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Abstract: We investigated mRNA-IncRNA co-expression patterns in a cellular model system of non-small
cell lung cancer (NSCLC) sensitive and resistant to the epithelial growth factor receptor (EGFR)
tyrosine kinase inhibitors (TKIs) erlotinib/gefitinib. The aim of this study was to unveil insights
into the complex mechanisms of NSCLC targeted therapy resistance and epithelial-to-mesenchymal
transition (EMT). Genome-wide RNA expression was quantified for weighted gene co-expression
network analysis (WGCNA) to correlate the expression levels of mRNAs and IncRNAs. Functional
enrichment analysis and identification of IncRNAs were conducted on modules associated with
the EGFR-TKI response and/or intermediate EMT phenotypes. We constructed IncRNA-mRNA
co-expression networks and identified key modules and their enriched biological functions. Processes
enriched in the selected modules included RHO (A, B, C) GTPase and regulatory signaling pathways,
apoptosis, inflammatory and interleukin signaling pathways, cell adhesion, cell migration, cell and
extracellular matrix organization, metabolism, and lipid metabolism. Interestingly, several IncRNAs,
already shown to be dysregulated in cancer, are connected to a small number of mRNAs, and several
IncRNAs are interlinked with each other in the co-expression network.

Keywords: NSCLC; WGCNA; IncRNA-mRNA networks; EGFR-TKI resistance; intermediate EMT
phenotypes

1. Introduction

Lung cancer is a leading cause of cancer-related deaths worldwide, with extremely
high morbidity and mortality rates. NSCLC is the most common type of lung cancer, and it
represents 85% of all cases [1,2].

Increasing evidence highlights the important role of non-coding RNA (ncRNA) in
regulating the tumorigenesis process by modulating crucial signaling pathways, gene
expression of proto-oncogenes or tumor suppressors. Non-coding sequences covering
98% of the human genome are divided into different classes based on their length, lo-
calization, and /or function. MicroRNA (miRNA), long non-coding RNA (IncRNA), and
circular RNA (circRNA) are either up- or downregulated in cancer types and can promote
or suppress the progression of the disease. LncRNAs, arbitrarily defined as non-coding
transcripts of more than 200 nucleotides (200 nt) according to the recent classification
and nomenclature, are RNA mostly generated by RNA Polymerase II [3]. LncRNAs
can be grouped according to their position relative to the protein-coding genes. As a
result, they can be roughly divided into antisense, enhancer, bidirectional (divergent),
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intronic transcript IncRNAs, and large intergenic non-coding RNAs. LncRNAs may reg-
ulate gene expression via multiple mechanisms at the epigenetic, transcriptional, and
post-transcriptional levels [4]. LncRNAs have been shown to participate in the regulation
of a variety of cell activities through interaction with other RNAs, DNAs, or proteins, in-
cluding cell differentiation, proliferation, invasion, apoptosis, and autophagy. Cooperation
among IncRNAs can further amplify the role of IncRNAs in physiological and pathological
processes [5-7]. Transcriptional dysregulation of IncRNAs has been correlated to cancer
growth, metastasis, and drug resistance in NSCLC [8-15]. TKIs targeting EGFR are the
primary treatment for NSCLC harboring activating mutations in the EGFR TK domain;
unfortunately, resistance to EGFR-TKISs is unavoidable, and most of the patients experience
a rapid cancer relapse [16-18].

The association between EMT plasticity and drug resistance is very well documented
by many in silico, in vitro, and in vivo studies [19,20]. The EMT is a cellular process in
which polarized epithelial cells undergo multiple molecular and biochemical changes and
lose their identity to acquire a mesenchymal phenotype. Importantly, EMT is a complex,
dynamic, and multifaceted process characterized by a spectrum of intermediate phenotypes
whose molecular hallmarks remain poorly characterized and cells can be stably arrested
in an intermediate, or hybrid, state, contributing to cancer collective cell migration, and
cell cluster formation and dissemination, associated with enhanced tumor aggressiveness
and worse clinical outcomes [21,22]. Intermediate epithelial/ mesenchymal phenotypes
have also been described in lung, breast, prostate, ovarian, pancreatic, and many other
cancer types by our research group [23-30]. The intrinsic complexity of the process of
EMT transformation in cancer epithelial cells and the influence of genomic and microen-
vironmental elements in its shaping are emerging from bioinformatics and mathematical
modeling studies [31,32].

NcRNAs regulate the EMT at multiple levels, including gene regulation of transcrip-
tion factors, cell adhesion, cytoskeleton organization, and cell motility signaling pathways.
The impact of ncRNAs, including IncRNA, is still far from being fully understood. Al-
though IncRNAs are usually described as EMT promoters or EMT-suppressors, some of
them have controversial functions in different types of tumors or different conditions, un-
derlying the complexity and plasticity of tumor cells [33,34]. Furthermore, the contribution
of IncRNAs to intermediate EMT phenotypes is still unknown.

Many studies consider only differences in the expression of genes between different
samples, ignoring the underlying connection of each gene. Weighted gene co-expression
network analysis (WGCNA) is a systematic bioinformatics method used to describe cor-
relation patterns among genes in samples and can identify clusters of highly correlated
genes (hereafter modules). This approach also explores the relationship between modules
and phenotypes of interest [35].

In this study, we performed a WGNA on a microarray gene expression dataset
(GSES80344) publicly available at the NCBI's Gene Expression Omnibus (GEO) database
and previously reported by us [30]. The dataset was obtained from eight human NSCLC
cancer cell lines: two EGFR-TKI (erlotinib, gefitinib)-sensitive cell lines and six derived
EGFR-TKI-resistant cell lines. We aimed to identify IncRNA-mRNA sub-networks associ-
ated with resistance to EGFR-TKIs and/or intermediate EMT phenotypes. Our analysis
led to the selection of three modules highly correlated with coding genes involved in key
biological pathways and processes, including Rho (A, B, C) GTPase and/or Rho GTPase
regulation, apoptosis, positive regulation of I-kappaB kinase /NF-kappaB signaling, NLRP3
inflammasome complex assembly, cell adhesion, cell migration, cell-extracellular matrix
interactions, metabolism, lipid metabolism, interleukin (4, 12, and 13), phosphatidylinositol,
and RAS signaling pathways, and signaling pathways associated with cancer. Interestingly,
several IncRNAs are highly connected to genes belonging to these pathways. This analysis
may offer novel insights into the functional study of unknown IncRNAs correlated to
EGFR-TKI resistance and intermediate EMT phenotypes to reach a better understanding of
the molecular pathways contributing to these phenotypes.
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2. Results
2.1. Construction of a Weighted Gene Co-Expression Network

A weighted co-expression network of the transcriptome of our NSCLC cellular model
system was built with the objective of defining modules related to phenotypes of interest
and, among those, selecting the most relevant IncRNAs. An unsigned WGCNA was
performed in R complying with the pipeline defined by Peter Langfelder and Steve Horvath
to identify genes both positively and negatively correlated with the phenotype traits
(Figure 1A) [35]. Briefly, we used the Pearson correlation to calculate the co-expression
of probes and a power adjacency function to build the network by determining a soft
threshold B =7, based on the criterion of approximate scale-free topology (Figure 1B). Using
the Dynamic Tree Cut and Merged Dynamic algorithms, the gene probes were grouped
into modules according to their topological overlap matrix (TOM) scores (Figure 1C; see
Methods for details). The assignment of probes to each module, as well as their connectivity
measures and module memberships, are reported in Table S1.
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Figure 1. Weighted gene correlation network analysis (WGCNA) of NSCLC cell lines sensi-
tive and resistant to EGFR-TKI (erlotinib) and distinct EMT phenotypes. (A) WGCNA pipeline.
(B) Plots of scale-free topology fitting index (left) and mean connectivity (right) as a function of soft
thresholds. Red horizontal line indicates the fit parameter we chose to evaluate models (RZ=0.9).
The soft threshold 8 =7 is the first value above R? = 0.9 with good mean connectivity. (C) Hierarchical
clustering of probes according to their Topological Overlapping Matrix (TOM) dissimilarity score. The
color bars show the assignment of modules performed by Dynamic Tree Cut and Merged Dynamic
algorithms (see Methods section for details). Each branch represents genes; colored bars represent
the modules containing a group of highly connected genes.

At the end of this step, we had a WGCNA network of the transcriptome of the NSCLC
cell lines, where each connection was weighted, and this weight allowed the subdivision of
the network into 47 modules of highly correlated genes.
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2.2. Definition of Module-Trait Relationships and Detection of Key Modules

The modules identified by WGCNA were then correlated with the phenotypic traits
of interest: EGFR-TKI resistance (ERL-res) and intermediate EMT phenotypes (Figure 2).
For the definition of the intermediate EMT phenotypes, we used two comparisons: “I vs.
E”, to select modules with gene expression differences between cell lines with intermediate
EMT phenotypes (I) and epithelial cell lines (E); and “I vs. M”, to select modules with
gene expression differences between cell lines with intermediate EMT phenotypes and
mesenchymal cell lines (M). We used a binary code for all phenotypic traits as suggested
by the WGCNA package manual [35] (Table S2). To identify genes associated with both
intermediate EMT phenotypes and EGFR-TKI resistance, we focused our attention on
modules with: (a) high significant correlation with ERL-res and “I vs. E” traits (| ps | > 0.65,
p-value < 0.05); (b) significant correlation with the “I vs. M” trait (p-value < 0.05). From these
analyses, we identified modules positively or negatively correlated to the phenotypic traits,
although upregulated or downregulated genes are both present in each module (Table S1).

To avoid biased results dictated by the difference in cellular origins of the NSCLC
model system, we discarded from the selection all the modules (n = 19) that had a significant
correlation with the cell lineage trait.

Based on this rationale, we selected three modules: brown4 (Table S3), deeppink
(Table S4), and magenta4 (Table S5). We also selected the module plum4 (Table S6) because of
its high and significant correlation with ERL-resistance (o = 0.75, p-value < 0.05) and its en-
richment in probes specific for IncRNAs. Next, to verify that connectivity and memberships
had good correlations with our phenotypic trait of interest, we performed a correlation
analysis using the absolute values of module membership and gene significance as well
as gene significance and intramodular connectivity of probes (Figure S1). Data regarding
positive and negative membership and the gene significance of the individual members of
modules are listed in Tables S1 and S3-S6. While brown4, magenta4, and plum4 modules re-
sulted in good significant correlations between gene significance and module membership
and/or connectivity (os > 0.3, p-value < 0.05), the deeppink module showed unacceptable
parameters; therefore, it was not further investigated (Figure S1).

To summarize, among the 47 modules individuated by the WGCNA, we selected
3 modules: brown4, magenta4, and plum4. They have a high significant global correlation
with ERL-resistance and/or intermediate EMT phenotypes; and good significant correla-
tions between the gene significance of these phenotypic traits and the centrality measures
of module members (Figure 2C).

2.3. Functional Enrichment Analysis of the Brown4 and Magenta4 Modules

We then investigated the biological pathways affecting protein coding genes in the
brown4 and magenta4 modules. We performed a functional enrichment analysis using the
biological processes and pathway terms of the DAVID database. The results of the top
enriched pathways (fold-enrichment > 2) are presented in Figure 3, while all significant
enriched terms are reported in Tables S7 and S8. In the brown4 module, the genes were
mainly enriched in seven Gene Ontology biological processes (GO-BP) and in five Reactome
pathways, including Rho GTPases, Rho GTPase regulation, apoptosis, positive regulation of
I-kappaB kinase/NF-kappaB signaling and positive requlation of NLRP3 inflammasome complex
assembly, iron ion homeostasis, or iron—-sulfur cluster (Figure 3).

Magenta4 shows enrichment in several pathways: 3 KEGG, 8 GO-BP, and 14 Reactome
pathways. Remarkably, a good portion of enriched pathways belong to cell adhesion,
cell migration, cell-extracellular matrix interactions, metabolism, and/or lipid and phospholipid
metabolism terms, interleukin signaling pathways, particularly 4, 12, and 13, Phosphatidylinositol,
and RAS pathways (Figure 3).

It was not possible to obtain an accurate functional enrichment analysis in plum4, as it
has a small size and a high portion of IncRNAs. Despite this, it shows a slight enrichment
in the negative requlation of transport GO-BP term (Table S9).
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Figure 2. Identification of the key modules associated with ERL-resistance and intermediate EMT
phenotypes. (A) Hierarchical clustering of NSCLC cell lines. Biological replicates show the highest
degree of correlation within samples, represented by short vertical distances. Within each population,
cell lines tend to cluster according to their biological features. Color bars indicate the phenotypes
investigated: ERL-resistance indicates erlotinib-sensitive (red) and -resistant (green) cell lines; EMT
phenotypes indicate epithelial (red), mesenchymal (dark green), and intermediate EMT (green)
cell lines. (B) Heatmap of the module-trait relationships. Rows correspond to a module eigen-
gene (ME), and columns correspond to the phenotypic traits. Each cell contains the corresponding
correlation coefficient and p-value. The table is color-coded by correlation, according to the color
gradient shown in the legend. (C) Heatmap of the module-trait relationships of selected modules.
ERL-res = erlotinib resistance; I vs. E = intermediate EMT vs. epithelial cell lines; I vs. M = intermediate
EMT vs. mesenchymal cell lines.
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Figure 3. Functional enrichment analysis of the brown4 and magenta4 modules. Gene Ontology

biological processes (GO-BP, in red), as well as KEGG (green) and Reactome (blue) enriched pathways,

are shown in the plot. Terms are ranked on the X-axis according to the p-value and on the Y-axis
according to the fold-enrichment (reported inside the bubbles). Bubble size is proportional to the
count of module genes belonging to the term, as indicated in the legend.
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Taken together, the functional enrichment analysis identified about 37 key biologi-
cal processes and signaling pathways that could be involved in ERL-resistance and/or
intermediate EMT-phenotypes. Among these, terms regarding Rho GTPase signaling,
apoptosis, cell migration, lipid metabolism and cancer-related signaling pathways, seem to
be recurrent between and within the consulted databases.

2.4. Selection of the Most Relevant LncRNAs

To identify the IncRNAs with the best correlation in the module network, as well
as the phenotypic traits of interest, we selected the IncRNAs with high significative
scoring of module membership (IMMI| > 0.7, p-value < 0.05) and gene significance
(IGSI > 0.7, p-value < 0.05). A summary of the best IncRNAs of the brown4, magenta4,
and plum4 modules, ranked according to their intramodular connectivity (Ki), is listed in
Tables 1 and 2. Within each module, several biotypes were found, including long intergenic
non-coding RNA (lincRNA), miRNA host genes, divergent IncRNAs, and antisense IncR-
NAs. A relevant number of IncRNAs were present in the modules: brown4—20 IncRNAs
(23 probes mapping to 20 genes); magenta4—26 IncRNAs (29 probes mapping to 26 genes);
and plum4—8 IncRNAs (9 probes mapping to 8 genes) (Tables 1,2 and 510).

Table 1. Top IncRNAs of brown4 and magenta4 modules correlated to erlotinib resistance and interme-

diate EMT phenotypes.
Gene Name Biotype Cytoband Location Module
LINC-PINT lincRNA 7q32.3
MIOS-DT divergent IncRNA 7p21.3
LYPLAL1-DT divergent IncRNA 1q41
LINCO01547 lincRNA 21q22.3
MIR100HG miRNA host gene 11g24.1
ZNF436-AS1 antisense IncRNA p36.12
LOC107984035 uncharacterized 9pl1.2
LINC00653 lincRNA 20p11.23
LHX1-DT divergent IncRNA 17q12
GAPLINC lincRNA 18p11.31 brownd
PAN3-AS1 antisense IncRNA 13q12.2
LINC01004 lincRNA 7q22.3
ENSG00000261490 uncharacterized 4pl6.1
ENSG00000232850 antisense IncRNA 9q34.11
C2CD4D-AS1 antisense IncRNA 1921.3
NFE2L1-DT divergent IncRNA 17q21.32
MIR4435-2HG miRNA host gene 2q13
ENSG00000234141 IncRNA 7p21.3
ENSG00000287839 uncharacterized 1922
GABPBI-AS1 antisense IncRNA 15g21.2
ENSG00000289039 uncharacterized 10g26.3
MHENCR lincRNA 20q13.33
ENSG00000233085 lincRNA 6q27 magenta4
ENSG00000251532 lincRNA 5p15.33
ENSG00000236453 lincRNA 7q21.3
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Table 1. Cont.

Gene Name Biotype Cytoband Location Module
SPART-AS1 antisense IncRNA 13q13.3
LINC00973 lincRNA 3ql2.1
MAP3K2-DT divergent IncRNA 2q14.3
ZNF674-AS1 antisense IncRNA Xp11.3
GIHCG IncRNA 12q14.1
MIR205HG miRNA host gene 1g32.2
ZMIZ1-AS1 antisense IncRNA 10g22.3
NEAT1 lincRNA 11q13.1
RAB30-DT divergent IncRNA 11q14.1
LINCO01629 lincRNA 14q24.3
LOC100506124 IncRNA 2q24.3 magentad
ENSG00000267575 lincRNA 19q11
LINC00472 lincRNA 6q13
FAM95C IncRNA 9p13.1
LINC02512 lincRNA 4933
LINC01182 lincRNA 4p15.33
LASTR lincRNA 10p15.1
ENSG00000268403 antisense IncRNA 11p15.4
ENSG00000257283 antisense IncRNA 12g22
KDM7A-DT divergent LncRNA 7q34
LINC00173 lincRNA 12q24.22
Table 2. Top IncRNAs of plum4 module correlated to erlotinib resistance.
Gene Name Biotype Cytoband Location Module
LINCO02814 lincRNA 1q42.13
DPY19L3-DT divergent IncRNA 19q13.11
ENSG00000288989 uncharacterized 9q34.13
SATB2-AS1 antisense IncRNA 2q33.1 plumd
LINCO01358 lincRNA 1p32.1
ENSG00000286905 uncharacterized 2p25.3
ZEB1-AS1 antisense IncRNA 10p11.22
LINCO01004 lincRNA 7q22.3

2.5. Expression Validation of Selected LncRNAs

The expression of some IncRNAs, differentially expressed in the erlotinib-sensitive
and -resistant NSCLC cell lines in the microarray data and belonging to the three se-
lected WGCNA modules, was validated by RT-qPCR. RNA expression was analyzed
after verification of sensitivity to erlotinib, as described in the Material and Methods sec-
tion, by MTT viability assays. As previously described, both HCC827 and HCC4006 cell
lines are highly sensitive to erlotinib targeting the EGFR, while their derived cell lines
(i.e., RA1, RA2, RB1, RB1.1, and RB2 derived from HCC827 and RC2.2 derived from
HCC4006) are stably resistant to erlotinib (IC5y > 10 uM).
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LINC-PINT, LYPLAL1-DT, and MIR100HG of the brown4 module; GIHCG, ZMIZ1-AS1
of the magenta4 module; and SATB2-AS1 of the plum4 module are all upregulated in the
erlotinib-resistant cell lines, while MIR205HG of the magenta4 module is downregulated
(Figure 4). These data agree with the microarray expression profile previously reported [30].
The direction of the correlation of IncRNAs with the phenotypic traits of interest, as well as
the direction of their correlation with modules, are listed in Table S10.
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Figure 4. qPCR analysis of selected IncRNAs. qPCR analysis of the IncRNAs indicated is normalized
to RPL31 mRNA and expressed relative to their levels in parental (HCC827 or HCC4006) cell lines
(mean =+ SD). qPCR data are representative of three independent experiments. Asterisks indicate
significant ¢-test p-values in the comparison of a given derived cell line with the corresponding
parental cell line: * p < 0.05; ** p < 0.01; *** p < 0.001; n.s. no significant p-values. Colors indicate the
module membership of the selected IncRNAs, from the top: brown4, magenta4, and plum4.
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2.6. Analysis of mRNA-IncRNA Sub-Networks

Co-expression networks were built for the three selected modules, as described in
methods, to investigate the best connected IncRNA-mRNA genes and, in turn, to study the
involved biological processes and signaling pathways of module functional enrichment
analysis (Figure 3, Tables S7-59). It is worth mentioning that, because our data are at
probe-level, each gene in the network could be represented by multiple nodes, one for
each probe.

The network of the brown4 module contains 87 mRNAs (93 probes) and 29 IncR-
NAs (34 probes), 20 of them represent the best IncRNAs as highlighted by our selection
criteria, mentioned above and in the Methods section (Tables 1 and S7, Figure 52). In-
terestingly, 14/20 IncRNA nodes (C2CD4D-AS, ENSG00000261490, ENSG00000287839,
GABPB1-AS1, GAPLINGC, LINC-PINT, LINC00653, LINC01004, LINC01547, LOC107984035,
LYPLAL1-DT, MIR100HG, PAN3-AS1, ZNF436-AS1) show connectivity with 5 mRNAs
(ARHGEFI10L, BCR, PCDH?, SEN, SLC4A?7) belonging to Rho GTPase and/or Rho GTPase
requlation enriched pathways (Figure 5A, Table S7). As shown in Figure 5A, multiple
probes for the IncRNA LINC-PINT, all mapping to the same transcripts, are in the subnet-
work. Moreover, 8/20 IncRNAs (ENSG00000261490, GAPLINC, LINC-PINT, LINC01547,
LOC107984035, LYPLAL1-DT, PAN3-AS1, ZNF436-AS1) show connectivity with 4 mRNAs
(CIDEC, PDCDeéIP, PSMC2, SFN) belonging to apoptotic enriched processes and pathways
(Figure 5B, Table S7). It is to be considered that some IncRNAs of the two sub-networks
are in common (ENSG00000261490, GAPLINC, LINC-PINT, LINC01547, LOC107984035,
LYPLAL1-DT, PAN3-AS1, ZNF436-AS1), highlighting the link between Rho GTPase and
apoptotic pathways. The IncRNAs LINC-PINT, LOC107984035, MIR100HG, PAN3-AS1
were also connected to mRNAs (APOL3, CARD11, MYDS88, SL.C44A2) of the enriched
Gene Ontology term positive regulation of I-kappaB kinase/NF-kappaB signaling and positive
regulation of NLRP3 inflammasome complex assembly (Figure S2). None of the selected IncR-
NAs were connected to the genes of the iron ion homeostasis or iron-sulfur cluster assembly
enriched pathways.

The network of the magenta4 module contains 212 mRNAs (231 probes) and 34 IncRNAs
(37 probes), 26 of them represent the best IncRNAs selected (Tables 1 and S8, and Figure S3).
Interestingly, 15/26 IncRNA nodes (ENSG00000233085, ENSG00000236453, ENSG00000251532,
ENSG00000268403, ENSG00000289039, FAM95C, GIHCG, LASTR, LINC01182, MAP3K2-DT,
MHENCR, MIR205HG, NEAT1, RAB30-DT, ZNF674-AS1) show connectivity with 11 mRNAs
(CEACAM]1, CLSTN1, COL4A6, FGF2, IGSF9, ITPR2, NDNE, RASGEF1A, SPTB, USP9X, VAV1)
belonging to cell adhesion, cell migration, and cell-extracellular matrix interactions (Table S8,
Figure 6). Moreover, 24 /26 IncRNAs (ENSG00000233085, ENSG00000236453, ENSG00000251532,
ENSG00000257283, ENSG00000267575, ENSG00000268403, ENSG00000289039, FAM95C,
GIHCG, KDM7A-DT, LASTR, LINC00173, LINC00472, LINC00973, LINC01182, LINC01629,
LINC02512, LOC100506124, MAP3K2-DT, MHENCR, MIR205HG, RAB30-DT, ZMIZ1-AS1,
ZNF674-AS1) show connectivity with 19 mRNAs (ACSL4, CKMT1B, FAR1, FDFT1, GCHI,
GLS2, IMPA2, ITPR2, LGMN, LRP12, MGLL, OAZ3, PLA2G10, PLAAT2, RPL3, SLC27A3,
SYN]J2, TBXAS1, TPK1) belonging to metabolism, and/ or lipid and phospholipid metabolism
terms (Table S8, Figure 6). In addition, 7/26 IncRNAs (ENSG00000257283, ENSG00000289039,
GIHCG, LASTR, LINC00173, LINC00973, MHENCR) show connectivity with 5 mRNAs
(FGF2, MUC1, STAT4, VAV1, ZEB1) belonging to interleukin signaling pathways, in
particular 4, 12, and 13. Finally, 13/26 IncRNAs (ENSG00000233085, ENSG00000236453,
ENSG00000268403, ENSG00000289039, FAM95C, GIHCG, LASTR, LINC00173, LINC01182,
LINC02512, MAP3K2-DT, MHENCR, ZNF674-AS1) show connectivity with 8 mRNAs
(COL4A6, FGF2, IMPA2, ITPR2, LPAR2, RASGEF1A, STAT4, SYN]2) belonging to Phos-
phatidylinositol, RAS, and signaling pathways associated with cancer (Table S8, Figure S3).

The network of plum4, a small module characterized by many IncRNAs, contains
9 mRNAs (9 probes) and 14 IncRNAs (15 probes), of which 8 represent the best IncR-
NAs selected (Tables 2 and S9, Figure 7). Five out of eight IncRNA nodes (DPY19L3-DT,
ENSG00000288989, LINC01358, LINC02814, SATB2-AS1) show connectivity with a single
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mRNA coding for the mitochondrial inner membrane protein-like protein, MPV17L, pre-
dicted to be involved in several processes, including cellular response to reactive oxygen
species and apoptosis.

ARHGEF10L

PDCDEIP

Figure 5. Subnetworks of the brown4 module. Subnetwork of selected IncRNAs connected to mRNA
of the Rho GTPase and/or Rho GTPase regulation pathways (A); apoptotic enriched processes and path-
ways (B) identified by the DAVID functional enrichment analysis of the brown4 module. The selected
IncRNAs (green diamonds) and mRNAs (orange ellipses) at probe-level are connected by edges
whose sizes are proportional to their WGCNA weights: the higher, the thicker. Node size is propor-
tional to the intramodular connectivity measure (kWhithinScaled), and node border color and width
indicate the fold-change between Erl-resistant/intermediate EMT and -sensitive/epithelial NSCLC
cell lines: red = upregulation (|fold-change | > 1.5); blue = downregulation (|fold-change| < 0.5);
white = no expression variation; thickness = the higher, the thicker.
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Figure 6. Subnetworks of the magenta4 module. Subnetwork of selected IncRNAs connected to mRNAs
of cell adhesion, cell migration, cell-extracellular matrix pathways (A); metabolism, and/or lipid and
phospholipid metabolism (B) identified by the DAVID functional enrichment analysis of the magenta4
module. The selected IncRNAs (green diamonds) and mRNAs (orange ellipses) at probe-level are
connected by edges whose sizes are proportional to their WGCNA weights: the higher, the thicker. Node
size is proportional to the intramodular connectivity measure (kWhithinScaled), and node border color
and width indicate the fold-change between Erl-resistant/intermediate EMT and -sensitive/epithelial
NSCLC cell lines: red = upregulation (| fold-change | > 1.5); blue = downregulation (| fold-change | <0.5);
white = no expression variation; thickness = the higher, the thicker.
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Figure 7. Network of the plum4 module. IncRNAs (diamonds) and mRNAs (ellipses) at probe-level

are shown in an organic layout. Nodes are connected by edges whose sizes are proportional to their

WGCNA weights: the higher, the thicker. Node size is proportional to the intramodular connectivity
measure (kWhithinScaled), and node border color and width indicate the fold-change between
Erl-resistant/intermediate EMT and -sensitive/epithelial NSCLC cell lines: red = upregulation

(1fold-change| > 1.5); blue = downregulation (| fold-change | < 0.5); white = no expression variation;

thickness = the higher, the thicker. Nodes of selected IncRNAs are filled in green.

Interestingly, the presence of several interconnected IncRNAs in the brown4 and plum4
modules offers the possibility of investigating the effects of IncRNA cooperation in cell

signaling pathways and NSCLC-associated phenotypes.

3. Discussion

NSCLC is the most widespread of all lung cancers and a leading cause of cancer-
related mortality worldwide. TKIs targeting the EGFR protein serve as a critical pillar
in the treatment of NSCLC, but unfortunately, resistance is unavoidable. Identifying
the potential key factors of drug resistance to EGFR-TKIs is essential to treating patients
with EGFR mutant lung cancer and to developing novel therapeutic strategies. LncRNAs
act as versatile regulators involved in diverse biological processes in cancer, including
drug resistance [8-15] and EMT [33,34]. However, their contribution to intermediate EMT

phenotypes is still unknown.

LncRNAs are generally expressed at lower levels than protein-coding RNAs; therefore,
they might be overlooked by conventional pair-wise gene expression comparisons [36].
However, despite their low abundance, they can exert pronounced effects via their interplay

with other nucleic acid and protein molecules.

WGCNA has many advantages over other differential expression analysis methods
since its focus is on co-expression patterns, which helps discover functional modules
containing related genes. Therefore, we decided to use WGCNA to interrogate the gene
expression data of erlotinib-sensitive and -resistant NSCLC cell lines that we isolated in
the lab, characterized also by an intermediate EMT phenotype [30,37], to identify IncRNA~-

mRNA links.
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In this study, a total of 20,192 probes (mapping to 13,904 Ensembl gene ID) were
used to carry out WGCNA, and 47 modules with sizes ranging from 32 to 4725 probes per
module were generated. The three most significant modules, brown4, magenta4 and plum4,
were selected for further analysis. Several critical and interesting biological processes,
IncRNAs and mRNAs were identified.

Intriguingly, the brown4 module shows 14 out of 20 selected IncRNA nodes connected
with 5 mRNAs, belonging to Rho GTPase and/or Rho GTPase regulation enriched pathways.

The role of Rho GTPases, as key regulators of biological processes relevant for can-
cer development and progression, has been investigated for decades [38,39]. The Rho
GTPases, a family of highly conserved GTPases that are encoded by 20 genes in humans,
regulate a range of cellular functions. They are activated via the dysregulation of expression
and/or activity of a myriad of oncogenic cell surface receptors, including growth factor
receptors. In turn, Rho GTPases signal to multiple downstream effectors that regulate mi-
gration/invasion via de novo actin polymerization, cell polarization, metastasis, EMT, cell
proliferation, cell cycle progression, apoptosis/survival, vesicle trafficking, angiogenesis,
cell—cell, and cell-substrate adhesions.

The interaction of the Rho GTPases with several targets, the signals originated from
distinct subcellular pools of Rho GTPases, and their spatial and temporally regulation
can drive diverse physiological and pathological outcomes [39]. The impact of IncRNAs
on Rho GTPase signaling has been shown to be exerted through direct modulation of
their expression, by influencing the expression of miRNAs that negatively regulate Rho
GTPases, or by acting as molecular sponges of relevant miRNAs [40,41]. Interestingly,
among the IncRNAs and connected mRNAs of the brown4 network (Figure S2) belonging
to the enriched Rho GTPase pathway, there is a bicarbonate transporter (SLCA47), already
shown to be dysregulated in epithelial cancers, and several linked IncRNAs (C2CD4D-AS,
ENSG00000261490, ENSG00000287839, GABPB1-AS1, GAPLINC, LINC-PINT, LINCO00653,
LINC01004, LOC107984035, MIR100HG, PAN3-AS1) (Figure 5).

Within the last decade, numerous studies have demonstrated that intracellular pH
homeostasis is often dramatically altered in cancer. Because of the vital importance of the
acid-base balance, all living cells have systems to maintain the stability of their intracellular
and extracellular pH (pHi and pHe). Evidence has emerged that the high metabolic
requirement of proliferating cancer cells, the shift toward a glycolytic metabolism as a
response to hypoxia, as well as oncogene-driven changes in gene expression, lead in cancer
tissues to an increase in pHi compared to normal cells with a pHe decrease, hence a reversal
of pHi < pHe of normal tissue cells. Therefore, the dysregulation of the expression and
activity of pH-regulatory proteins, H* and HCO?~ transporters are areas of intense study
in cancer [42-47].

The Na*-HCO3~ co-transporter SLC4A?7 (also known as NBCnl), a key contributor
to epithelial pH homeostasis, is upregulated at the mRNA level in our erlotinib-resistant
cell lines. Interestingly, it is heavily connected to several IncRNAs in the brown4 network.
SLC4A7 is also a target of mTORCI signaling and sustains the mTORC1-dependent control
of nucleotide synthesis [48,49]. Moreover, SLC4A7 has also been reported to promote EMT
and metastasis of the head and neck squamous cell carcinoma; similarly, pHi dynamics
studies as well as mRNA and protein expression of acid-base transporters among breast
cancer patients showed that increased SLC4A7 expression predicts proliferative activity
and metastasis [50,51].

Another gene worthy of mention is BCR, which is connected to IncRNAs in the
brown4 module (Figure 5) and shows a downregulation at the mRNA level in the erlotinib-
resistant cell lines. Indeed, Bcr protein may have opposing regulatory activities toward
small GTP-binding proteins because the C-terminus of Ber is a GTPase-activating protein
(GAP) domain, which stimulates GTP hydrolysis by RAC1, RAC2, and CDC42 [52-54].
Instead, the central Dbl homology (DH) domain functions as a guanine nucleotide exchange
factor (GEF) that modulates the GTPases CDC42, RHOA, and RAC1 by promoting their
conversion from the GDP-bound to the GTP-bound form [52,55].
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Functionally, Bcr may act as an important negative regulator of Racl activity in
different cell types [53]. Racl, a widely expressed Rho GTPase, is a major player in
the assembly of actin-rich membrane protrusions (i.e., ruffles) implicated in cancer cell
migration [56,57]. Growth factors and other extracellular stimuli activate Racl via GEFs,
and active GTP-bound Racl subsequently propagates motility signals via downstream
effectors [58,59]. Recently, Rac-GEFs responsible for Racl-mediated lung cancer cell migra-
tion upon EGFR and c-Met activation have been identified [60]. Whether BCR downregula-
tion leads to Racl activation in lung adenocarcinoma has not yet been investigated.

In the brown4 module, LINC-PINT, LYPLAL1-DT, and MIR100HG are among the most
significant IncRNAs connected to the Rho enriched pathways; they show good values of
membership (MM = 0.9), connectivity (kWithin scaled > 0.6), and gene significance for
ERL-resistance (GS > 0.6) and EMT intermediate phenotype (GS > 0.7).

The long intergenic non-protein-coding RNA, p53-induced transcript (LINC-PINT)
contributes to a variety of biological processes impacting cancer cell growth and metastasis,
with involvement in processes ranging from DNA damage responses to cell senescence
and apoptosis [61].

The lysophospholipase-like 1-divergent transcript (LYPLAL1-DT) has been shown to
act as a small cell lung cancer (SCLC) oncogenic IncRNA by in vitro and in vivo studies,
promoting cell proliferation, migration, and invasion [62].

MIR100HG can regulate cell proliferation, apoptosis, cell cycle transition, and cell
differentiation. It has been functionally related to several signaling pathways, such as
TGEF-$3, Wnt, Hippo, and ERK/MAPK. Dysregulation of MIR100HG has been detected in a
diversity of cancers [63,64].

These IncRNAs, already shown to be dysregulated in epithelial cancers, have not
yet been investigated in these specific NSCLC cancer phenotypes or in the Rho signaling
pathways; therefore, further investigation is required.

In the larger magenta4 module, the co-expression IncRNA-mRNA network analysis
highlighted two main enriched functional pathways: one related to cell adhesion, cell
migration, and cell-extracellular matrix interactions, and the other belonging to metabolism
and/or lipid metabolism (Figure 6).

In the first functional pathway, 15 of the 26 best selected IncRNA nodes show con-
nectivity with 11 mRNAs. Among the IncRNAs, GIHCG and MIR205HG show very good
parameters of module membership (MM = —0.9 and 0.9, respectively) and gene signif-
icance for both ERL-resistance and EMT intermediate phenotypes (GS = 0.8 and —0.8,
respectively), and good connectivity measures (kWithin scaled = 0.6 and 0.5, respectively).

GIHCG was found to be upregulated in several cancer types, including hepatocellular
carcinoma and cervical and renal carcinoma, and showed a role in proliferation and cell
migration regulation [65-67].

Interestingly, using the baseline gene-expression data and corresponding drug re-
sponse data from two large cell line screens (Genomics of Drug Sensitivity in Cancer, and
Cancer Therapeutics Response Portal), Nath et al. found that MIR205HG can be considered
a biomarker of erlotinib response in lung cancer cells [68].

Among others, FGF2 and USP9X mRNA, both upregulated in our resistant cell lines,
are present in this network. The X-linked ubiquitin-specific peptidase 9 (USP9X) is a mem-
ber of the deubiquitinase family shown to be significantly increased in several tumors,
including non-small cell lung cancer [69]. Overexpression of USP9X in cancer activates mul-
tiple important pathways, including the PI3K/AKT, Rho/Rho-associated protein kinase,
Notch, NK-«B, and Wnt/ 3-catenin pathways [70]. Autocrine signaling of fibroblast growth
factors (FGF) and their receptors (FGFR) has been shown in NSCLC cell lines [71,72], and
activation of an FGF2-FGFR1 autocrine loop has been reported in EGFR-TKI-resistant
cell lines [73].

Moreover, 24 out of 26 IncRNAs show connectivity with 19 mRNAs involved in
metabolism and lipid metabolism pathways. Among the IncRNA are GIHCG (discussed
in the previous paragraph) and ZMIZ1-AS1 that show a MM—0.8; kWithin scaled equal
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to 0.5 and a good gene significance for ERL-resistance (GS = 0.8) and EMT intermediate
phenotype (GS = 0.8).

The Zinc Finger MIZ-Type Containing 1-Antisense RNA 1, ZMIZ1-AS1, has been
previously shown to be upregulated in an erlotinib-resistant cell line derived from HCC827
and by RNA pull-down assay and mass spectrometry to interact with the nuclear ribonu-
cleoprotein hnRNPA1 [74].

It is very well known that tumor initiation and progression require the metabolic
reprogramming of cancer cells through the regulation of the expression and activity of
enzymes and transporters. Cancer cells should adapt to the increased energy demand,
nutrient availability, and oxidative stress associated with cancer cell proliferation [75].
The epithelial-to-mesenchymal transition has also been linked with complex metabolic
reprogramming [76,77]. Among the metabolic alterations observed in lung cancer, those
associated with lipid metabolism have recently received increasing attention [78,79].

The IncRNA-mRNA network of the magenta4 module correlated to metabolic pathways
includes, among others, some interesting genes: ACSL4, FDFT1, MGLL, and GLS2. The
ACSLA4 gene, upregulated in the erlotinib-resistant cell lines, is a member of the long-chain
fatty acyl CoA synthetase (ACSLs) family of enzymes that contributes significantly to
lipid metabolism, playing a role in both anabolic (fatty acid synthesis and lipogenesis)
and catabolic pathways (lipolysis and fatty acid (3-oxidation). ACSLs affect the behavior
of malignant cells, including proliferation, migration, invasion, apoptosis, and drug re-
sistance. ACSL4 has also been involved in ferroptosis, a cell death pathway caused by
excessive accumulation and failure to eliminate iron-dependent lethal toxic lipid reactive
oxygen species (ROS) [80]. A cholesterogenic gene, Farnesyl-Diphosphate Farnesyltrans-
ferase 1 (FDFT1), downregulated in the erlotinib-resistant cell lines, is a gene encoding a
membrane-associated enzyme located at a branch point in the mevalonate pathway. It is
the first specific enzyme in cholesterol biosynthesis, and its relevance to tumor progression
and tumor environment has been recently reviewed [81].

Monoacylglycerol lipase (MGLL, MGL, or MAGL) is an enzyme belonging to the fam-
ily of serine hydrolases that preferentially catalyzes the hydrolysis of mono-triglycerides to
glycerol and fatty acids. This enzyme is also the most important degrading enzyme for the
endocannabinoid 2-arachidonoylglycerol (2-AG). MGLL inhibitors have been considered im-
portant agents in many diseases for their anti-nociceptive, anxiolytic, anti-inflammatory, and
anti-cancer properties [82]. Interestingly, this gene is downregulated in the erlotinib-resistant
cell lines and gene knock-out in mice leads to an increased incidence of lung cancer and the
activation of EGFR and ERK [83].

The GLS2 gene, downregulated in the erlotinib-resistant cell lines, plays an important
role in the regulation of glutamine catabolism. GLS2 protein promotes mitochondrial
respiration and increases ATP generation in cells by catalyzing the synthesis of glutamate
and alpha-ketoglutarate. The GSL2 oncogene or tumor suppressor gene in different cancer
types has also been correlated with EMT [84,85].

The network of the small plum4 module (Figure 7) is characterized by the presence of
many IncRNAs, including SATB2-AS], special AT-rich sequence binding protein 2 antisense
RNA 1 (MM = —0.9; kWithin scaled = 0.6; GSgRL resistance a1d GSEMT intermediate phentotype = 0.8),
which has been reported to promote tumor cell growth in osteosarcoma [86], and NSCLC [87];
in contrast, it inhibits tumor cell metastasis in colorectal cancer through positive regulation
of SATB2 gene expression [88]. Accordingly, in our erlotinib-resistant NSCLC cell lines,
both SATB2-AS1 (plum4 module) and SATB2 (deeppink module) are upregulated, suggesting
a similar positive regulation of the coding gene by the IncRNA.

4. Material and Methods
4.1. Reagents
Chemicals and molecular biology reagents, if not otherwise stated, were purchased

from Merck Life Science, Milan, Italy or Thermo Fisher Scientific, Milan, Italy; Erlotinib Hy-
drochloride Salt was purchased from LC Laboratories, Woburn, MA, USA; and MTT, 3-(4,5-
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methylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, was purchased from Sigma-Aldrich.
MTT stock solution (5 mg/mL in HO, sterilized by filtration) was stored at 4 °C for
1 month. Applied Biosystem PowerUp SYBR Green Master Mix for qPCR was from
Thermo Fisher Scientific, Milan, Italy. The Reverse Transcription System was from
Promega Italia Srl, Milan, Italy.

4.2. Cell Culture

For the model of NSCLC, the study used EGFR-TKI (erlotinib/ gefitinib)-sensitive and
-resistant cell lines derived and characterized in our laboratory and previously described [30,37].
Our model system is composed of two parental EGFR-mutated cell lines that are sensitive
to EGFR-TKI, HCC827 (ATCC CRL-2868) and HCC4006 (ATCC CRL-2871), and six EGFR-
TKI-resistant cell lines: five HCC827-derived cell lines (RA1, RA1, RA2, RB1, RB1.1, and
RB2), and one HCC4006-derived cell line (RC2.2). Concisely, NSCLC cells were maintained
in RPMI 1640 medium (BioWhittaker, Lonza, Euroclone, Milan, Italy) supplemented with
10 mM Hepes pH 6.98-7.30, 1 mM L-glutamine, 100 U/mL penicillin/streptomycin
(BioWhittaker, Lonza), and heat-inactivated 10% fetal bovine serum (FBS) (Merck Life Science,
Milan, Italy). All cells were cultured at 37 °C in a 5% CO, humidified incubator.

The MTT assay was performed as previously described [37]. Briefly, cells (10-20 x 10*
cells/well) in a 96-well plate were treated with an increasing concentration of erlotinib (from
64 pM up to 10-20 uM) in complete tissue culture medium for 72 h. Next, cells were washed
with PBS, incubated for 4 h with MTT (1 mg/mL), and processed for color detection upon
solubilization with DMSO. The samples were quantified spectrophotometrically at 570 nm,
with a reference wavelength of 630 nm, using a Varioskan Lux multimode microplate
reader (Thermofisher Scientific, Waltham, MA, USA). Data analysis was achieved using
GraphPad Prism v 7.0 software (GraphPad Software Inc., La Jolla, CA, USA), and ICsg
was obtained after nonlinear regression curve fitting, according to log (inhibitor) versus
normalized response with a variable slope curve model.

4.3. RNA Extraction and Real-Time qPCR Analysis

Total RNA was extracted from the erlotinib-sensitive and -resistant cell lines using
the total RNA purification plus kit (Norgen Biotek Corporation, Thorold, ON, Canada)
and retro-transcribed with the GoScript Reverse Transcription System (Promega Italia,
Srl, Milan, Italy) using random primers. Quantitative real time PCR (qRT-PCR) analysis
was performed in an Applied Biosystem 7500 Fast Real-Time PCR System (from Thermo
Fisher Scientific, Milan, Italy) using Applied Biosystem PowerUp SYBR Green Master Mix
for qPCR. Sequences of specific primers are shown in Table S11. Ribosomal protein L31
(RPL31) was used as a reference gene to normalize the quantitation of target genes for
differences in the amount of total RNA in each sample. The relative fold change of target
genes in resistant cell lines in comparison to HCC827 and HCC4006 parental cell lines was
calculated using the 2-24Ct method. The data were analyzed using Applied Biosystem
SDS (Ver. 1.4) software (Thermo Fisher Scientific, Milan, Italy).

4.4. Weighted Gene Co-Expression Network Analysis (WGCNA) and Module Identification

WGCNA is an approach utilizing gene expression data to construct co-expression
networks weighted for high correlations [35] and was used in this study to evaluate the
correlation between IncRNA and mRNA expression in NSCLC cell lines that are sensitive
and resistant to EGFR-TKI. The gene expression dataset GSE80344 of sample biological
duplicates (n = 16), publicly available at the NCBI's Gene Expression Omnibus (GEO)
database, was used as input for the WGCNA.

The gene expression raw microarray data were background corrected, log2 trans-
formed, and quantile normalized using the limma package as previously reported [89].
Probes with low signal intensities and low variation were cut-off: 20,192 probes (mapping
to 13,904 Ensembl gene ID) with signal intensities >5.5 and relative standard deviation
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(RSD) >0.3 were submitted to the following analysis: of these probes, 3591 map to IncRNAs
(2386 Ensembl Gene ID).

The weighted correlation network analysis was performed with the WGCNA v.1.70.3
package of R v.4.1 software [35,90]. We used the WGCNA package to construct a weighted
gene co-expression network, detect sub-clusters of genes, and correlate them to the pheno-
typic traits of our interest: intermediate EMT phenotype and ERL-resistance. Briefly, we
obtained the expression correlation square matrix by calculating the Pearson correlation
coefficient for all possible probe pairs. To construct a co-expression network, we used
the scale-free topology criterion to choose the best parameter of the adjacency function:
aj = lsjl P [90]. The fit was calculated using different  parameters (soft threshold) and
selecting the B parameter of the fitting with R? ~ 0.9. The adjacency measures were
transformed into topology overlapping matrix (TOM) scores (or weights), which reflect
the relative interconnectedness between two nodes [91]. The TOM-based dissimilarity
(d“ =1 — TOM) was used for the hierarchical clustering of probes and the definition of the
network modules. In particular, the modules (i.e., groups of highly correlated probes) were
formed by hierarchical clustering (method = “average”), followed by the Dynamic Tree Cut
algorithm (deepSplit = 2, minModuleSize = 30) and a merging of close clusters with the Merge
Dynamic algorithm (cutHeight = 0.2).

4.5. Modules and Probes Selection

The first principal component of module gene expression data (module eigengene)
was used to relate modules to each probe expression profile (module membership, MM)
by the Pearson coefficient (p), and to phenotypical traits of cell lines by Spearman’s rank
correlation coefficient (p;). The Spearman’s rank correlation was also used to calculate the
gene/probe significance (GS), which in this work is the correlation between individual
probe values and the biological trait of interest.

The student asymptotic p-values were calculated to assign a significance value to the
correlation coefficients. p-values < 0.05 were considered significant.

For each gene/probe, connectivity (K) was represented by node degree (i.e., the sum of
connection strengths with the other network nodes) and was calculated with three measures
to study how connected a gene/probe is with respect to the other genes/probes: whole
network connectivity (k), intramodular connectivity (kWithin), and scaled intramodular
connectivity (kWithin scaled).

Modules of interest were selected according to their correlation with the EMT interme-
diate phenotype (“I vs. E”) and/or ERL-resistance (|ps | > 0.65, p-value < 0.05). Modules
with a significant correlation (p-value < 0.05) with the “cell lineage” trait were discarded, as
were modules with a not-significant correlation with the “I vs. M” trait (p-value > 0.05).

LncRNAs and mRNAs with significant MM and GS for intermediate EMT or erlotinib
resistance greater than 0.7 were selected at probe level.

Module networks were finally imported into Cytoscape v.3.8.1 for visualization and
topology analysis. For each node, we considered only the first 10 edges with a weight
greater than the 0.8 quantile of module edge weights.

In the Discussion section, we summarized the gene parameters for module mem-
bership, gene significance, and connectivity as the average of probe values mapping to
those genes.

4.6. Functional Annotations
Function annotations of modules were performed using the DAVID web tool [92] by
using the official gene symbol identifiers and the terms of the BBID, BIOCARTA, KEGG,

and Reactome databases. We performed pathway enrichment analysis, selecting terms
with a count >2 and a p-value < 0.05.
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5. Conclusions

In conclusion, in a NSCLC cellular model system, we identified three clusters of
co-expressed genes whose expression correlates with resistance to EGFR-TKI and/or inter-
mediate EMT phenotypes. These clusters of genes, with a potential biological significance
for the selected NSCLC features, show strong links between some IncRNAs and mRNAs
that could be a milestone for future mechanistic studies aimed at investigating the unknown
function and action mechanisms of IncRNAs in NSCLC.
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