatory Response to Severe Burn Injury. Int. J. Mol. Sci. 2017, 18, 758. [CrossRef]
34. Jeschke, M.G.; Gauglitz, G.G.; Kulp, G.A.; Finnerty, C.C.; Williams, F.N.; Kraft, R.; Suman, O.E.; Mlcak, R.P.; Herndon, D.N.

Long-Term Persistance of the Pathophysiologic Response to Severe Burn Injury. PLoS ONE 2011, 6, e21245. [CrossRef]
35. Finnerty, C.C.; Jeschke, M.G.; Qian, W.J.; Kaushal, A.; Xiao, W.; Liu, T.; Gritsenko, M.A.; Moore, R.J.; Camp, D.G.; Moldawer,

L.L.; et al. Determination of Burn Patient Outcome by Large-Scale Quantitative Discovery Proteomics. Crit. Care Med. 2013,
41, 1421–1434. [CrossRef]

36. Osuka, A.; Kusuki, H.; Yoneda, K.; Matsuura, H.; Matsumoto, H.; Ogura, H.; Ueyama, M. Glycocalyx Shedding Is Enhanced by
Age and Correlates with Increased Fluid Requirement in Patients with Major Burns. Shock 2018, 50, 60–65. [CrossRef]

37. Korkmaz, H.I.; Flokstra, G.; Waasdorp, M.; Pijpe, A.; Papendorp, S.G.; de Jong, E.; Rustemeyer, T.; Gibbs, S.; van Zuijlen, P.P.M.
The Complexity of the Post-Burn Immune Response: An Overview of the Associated Local and Systemic Complications. Cells
2023, 12, 345. [CrossRef]

38. Burgess, M.; Valdera, F.; Varon, D.; Kankuri, E.; Nuutila, K. The Immune and Regenerative Response to Burn Injury. Cells 2022,
11, 3073. [CrossRef]

39. Kolimi, P.; Narala, S.; Nyavanandi, D.; Youssef, A.A.A.; Dudhipala, N. Innovative Treatment Strategies to Accelerate Wound
Healing: Trajectory and Recent Advancements. Cells 2022, 11, 2439. [CrossRef]

40. Cañedo-Dorantes, L.; Cañedo-Ayala, M. Skin Acute Wound Healing: A Comprehensive Review. Int. J. Inflam. 2019, 2019, 3706315.
[CrossRef]

41. Wallace, H.A.; Basehore, B.M.; Zito, P.M. Wound Healing Phases; StatPearls: Treasure Island, FL, USA, 2022.
42. Kangal, M.K.O.; Regan, J.-P. Wound Healing; StatPearls: Treasure Island, FL, USA, 2022.
43. Ben, R.; Pereira, F.; Sousa, A.; Barrias, C.C.; Bayat, A.; Granja, P.L.; Bártolo, P.J. Advances in Bioprinted Cell-Laden Hydrogels for

Skin Tissue Engineering. Biomanuf. Rev. 2017, 2, 1–26. [CrossRef]
44. Zhao, R.; Liang, H.; Clarke, E.; Jackson, C.; Xue, M. Inflammation in Chronic Wounds. Int. J. Mol. Sci. 2016, 17, 2085. [CrossRef]
45. Coger, V.; Million, N.; Rehbock, C.; Sures, B.; Nachev, M.; Barcikowski, S.; Wistuba, N.; Strauß, S.; Vogt, P.M. Tissue Concentrations

of Zinc, Iron, Copper, and Magnesium during the Phases of Full Thickness Wound Healing in a Rodent Model. Biol. Trace Elem.
Res. 2019, 191, 167–176. [CrossRef]

46. Rhett, J.M.; Ghatnekar, G.S.; Palatinus, J.A.; O’Quinn, M.; Yost, M.J.; Gourdie, R.G. Novel Therapies for Scar Reduction and
Regenerative Healing of Skin Wounds. Trends Biotechnol. 2008, 26, 173–180. [CrossRef]

47. Sivamani, R.K.; Garcia, M.S.; Rivkah Isseroff, R. Wound Re-Epithelialization: Modulating Keratinocyte Migration in Wound
Healing. Front. Biosci. 2007, 12, 2849–2868. [CrossRef]

48. Bowden, L.G.; Byrne, H.M.; Maini, P.K.; Moulton, D.E. A Morphoelastic Model for Dermal Wound Closure. Biomech. Model.
Mechanobiol. 2016, 15, 663–681.

49. Chhabra, S.; Chhabra, N.; Kaur, A.; Gupta, N. Wound Healing Concepts in Clinical Practice of OMFS. J. Maxillofac. Oral Surg.
2017, 16, 403–423. [CrossRef]

50. Walburn, J.; Vedhara, K.; Hankins, M.; Rixon, L.; Weinman, J. Psychological Stress and Wound Healing in Humans: A Systematic
Review and Meta-Analysis. J. Psychosom. Res. 2009, 67, 253–271. [CrossRef]

51. Cole-King, A.; Harding, K.G. Psychological Factors and Delayed Healing in Chronic Wounds. Psychosom. Med. 2001, 63, 216–220.
[CrossRef]

https://doi.org/10.1017/cbo9780511663482.020
https://doi.org/10.5435/JAAOSGLOBAL-D-17-00022
https://doi.org/10.1089/WOUND.2015.0635
https://doi.org/10.1111/J.1742-4801.2006.00212.X
https://doi.org/10.1097/DSS.0000000000000819
https://www.ncbi.nlm.nih.gov/pubmed/29939676
https://doi.org/10.4314/NQJHM.V17I4.12693
https://www.who.int/news-room/fact-sheets/detail/burns
https://doi.org/10.1016/J.BURNS.2021.05.020
https://doi.org/10.1089/WOUND.2019.0963
https://doi.org/10.1093/BJA/AEW266
https://doi.org/10.3390/IJMS18040758
https://doi.org/10.1371/JOURNAL.PONE.0021245
https://doi.org/10.1097/CCM.0B013E31827C072E
https://doi.org/10.1097/SHK.0000000000001028
https://doi.org/10.3390/cells12030345
https://doi.org/10.3390/cells11193073
https://doi.org/10.3390/CELLS11152439
https://doi.org/10.1155/2019/3706315
https://doi.org/10.1007/S40898-017-0003-8
https://doi.org/10.3390/IJMS17122085
https://doi.org/10.1007/S12011-018-1600-Y
https://doi.org/10.1016/J.TIBTECH.2007.12.007
https://doi.org/10.2741/2277
https://doi.org/10.1007/S12663-016-0880-Z
https://doi.org/10.1016/J.JPSYCHORES.2009.04.002
https://doi.org/10.1097/00006842-200103000-00004


Int. J. Mol. Sci. 2024, 25, 3849 34 of 47

52. Guo, S.; DiPietro, L.A. Factors Affecting Wound Healing. J. Dent. Res. 2010, 89, 219. [CrossRef]
53. Wichterle, O.; Lím, D. Hydrophilic Gels for Biological Use. Nature 1960, 185, 117–118. [CrossRef]
54. Dart, A.; Bhave, M.; Kingshott, P. Antimicrobial Peptide-Based Electrospun Fibers for Wound Healing Applications. Macromol.

Biosci. 2019, 19, 1800488. [CrossRef]
55. Brumberg, V.; Astrelina, T.; Malivanova, T.; Samoilov, A.; Angelis, D.; Gentile, P.; Toma, L.; Tanaka, R. Modern Wound Dressings:

Hydrogel Dressings. Biomedicines 2021, 9, 1235. [CrossRef]
56. Qi, L.; Zhang, C.; Wang, B.; Yin, J.; Yan, S. Progress in Hydrogels for Skin Wound Repair. Macromol. Biosci. 2022, 22, 2100475.

[CrossRef]
57. Huang, C.; Dong, L.; Zhao, B.; Lu, Y.; Huang, S.; Yuan, Z.; Luo, G.; Xu, Y.; Qian, W. Anti-inflammatory Hydrogel Dressings and

Skin Wound Healing. Clin. Transl. Med. 2022, 12, e1094. [CrossRef]
58. Chen, J.; He, J.; Yang, Y.; Qiao, L.; Hu, J.; Zhang, J.; Guo, B. Antibacterial Adhesive Self-Healing Hydrogels to Promote Diabetic

Wound Healing. Acta Biomater. 2022, 146, 119–130. [CrossRef]
59. Kamoun, E.A.; Kenawy, E.R.S.; Chen, X. A Review on Polymeric Hydrogel Membranes for Wound Dressing Applications:

PVA-Based Hydrogel Dressings. J. Adv. Res. 2017, 8, 217–233. [CrossRef]
60. Hu, H.; Xu, F.J. Rational Design and Latest Advances of Polysaccharide-Based Hydrogels for Wound Healing. Biomater. Sci. 2020,

8, 2084–2101. [CrossRef]
61. Liang, Y.; He, J.; Guo, B. Functional Hydrogels as Wound Dressing to Enhance Wound Healing. ACS Nano 2021, 15, 12687–12722.
62. Rop, K.; Mbui, D.; Njomo, N.; Karuku, G.N.; Michira, I.; Ajayi, R.F. Biodegradable Water Hyacinth Cellulose-Graft-

Poly(Ammonium Acrylate-Co-Acrylic Acid) Polymer Hydrogel for Potential Agricultural Application. Heliyon 2019, 5, e01416.
[CrossRef]

63. Zain, G.; Nada, A.A.; El-Sheikh, M.A.; Attaby, F.A.; Waly, A.I. Superabsorbent Hydrogel Based on Sulfonated-Starch for Improving
Water and Saline Absorbency. Int. J. Biol. Macromol. 2018, 115, 61–68. [CrossRef]

64. Olad, A.; Pourkhiyabi, M.; Gharekhani, H.; Doustdar, F. Semi-IPN Superabsorbent Nanocomposite Based on Sodium Alginate
and Montmorillonite: Reaction Parameters and Swelling Characteristics. Carbohydr. Polym. 2018, 190, 295–306. [CrossRef]

65. Adair, A.; Kaesaman, A.; Klinpituksa, P. Superabsorbent Materials Derived from Hydroxyethyl Cellulose and Bentonite:
Preparation, Characterization and Swelling Capacities. Polym. Test. 2017, 64, 321–329. [CrossRef]

66. Peng, Z.; Li, Z.; Shen, Y. Influence of Chemical Cross-Linking on Properties of Gelatin/Chitosan Microspheres. Polym.-Plast.
Technol. Eng. 2012, 51, 381–385. [CrossRef]

67. Gbenebor, O.P.; Adeosun, S.O.; Lawal, G.I.; Jun, S.; Olaleye, S.A. Acetylation, Crystalline and Morphological Properties of
Structural Polysaccharide from Shrimp Exoskeleton. Eng. Sci. Technol. Int. J. 2017, 20, 1155–1165. [CrossRef]

68. Velmurugan, N.; Gnana Kumar, G.; Han, S.S.; Nahm, K.S.; Lee, Y.S. Synthesis and Characterization of Potential Fungicidal Silver
Nano-Sized Particles and Chitosan Membrane Containing Silver Particles. Iran. Polym. J. 2009, 18, 383–392.

69. Jiao, T.; Zhou, J.; Zhou, J.; Gao, L.; Xing, Y.; Li, X. Synthesis and Characterization of Chitosan-Based Schiff Base Compounds with
Aromatic Substituent Groups. Iran. Polym. J. 2011, 20, 123–136.

70. Firlar, I.; Altunbek, M.; McCarthy, C.; Ramalingam, M.; Camci-Unal, G. Functional Hydrogels for Treatment of Chronic Wounds.
Gels 2022, 8, 127. [CrossRef]

71. Luo, M.; Wang, Y.; Xie, C.; Lei, B. Multiple Coordination-Derived Bioactive Hydrogel with Proangiogenic Hemostatic Capacity
for Wound Repair. Adv. Healthc. Mater. 2022, 11, e2200722. [CrossRef]

72. Liang, Y.; Li, M.; Yang, Y.; Qiao, L.; Xu, H.; Guo, B. PH/Glucose Dual Responsive Metformin Release Hydrogel Dressings with
Adhesion and Self-Healing via Dual-Dynamic Bonding for Athletic Diabetic Foot Wound Healing. ACS Nano 2022, 16, 3194–3207.
[CrossRef]

73. Wang, H.; Xu, Z.; Zhao, M.; Liu, G.; Wu, J. Advances of Hydrogel Dressings in Diabetic Wounds. Biomater. Sci. 2021, 9, 1530–1546.
[CrossRef]

74. Aswathy, S.H.; Narendrakumar, U.; Manjubala, I. Commercial Hydrogels for Biomedical Applications. Heliyon 2020, 6, e03719.
[CrossRef]

75. Zhu, S.; Li, Y.; He, Z.; Ji, L.; Zhang, W.; Tong, Y.; Luo, J.; Yu, D.; Zhang, Q.; Bi, Q. Advanced Injectable Hydrogels for Cartilage
Tissue Engineering. Front. Bioeng. Biotechnol. 2022, 10, 954501. [CrossRef]

76. Wu, J.; Chen, Q.; Deng, C.; Xu, B.; Zhang, Z.; Yang, Y.; Lu, T. Exquisite Design of Injectable Hydrogels in Cartilage Repair.
Theranostics 2020, 10, 9843. [CrossRef]

77. Bertsch, P.; Diba, M.; Mooney, D.J.; Leeuwenburgh, S.C.G. Self-Healing Hydrogels for Tissue Regeneration. Chem. Rev. 2023,
123, 834. [CrossRef]
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369. Mititelu, M.; Ioniţă, A.C.; Moroşan, E. Research regarding integral processing of mussels from Black Sea. Farmacia 2014,
62, 625–632.
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