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Abstract: Chimeric antigen receptor T cell (CAR T cell) therapy has emerged as a prominent adoptive
cell therapy and a therapeutic approach of great interest in the fight against cancer. This approach has
shown notorious efficacy in refractory hematological neoplasm, which has bolstered its exploration
in the field of solid cancers. However, successfully managing solid tumors presents considerable
intrinsic challenges, which include the necessity of guiding the modified cells toward the tumoral
region, assuring their penetration and survival in adverse microenvironments, and addressing the
complexity of identifying the specific antigens for each type of cancer. This review focuses on outlining
the challenges faced by CAR T cell therapy when used in the treatment of solid tumors, as well as
presenting optimizations and emergent approaches directed at improving its efficacy in this particular
context. From precise localization to the modulation of the tumoral microenvironment and the adaptation
of antigen recognition strategies, diverse pathways will be examined to overcome the current limitations
and buttress the therapeutic potential of CAR T cells in the fight against solid tumors.

Keywords: cancer; immunotherapy; solid tumors

1. Introduction

For decades, conventional therapeutic approaches, such as chemotherapy, radiother-
apy, and surgery, have been implemented as fundamental pillars in the treatment of various
cancer typologies. Most of these interventions have generalized and highly aggressive
effects on cells that are in a constant dividing process [1]. Despite the efficacy shown by
these modalities, significant challenges persist, including disease recurrence and the rise
of intrinsic drug resistance, not to mention potential side effects [2]; therefore, a critical
need to explore innovative alternatives that could provide secure and effective solutions
in the oncology field has become apparent. This imperative matter has led to the con-
vergence of oncology and immunology, paving the way for the emergence of the field
known as immuno-oncology [3]. Contemporary advances in this discipline have revealed
novel approaches to the conception of anti-neoplastic therapies based on the enhance-
ment of the innate immune response of the organism. These emergent strategies not only
have the potential to improve the life quality of patients but also broaden their survival
perspectives [4].
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Given the considerable impact of lymphocytes on tumoral progression dynamics,
innovative therapeutic approaches have given them greater prominence. These strategies
pursue the reactivation and reinforcement of the antitumoral capabilities of lymphocytes
through genetic manipulation, giving rise to the known chimeric antigen receptor T cells
(CAR T cells). These cells have been genetically modified to express synthetic chimeric
receptors capable of recognizing malignant cells, with the purpose of triggering a process
directed at the complete eradication of the tumor [5,6].

Over half a century ago, the concept of antitumoral cell therapy was coined by Avrion
Mitchison through experimental research in tumoral transplants on murine models. These
studies showed that, by transplanting lymph nodes, there was an increase in their size,
and they manifested a potentiated immune response. In the past two decades, T cell
immunotherapy went from being considered a marginal interest to being recognized as
a potential alternative therapy. From the seminal research on the genetic redirection of
cytotoxic T lymphocytes to neoplastic cells by Gross et. al. [7], the promise of this approach
in the fight against cancer has been regarded with increasing attention, which led to the
development of first-generation CARs. Ever since this primary design, the configuration of
these receptors has advanced until reaching a fourth generation. Nonetheless, there are still
opportunities for refining and optimizing these components, opening the door to a new era
of more efficient and safer oncological treatments [8].

In the contemporary context, CAR T cell therapies have experienced significant ad-
vancements. Clinical trials using these biomedical technologies have received regulatory
approval in countries such as the United States and China, with institutions such as the
Food and Drug Administration (FDA) licensing specific drugs for the treatment of acute
lymphoblastic leukemia (ALL) and diffuse large B cell lymphoma (DLBCL), among other
hematological neoplasms and refractory cancers [9,10]. These successful initiatives have
catalyzed a robust expansion in subsequent research and generated significant enthusiasm
in this scientific field [11].

However, the applicability of CAR T cell therapies is considerably limited in the case
of solid tumors. Numerous studies on a broad range of neoplasms have elucidated intrinsic
obstacles that restrict the efficacy of CAR T cells in solid malignancies. Among these
obstacles are the identification of specific tumoral antigens that enable the selective recog-
nition of target cells [5], the inherent difficulty regarding spatial localization of neoplastic
regions [12], as well as challenges related to the penetration and survival of these cells in
hostile tumoral microenvironments [13]. These limitations have been contributing factors
to the insufficient performance of immunomodulatory therapies in several clinical trials
focused on solid tumors.

In the current research situation, a preeminent focus of interest lies in the development
of innovative strategies that can mitigate these complex challenges. The ultimate goal is
to achieve an adaptation of CAR T cells that allows them to act effectively and safely in a
wide range of malignancies, including solid tumors [10].

The objectives of this review are to rigorously examine the specific challenges that
CAR T cell therapy faces in the field of solid tumors and outline emerging therapeutic
strategies that could be implemented to increase the clinical efficacy of these treatment
modalities in comparison to their performance against hematological neoplasms.

2. CART T Cells: Origins and Structure

CAR T cell therapy represents a pioneering autologous and polyclonal treatment
conceived by Rosenberg et al. in 1988 for the management of advanced neoplasms. In
this approach, T lymphocytes are genetically modified to express a chimeric antigen re-
ceptor (CAR) based on the antibody structure [14]. In this regard, these modified cells
are more adept at identifying and eradicating neoplastic cells than their conventional
counterparts [15] (see Figure 1).
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Figure 1. CAR T cell synthesis: 1. recognize specific antigens expressed on tumor cells. Leukapher-
esis: blood is extracted from the patient, and both CD4+ and CD8+ T cells are selected. 2. Repro-
gramming: the isolated T cells are cultured and then exposed to antibody-coated beads to activate 
them. CAR genes are introduced through different viral vectors, which results in permanent genome 
modification and CAR expression. 3. CAR T cells: now, the T cells are capable of recognizing and 
attacking specific tumor antigens. 4 Expansion: with the goal of generating a sufficient number of 
CAR T cells for therapy, the cells go through several rounds of divisions in different culture media. 
They are then cleansed and concentrated, and a sample is taken for quality control. 5. Administra-
tion: prior to the reintroduction of CAR T cells, the patient undergoes “preconditioning” chemo-
therapy for lymphodepletion, which reduces immunosuppressive cells that could slow the expan-
sion of CAR T cells; in addition to releasing proinflammatory cytokines that promote the activation 
of CAR T cells, once infused, they are able to initiate their destruction. 

From a molecular perspective, the basic structure of these CARs amalgamates intrin-
sic elements such as T cell receptors and antibodies [3]. Specifically, CARs are composed 
of an extracellular domain responsible for antigen binding [16] and intracellular domains 
involved in signaling pathways [17]. The extracellular segment, composed of a single-
chain variable fragment (scFV), enables T cells to recognize and bind specific tumoral an-
tigens [18]. The subsequent lymphocyte activation is executed by means of intracellular 
domains derived from the tyrosine-based activation motifs of the immunoreceptor CD3 ζ 
ITAM [19], thereby facilitating increased affinity and avoiding the restrictions of MHC, 
which results in optimized tumoral recognition [20]. 

To complete the CAR architecture, a transmembrane domain and a spacer region, 
generally derived from immunoglobulins or CD8α, consolidate the connection between 
the scFV and the intracellular domains [21]. 

The evolution of CAR designs in clinical trials is categorized into generations. First-
generation CARs [22] incorporate antibody-based extracellular signaling domains and an 
intracellular CD3 ζ signaling domain [17]. However, these receptors lack co-stimulatory 
elements, limiting their persistence and antitumoral efficacy [23]. Complete cell activation 
requires at least two different signals: direct TCR signaling and a co-stimulatory pathway, 
generally mediated by interactions with molecules such as CD28 or CD86, present in an-
tigen-presenting cells (APCs). This co-stimulation can catalyze significant cell responses, 
including lymphocyte activation and persistence [24,25]. 

Figure 1. CAR T cell synthesis: 1. recognize specific antigens expressed on tumor cells. Leukapheresis:
blood is extracted from the patient, and both CD4+ and CD8+ T cells are selected. 2. Reprogramming:
the isolated T cells are cultured and then exposed to antibody-coated beads to activate them. CAR
genes are introduced through different viral vectors, which results in permanent genome modification
and CAR expression. 3. CAR T cells: now, the T cells are capable of recognizing and attacking specific
tumor antigens. 4 Expansion: with the goal of generating a sufficient number of CAR T cells for
therapy, the cells go through several rounds of divisions in different culture media. They are then
cleansed and concentrated, and a sample is taken for quality control. 5. Administration: prior
to the reintroduction of CAR T cells, the patient undergoes “preconditioning” chemotherapy for
lymphodepletion, which reduces immunosuppressive cells that could slow the expansion of CAR T
cells; in addition to releasing proinflammatory cytokines that promote the activation of CAR T cells,
once infused, they are able to initiate their destruction.

From a molecular perspective, the basic structure of these CARs amalgamates intrinsic
elements such as T cell receptors and antibodies [3]. Specifically, CARs are composed of
an extracellular domain responsible for antigen binding [16] and intracellular domains
involved in signaling pathways [17]. The extracellular segment, composed of a single-
chain variable fragment (scFV), enables T cells to recognize and bind specific tumoral
antigens [18]. The subsequent lymphocyte activation is executed by means of intracellular
domains derived from the tyrosine-based activation motifs of the immunoreceptor CD3
ζ ITAM [19], thereby facilitating increased affinity and avoiding the restrictions of MHC,
which results in optimized tumoral recognition [20].

To complete the CAR architecture, a transmembrane domain and a spacer region,
generally derived from immunoglobulins or CD8α, consolidate the connection between
the scFV and the intracellular domains [21].

The evolution of CAR designs in clinical trials is categorized into generations. First-
generation CARs [22] incorporate antibody-based extracellular signaling domains and an
intracellular CD3 ζ signaling domain [17]. However, these receptors lack co-stimulatory
elements, limiting their persistence and antitumoral efficacy [23]. Complete cell activation
requires at least two different signals: direct TCR signaling and a co-stimulatory pathway,
generally mediated by interactions with molecules such as CD28 or CD86, present in
antigen-presenting cells (APCs). This co-stimulation can catalyze significant cell responses,
including lymphocyte activation and persistence [24,25].

The need for co-stimulation led to the development of second-generation CARs, which
incorporated molecules such as CD28 [26] and 4-1BB [27]. These domains potentiate lym-
phocyte persistence and rapid activation and are essential for robust signaling, lymphocyte
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proliferation, and epigenetic and metabolic changes in T cells [21]. Despite their achievements,
second-generation CARs faced challenges related to their efficacy and safety in certain cancers,
which motivated the development of third-generation CARs. This generation incorporates
multiple signaling and co-stimulatory domains that augment the effects [28]. Finally, fourth-
generation CARs, known as TRUCKS, emerged [8], which included two separate transgenes
and expressed CARs from previous generations simultaneously with activating cytokines
(such as IL-12) [29,30]. This generation of CARs was introduced to actively modulate the
tumor microenvironment and potentiate CAR T cells [31].

3. Mechanisms of Action

The activation of CAR T cells is based on a series of molecular and cellular interac-
tions whose specificity is determined by the particular structure of the chimeric recep-
tors. Although the full range of mechanisms involved has not been comprehensively
described [32,33], the mode of action of FDA-approved drugs has been established, such
as Yescarta and Kymriah [34,35]. These therapeutic procedures begin with the acquisition
and later reprogramming of the patient’s own T cells [36], which are genetically modified
by means of transgenes that encode CARs specific for CD19 antigens, an exclusive marker
expressed on the cell membrane of B lymphocytes [37,38].

The architecture of these CARs comprises a scFV fragment capable of recognizing
CD19, which is fused to differentiated intracellular domains, either 4-1BB (in the case of
Kymrriah) or CD28 (in Yescarta), and a CD3ζ domain [39]. Once the CAR recognizes
and binds to CD19+ cells [40], a series of signaling events are triggered, starting with the
phosphorylation of ITAMs and culminating in the activation, expansion, and persistence of
modified lymphocytes. Additionally, these lymphocytes acquire effector functions, secrete
proinflammatory cytokines and chemokines, and release cytotoxic granules that exert a
direct lytic effect over target cells [41].

The process of elimination of tumor cells is orchestrated by two main pathways. CD4+
T lymphocytes predominantly release granules that contain perforins and granzymes [42]. In
parallel, the activation of the death receptor through the Fas/Fas-ligand signaling pathway (Fas-
L) has been postulated as another operative mechanism. Furthermore, CD8+ T lymphocytes
exhibit the ability to destroy tumor cells through both pathways, which shows the complexity
and redundancy of immune recognition and elimination systems (see Figure 2). In this context,
the dynamics and coordination of these pathways reflect the intricate and multifactorial nature
of the immune response against tumoral cells [43–45] (see Figure 2).
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promote activation, expansion, persistence, and acquisition of effector functions. These cells then
secrete cytokines and inflammatory chemokines that mediate the elimination of target cells through
(1) the secretion of perforin and granzymes, and (2) the Fas/Fas-ligand signaling pathway. In the
presence of Ca, perforins are activated and are able to be incorporated into the cell membrane of
the target cell. Consequently, the perforins and granzymes are internalized through endocytosis.
Once inside the vesicle, the perforins form pores that allow the granzymes entry into the cytosol,
where they initiate apoptosis. On the other hand, TNF binding to Fas results in the formation of a
proapoptotic signaling complex that causes the activation of a cell death effector protease known as
caspase 8, which in turn cleaves and activates a caspase cascade that ultimately leads to cell death.

4. Causes of Ineffectiveness in Solid Tumors

In the context of solid tumors, there are numerous physiological and biochemical bar-
riers that complicate the efficacy of CAR T cell therapies [46]. Unlike liquid malignancies
(see Table 1), multifactorial elements that modulate the therapeutic success are the paucity
of ideal tumoral antigens for the therapy [46], the presence of a tumoral microenviron-
ment that exerts an immunosuppressive function [47], and the deficiency of T lymphocyte
homing to the tumor site [48]. These obstacles, which act synergistically, contribute to the
complexity of the therapeutical landscape of these types of neoplasms. It is imperative to
consider that these factors do not work in isolation but are interrelated in a network of
interactions that potentially affect the therapeutic outcome. For example, the absence of
adequate tumor antigens could be intrinsically related to adaptative changes in the tumor
environment, which could influence the efficacy of T lymphocyte homing. In this regard,
overcoming these obstacles is not simply a matter of addressing each factor individually
but of understanding and modulating the system as a whole to optimize the immunother-
apeutic response. Therefore, identifying and overcoming these obstacles would not only
catalyze significant advances in the development of more effective immunotherapies but
could also represent a paradigm shift in the overall strategies for cancer treatment [49].

Table 1. Clinical studies in liquid neoplasms and solid tumors.

Cancer
Type

CAR T
Model Sample Duration Results Reference

ALL Kymriah 97 patients ≥3 months
ORR at 82%, CR at 62%, SR after 18 months at 70%,
and CRS in 70% of cases, of which 48% were
admitted to the ICU.

Fowler et al.
[50]

B-ALL Tisagenlecleucel 75 patients 3 months
ORR at 81%, SR at 73% on average over 12 months,
CRS in 77% of cases, and neurological events in 40%
of patients.

Mueller et al.
[51]

ALL CTL019 59 patients 1 session CR in 93% of patients, SR at 79%, RFS at 76%, and
CRS prevalence at 88%.

Maude et al.
[52]

ALL CTL019 30 patients 1 month RR at 87%; CRS in 28–30 of patients; neurotoxicity
and B cell aplasia were observed

Maude et al.
[53]

LBCL Axicabta gene
Ciloleucel 101 patients 1 session RR at 58%, neurological events in 32% of patients,

and CRS grade III in 11% of cases.
Neelapu et al.
[54]

NHL Lisocabtagene
maraleucel 344 patients 2 sessions

CRS was observed in 73% of individuals,
neurotoxicity was observed in 23%, NHL patients
obtained 75% ORR and 55% CR, while DLBCL
patients obtained an ORR at 80% and CR at 59%.

Abramson
et al. [55]

DLBCL Tisagenlecleucel 93 patients 14 months

ORR at 53%, CR in 40% of cases and PR in the
remaining 12%, RFS at 65%, CRS in 22% of patients,
neurological adverse effects in 12% of cases,
cytopenias in 32% of individuals, and prevalence of
20% in terms of infections.

Schuster et al.
[41]



Int. J. Mol. Sci. 2024, 25, 4170 6 of 26

Table 1. Cont.

Cancer
Type

CAR T
Model Sample Duration Results Reference

DMG T CAR
Anti-GD2 5 patients -

Drastic decrease in tumor size with a reduced
number of residual GD2 glial cells and few adverse
effects.

Mount et al.
[56]

Renal
Carcinoma

T CAR
Anti-CAIX 12 patients 10 sessions Antigen-specific effects; reduced hepatotoxicity

levels at low doses; no clinical effects recorded.
Lamers et al.
[57]

Ovarian
Cancer

T CAR
Anti-FR 14 patients 1 session No tumor reduction was observed in patients, low

levels of persistence and high tolerance.
Kershaw et al.
[58]

Prostate
Cancer

Anti-PSMA
dTc T CAR 5 patients 2 weeks

2 out of 5 patients achieved RP regardless of dose
size administered with IL-2 depletion; no toxicities
or reactivity were recorded

Junghans
et al. [59]

Sarcoma T CAR
Anti-HER2 19 patients 6 weeks

There was persistence for a period of approximately
6 weeks; without significant toxicities, 14 of the
patients had stable disease and an OSR of
10.3 months

Kawakama
et al. [60]

4.1. Antigens

Cancer cells express a series of molecules, generally of protein nature, called antigens,
capable of triggering immune responses. Immune cells, e.g., lymphocytes, have receptor
molecules on their surface that bind to these antigens, thereby allowing the start of a
sequence of reactions culminating in the destruction of the target [61]; however, due to
their mutating behavior, malignant cells often become capable of evading the immune
system, which leads to better neoplasm dissemination [62]. For this reason, CAR T cell
receptors possess specialized domains that act independently from MHC molecules for the
recognition of specific tumor antigens, therefore allowing them to destroy the cells where
the antigen molecules are present [63].

Consequently, adequate antigen selection is a key task that makes the difference be-
tween success and failure when designing new CARs. In this regard, an antigen frequently
used in therapies for liquid neoplasms, such as ALL and DLBCL, is the CD19 molecule [9].
It is expressed in the vast majority of B lymphocytes, including both normal and trans-
formed cells. This feature has led to high levels of effectiveness and generally satisfactory
outcomes. However, its lack of specificity restricts its therapeutic potential since it entails
serious, and often fatal, adverse effects [64,65]. This was particularly portrayed in 2010 after
the death of a patient who was treated with CD19-targeting CAR T cell therapy, although
it is worth mentioning that the cause of death is presumed to have been an underlying
infection caused by the preconditioning regimens rather than the antigen itself [64–67] (see
Figure 3).

In addition to CD19, other antigens frequently used in liquid neoplasms are CD22 [68]
and CD30. The former is expressed on the surface of B lymphocytes, whose use has
been considered for the treatment of B-ALL given the multiple cases of antigenic losses
occurring during CD19 therapies. On the other hand, CD30 [69] is a member of the tumor
necrosis factor (TNF) family [64] and has recently been used as a possible target for CARs
thanks to its presence in Reed–Stemberg cells. New therapeutic trials indicate the possible
effectiveness of these therapies as well as the probability of reduced side effects due to
antigen specificity [69].

However, antigen selection has proven challenging in the case of solid tumors due to
the presence of several obstacles. TCR affinity is lower for intrinsic MHC peptides such
as tumor antigens compared to pathogen-derived peptides. Therefore, in most cases, it
is difficult to isolate T cells whose sensitivity is higher when identifying TAAs (tumor-
associated antigens) in comparison to pathogen-derived antigens [70].

Additionally, finding surface antigens that are exclusively expressed in transformed
cells is more challenging in the case of solid tumors since, unlike liquid tumors, these are
mainly composed of epithelial cell lines, which possess scant surface antigens and increased
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heterogeneity [71]. Consequently, antigenic loss or tumor escape are possible scenarios [72].
In this regard, although antigens used in solid tumors have managed to transcend from
experiment to clinical trial, to date, they have failed to demonstrate efficacy comparable to
targets used in liquid neoplasms [18].
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Figure 3. Antigen expression in healthy tissues: in the case of solid tumors, the selection of surface
antigens that are exclusive to transformed cells represents a challenge due to their paucity in epithelial
cells. Furthermore, these antigens tend to be heterogeneous in distribution and intensity. Such is the
case with Her2/Neu, which is expressed in the lungs and the heart, and EGFR, which is found in the
skin, digestive tract, kidneys, among others.

This has been evidenced in multiple clinical trials carried out on different types of
solid malignancies. For example, in one case report performed in 2010, the transfusion of
CAR T cells targeting the Her2/Neu antigen culminated in the death of the patient, which
resulted from an assault on normal lung and heart tissues. This event demonstrates how
pertinent proper antigen choice is for the safety and success of such therapies [59].

Another relevant case is the EGFR molecule, a tyrosine kinase transmembrane receptor
classified as a tissue antigen expressed in the skin, digestive tract, kidney, and other
healthy tissues. It is produced in aberrant amounts in certain malignancies such as lung,
pancreatic, breast, and colorectal cancer as well as head and neck squamous cell carcinoma
(HNSCC) [73,74]. Its presence is associated with decreased survival due to its role in cell
multiplication, division, and metastasis. This antigen was used in a phase I clinical trial,
where, out of eleven evaluable patients with non-small cell lung cancer (NSCLC), two
patients demonstrated partial response and five had stable disease for two to eight months.
In addition, permanence of CARs in tissue and blood was observed, accompanied in some
cases by minor side effects such as nausea, vomiting, dyspnea, and hypotension [75,76].

In the case of ovarian and breast cancer, overexpression of the transmembrane glyco-
protein HER2 has been associated with malignant transformation as well as carcinogenesis
and decreased survival. It can also be found in osteosarcomas, GBM, and medulloblas-
tomas [77,78]. Currently, multiple clinical trials using this target are under development, yet
drugs such as lapatinib or trastuzumab have generally yielded unfavorable outcomes [79].

The antigen CAIX, which is overexpressed in renal carcinomas [57,80] and absent in
normal cells, is another target that has been used in phase I and phase II clinical trials [81]. In
a study performed on twelve patients with metastatic renal cell cancer, negative responses
to the treatment were observed sometime after the infusion of ten daily doses. These
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adverse effects were caused by the formation of specific antibodies against the CARs as
well as the existence of severe cytotoxicity (grades 2–4) and hepatic infiltration, all of which
prevented the completion of treatment in the case of certain patients [82].

Alternatively, tumor antigens expressed during fetal development or at immune-
privileged sites [83], e.g., CEA (carcinoembryonic antigen), are present in certain cancers,
such as colorectal carcinoma, pancreatic adenocarcinoma, and breast cancer [84], and have
been considered for their use in immunotherapies. However, these antigens are often found
within the cytoplasm and, therefore, are inaccessible to CARs. Nevertheless, the synthesis
of CARs with scFV domains capable of recognizing cytoplasmic antigens circumvents this
problem [9].

Finally, antigens expressed in specific tissues or cell lines constitute the most widely
used antigen varieties. Although indispensable organs could also be affected, toxicity
control is feasible, and, therefore, therapies implementing these antigens do not lead to fatal
outcomes in most cases [85]. For example, in a clinical trial using PSMA (prostate-specific
membrane antigen), an antigen expressed on malignant prostate cells, greater antitumor
efficacy and effective elimination were observed [59] (see Table 2).

Table 2. Characteristics of antigens used for the development of CAR T cell immunotherapies.

Antigen Tissue Expression Cancer Type Adverse Effects Clinical Phase

CD19 Physiological and
transformed B cells

ALL, DLBCL, NHL, CLL,
and other B cell
malignancies.

CRS, CRES, B cell aplasia. Phase I

CD22 B lymphocytes B-ALL and B cell
lymphoma CRS and neurotoxicity Phase I

CD30
Transformed B and T
lymphocytes (expression is
reduced in normal cells)

ACLC, HL, and T cell
lymphomas

Significant adverse effects
have not been observed Phase I and phase II

Her2/neu Widely expressed in
physiological cells

Oral, Gastric, lung, and
breast cancer High levels of cytotoxicity Phase I

EGFR Skin, GI tract, Kidneys, and
other normal tissues

HNSCC and lung,
pancreatic, colorectal, and
breast cancer

Nausea, vomit, dyspnea, or
hypotension Phase I

HER2 Widely expressed in normal
tissues

Ovarian and breast cancer,
osteosarcoma, GBM, and
medulloblastoma

Lethal cytotoxicity and
CRS Phase I

CAIX Malignant kidney cells Renal carcinoma Severe cytotoxicity and
hepatic infiltration Phase I and phase II

CEA Colon, stomach, tongue,
cervix, and prostate

Colorectal carcinoma,
pancreatic adenocarcinoma,
and breast cancer

Fever, Leukopenia, and
grastritis Phase I

PSMA Prostate Prostate cancer
Well-tolerated; can course
with neurotoxicity in some
cases

Phase I

4.2. Tumor Microenvironment

The tumor microenvironment represents a complex and heterogeneous intratumoral
structure that houses a series of both neoplastic and non-neoplastic cells. Within this
cellular compendium, fibroblasts, adipocytes, pericytes, immune cells, and stromal cells
reside [86]. In addition to these cells, the tumor microenvironment also comprises blood
vessels, extracellular matrix, and signaling molecules that perform fundamental roles in
tumor pathogenesis [87].

The dynamic interaction between tumor cells and the tumor microenvironment has a
determining influence on the malignant phenotypic expression of neoplastic cells. These
reciprocal interactions facilitate the acquisition of characteristics critical for tumor progres-
sion, showing that the tumor is not simply a passive spectator but an active and essential
agent in the promotion of carcinogenesis and the development of advanced neoplasms.
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Likewise, the suppressive nature of the tumor microenvironment represents a significant
challenge to the efficacy of CAR T cells targeting solid tumors [88].

Within this complicated matrix, the cells that migrate to the tumor environment
face numerous barriers. These include cells and molecules with immunosuppressive
properties [89], functional inhibitions derived from the interaction between CAR T cells and
tumor cells [90], physical barriers presented by the tumoral stroma, and a physiologically
challenging environment marked by hypoxia and elevated levels of toxic metabolites, such
as nitric oxide [91,92].

4.2.1. Immune Checkpoint Inhibitors

The TME is an intricately complex and dynamic system in which cancer cells and
immune components interact in constant co-evolution. Within this complex landscape,
tumor cells have the capacity to generate ligands that inhibit immune checkpoints in
response to the presence of antitumorigenic T cells, in particular cytotoxic T lymphocytes
(CTL) [93]. This adaptive response is a manifestation of the complexity and plasticity of the
TME.

After infiltrating the TME, T lymphocytes start secreting cytokines, such as interferon-
gamma (IFN-γ), which trigger the expression of molecules such as PD-1, CEA CAM 1, and
CTLA-4 [94]. This molecular cascade, consequently, facilitates the evasion of immunological
responses. These inhibitory molecules interact with checkpoint receptors on T cells, such
as TIM3, LAG3, CD160, and VISTA, leading to cellular dysfunction by means of several
mechanisms [95,96]. For example, LAG3 negatively modulates class II MHC molecules,
while TIM3 induces apoptosis and inhibits T cells after it binds to specific immunoglobulins
such as galectin-9 [97,98].

From a complexity perspective, it is essential to consider that CAR T cells, designed
to combat tumors, interact with this sophisticated immunosuppressive TME in ways
that have not been fully elucidated yet [92]. Theories suggesting that CAR T cells may
immediately lose their cytolytic and secretory functions after entering the TME have been
postulated. This is called a “hypofunctionality” state. However, we still face the challenge of
determining the specific factors that trigger these effects [99]. It is imperative to understand
these mechanisms from a holistic and multidisciplinary approach to unravel the true nature
of the interactions with the TME and develop more effective therapies.

4.2.2. Physical Barriers

The architecture of the tumor stroma represents a complex physical barrier that may
hinder the effective penetration of CAR T cells. This stroma is composed of an extracellular
matrix (ECM), blood and lymphatic vessels, immune cells, mesenchymal cells, and fibrob-
lasts, which configure a dense meshwork that provides difficult access to effector cells of
the immune system [100]. In certain cases, the compaction of this structure can be such
that it makes the tumor practically impervious to interventions with CAR T cells, which is
especially problematic given that a greater presence of these cells usually correlates with a
more favorable prognosis [101].

The complexity of this scenario is accentuated due to the biochemical and mechanical
interactions between stromal and cancer cells. These interactions precipitate a series of
metabolic, genetic, and morphological changes, transforming cells into pathological forms
that favor tumor progression and metastasis. Specific stromal components, such as the ECM,
are rich in modulating elements, such as proteoglycans or glycopeptides, that influence the
remodeling of immune responses during the carcinogenesis process [102].

In this context, fibroblasts experience a phenotypical transition to cancer-associated
fibroblasts (CAF). In this altered state, CAF expresses effector molecules such as fibroblast
activating protein (FAP) and stromal-derived factor 1a (SDF1A). These molecules, in syn-
ergy with CAF, can induce ECM degradation and collagen cross-bridging, thus facilitating
tumor progression [89].
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It is postulated that integrin overexpression in CAFs could trigger a series of protumor
events, e.g., potentiation of oncogenic growth factor receptor (GFR) signaling, colonization
of metastatic sites, and the facilitation of the survival of tumor cells adjacent to the extracel-
lular matrix [103]. Additionally, alterations in the stroma can contribute to the processes of
carcinogenesis and metastasis by coordinating angiogenesis [104].

This panorama illustrates the intricate web of cellular and molecular interaction that
underlies the biology of tumor stroma, which adds an additional layer of complexity to
the optimization of CAR T cell therapies. In this context, a deeper understanding of tumor
ecology and its underlying mechanisms is imperative for the development of more effective
and precise therapies.

4.2.3. Metabolic Conditions

The TME is a dynamic and complex system composed of neoplastic, stromal, and
immune cells, as well as a variety of soluble molecules. Its multifaceted nature and
reciprocated interaction between its components perform fundamental roles in tumor
progression and resistance to therapies, including immunotherapies [105].

In particular, a metabolic condition that separates tumor cells from normal cells is
their preference for aerobic glycolysis to obtain energy even in the presence of oxygen, a
phenomenon known as the Warburg effect [106]. It is essential to recognize that not only
tumor cells adopt this metabolic mechanism. Effector T lymphocytes, which are crucial
for antitumor immune responses, also depend on glucose to fuel their expansion [107].
This metabolic coincidence leads to competition for nutrients in tumor regions with nutri-
tional deficiencies. As a result, metabolic competition can compromise the function and
proliferation of T cells, favoring tumor progression and metastasis.

Lactic acid, a byproduct of glycolysis, accumulates in the TME, which lowers the
local pH levels [108]. This metabolic acidosis is not the only pathway that has toxic
properties for T cells and cytokines; metabolites derived from other metabolic pathways,
e.g., glutaminolysis, also generate immunosuppressing effects that can compromise CAR
function [109].

Additionally, a pronounced feature of the TME is its hypoxia resulting from deficient
angiogenesis and the insufficiency of progenitor cells to generate adequate vasculature [110].
Hypoxia has tumorigenesis-promoting effects by inducing glycolysis and supporting
neoplasmic growth. While the impact of hypoxia on immune cells still needs to be explored
in depth, it has been identified that hypoxia can stabilize HIF-1α in TAMs, which leads to an
increase in the secretion of protumor molecules and enzymes that degrade the extracellular
matrix, thus facilitating tumor invasion [111].

The competition for amino acids in the TME, especially L-arginine and tryptophan,
also emerges as a significant challenge for the persistence and function of lymphocytes.
These amino acids are essential for numerous cellular and metabolic processes, and their
scarcity, exacerbated by the enzymatic overexpression of malignant cells (such as IDO
and TDO), can cause immunological dysfunctions, compromising the ability of T cells to
recognize and attack tumors [112,113].

4.3. Trafficking into the Tumoral Area

One of the difficulties CAR T cells face in solid tumors is proper trafficking to the
neoplastic area [114]. Unlike liquid tumors, where therapeutic targets are easily accessible
because they are either circulating in the blood or lymph or found in the bone marrow,
solid tumors are found in tissues; therefore, CAR T cells must be trafficked to these specific
sites. Unfortunately, this transport can be affected by several factors [115].

On the one hand, CAR T cells and transformed cells in liquid tumors share a common
hematopoietic origin, which explains why these cells tend to migrate to similar areas. On
the other hand, solid tumors have barriers that limit the migration of CAR T cells to their
respective targets independently of the amount administered [116].
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Although it has been possible to observe the successful migration of CAR T cells to the
neoplastic stroma and their subsequent accumulation in that area, the tumor parenchyma
still remains largely inaccessible. The inability to infiltrate this region has been attributed
to a series of vascular phenomena, such as the existence of migration regulatory agents,
e.g., the TME3 cellular endothelium, which is able to control the cytokines synthesized by
the TME in addition to functioning as a selective barrier that prevents infiltration [117].
Under normal conditions, the endothelium is responsible for secreting substances such as
ICAM1 and VCAM1 [118] to promote the migration and extravasation of inflammatory
cells; however, the carcinogenic endothelium inhibits these molecules in order to evade
immune responses. It also stimulates the release of escape promoters such as ALCAM
(activated leukocyte cell adhesion molecule), replaces chemokine receptors, and induces
integrin-dependent arrest in T cells. On the other hand, vascular elements such as HEV
(high endothelial venules) have been linked to the effective migration of immune cells
to solid tumors due to their optimal adaptation for the recruitment of T cells in certain
malignancies such as melanomas and breast cancer [119,120].

During lymphocyte migration, adhesion molecules such as selectins, integrin, and
chemokine receptors influence cellular trafficking. The binding of these adhesion molecules
to cytokines produces the phenomenon of lymphocyte rolling followed by a cascade of
biochemical events that finally leads to the penetration of the endothelium and trans-
endothelial migration to the tumor area [121].

Likewise, the secretion of substances such as chemokines is imperative for immune cell
migration. These molecules, which are overexpressed in stromal, cancerous, and immune
cells, play fundamental roles in tumor growth and remodeling of the TME through the
production of chemotactic gradients, which ultimately regulate cellular trafficking [122].

However, in tumor and stromal cells, cytokine secretion is decreased, thus increasing
the chance of evading immune responses [116]. Furthermore, these cytokines change in
such a way that the receptors expressed on T lymphocytes cannot recognize them [123]. In
addition, transformed cells in pancreatic, ovarian, and breast cancers have the ability to
secrete cytokines, e.g., CXCL12, that inhibit CAR T cell proliferation and migration, thereby
interfering with cell delivery toward the tumor zone [124,125].

In addition to the inhibitory properties of solid tumors, manufacturing defects may
influence CAR T cell homing. Newly isolated CAR T cells usually have numerous receptors
targeting different chemokines, which can be altered by prolonged ex vivo amplification.
On the other hand, the loss of certain components, such as the enzyme heparanase, which
degrades heparan sulfate located in the tumor stroma, during CAR programming can
increase the ineffectiveness of lymphocytes when penetrating into the parenchyma [126].

Lastly, it is worth highlighting, among the limitations of CAR T cell therapies, that,
despite all the interest in this therapeutic approach, its application is very confined. Most
clinical trials are performed in the USA (n = 377), China (n = 636), and Europe (n = 58). In
2021, only approximately 2500 patients received CAR T cells; according to the EBMT reg-
istry, these numbers seem particularly low when compared to the proportion of oncologic
patients with indications for CAR T cell infusion, leading to the conclusion that about 99%
of the potential candidates for the treatment did not receive it [127]. The answer to this
specific issue resides in the high cost of the therapy, estimated to be USD 500,000, and the
intricate and long process of manufacturing that usually takes 21–35 days. If the goal is to
establish CAR T cells as a future standard treatment for cancer, it is necessary to develop
more affordable and practical approaches for the public (see Figure 4).
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Figure 4. CAR T cell efficiency: liquid vs. solid malignancies: 1. Antigens: while the target
antigens in liquid malignancies such as leukemia and lymphoma are efficient, solid tumors pose a
challenge due to their scarce and heterogenous expression of antigens; various antigens like CAIX,
EGFR, Her2/neu, and PMSA, among others, have been tested; however, the results have not been
completely satisfactory, particularly in contrast with CD-19 antigen, used to treat B cell malignancies,
the arrows pointing down in solid tumors represent the scarcity of antigens in these malignancies
and, in contrast, the arrow pointing up in liquid neoplasia reflects the availability of these surface
molecules in these cancers. 2. Immunosuppressive TME: the hostile tumoral microenvironment
(TME) in solid tumors has hampered the development of successful CAR T cell therapy since this
environment not only promotes tumoral development but also has the ability to deactivate immune
cells, therefore obstructing the labor of CAR T cells; in contrast, liquid neoplasia does not present
these issues as the cells are “fluid” and circulate within blood or lymphatic vessels. 3. Lymphocyte
homing: finding the target antigen in leukemias and lymphomas is not a particularly challenging
task for T cells since these cells can be found circulating in the bloodstream; however, in solid tumors,
CAR T cells must be trafficked to specific sites, penetrate into the tumoral stroma, and evade multiple
suppressing molecules to reach their target.

5. Optimizations to Increase CAR T Cells’ Effectiveness in Solid Tumors
5.1. Specificity and Toxicity

The toxicities caused by the lack of specificity of the targets used in solid neoplasms
so far, as well as the possible relapse of the disease caused by tumor heterogeneity, could
be avoided thanks to various approaches in development. The most desirable solution
to resolve on-target off-tumor toxicities may be finding antigens expressed exclusively in
cancer cells [71,128]. Fetal antigens such as fetal acetylcholine receptors have been proposed
for rhabdomyosarcomas treatment. Likewise, glycosylated MUC 1 has been proposed for
adenocarcinomas. In addition, screening for appropriate antigens before cell infusion could
be an excellent tool against neoplasm heterogeneity [129].

Currently, several techniques focused on increasing specificity and reducing tumor escape
are being implemented on CAR T cells. Different models consisting of chimeric receptors with
multiple targets have been proposed, of which dual CARs [130], TanCARs [131], and iCARs [132]
are the principal biospecific CARs. Dual CARs express two receptors, each targeting a specific
antigen [133]. In this context, simultaneous expression of both antigens is required for proper T
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cell activation, thereby increasing therapeutic specificity [134]. On the other hand, TanCARs, or
tandem CARs, possess a receptor capable of recognizing different antigens due to contiguous
antigenic recognition domains [135]. This model allows the synergistic activation of extracellular
domains when both antigens are bound. Even though this model is less specific than dual
CARs, it can persist even after one antigen is lost, thus preventing tumor escape [136]. Finally,
iCARs, or inhibitory CARs, are co-administered with conventional CARs but recognize different
antigens. When the target cell expresses two determined tumor antigens, the iCARs bound to
PD1 or CTLA-4 cytoplasmic domain are activated and transmit negative signals that decrease
CAR T cell function with the goal of reducing the elimination of proteins that are expressed in
normal tissues but reduced in tumors [137].

Similarly, modulating receptors have been designed with SynNotch technology. These
receptors are composed of one extracellular antigenic recognition domain and one intracel-
lular “Notch Cleavage” domain [138] fused with a transcription factor [138]. Once the T
cell binds to a first antigen, the SynNotch system induces the expression of a secondary
CAR that will modulate cellular activity in the presence of a second antigen [139].

Another approach to increase therapeutic specificity is focused on natural killer cells
(NK cells) [140], which express receptors capable of distinguishing normal cells from
transformed cells [141]. In this regard, NKG2-D recognition domains and their ligands,
numerous heat shock proteins overexpressed in neoplasms, have been used in numerous
types of tumors [142,143]; once the union is created, this produces the activation of the T cell
and, with it, an increase in antitumor activity [144]. On the other hand, alternatives such
as CAR switches based on antibodies expand the possibility of having multiple targets in
one construct by incorporating a “tag” in a specific anti-TAA antibody [145]. Subsequently,
these are redirected to eliminate those cells that express the antigen in question. However,
it has been shown that the effectiveness of this procedure depends in turn on factors such
as the dose of cells administered and the ability of CAR T cells to penetrate the tumor niche.

Lastly, there are modifications destined to control T cell overactivation. The imple-
mentation of “suicide genes” has gained prominence in recent years [146]. This strategy
allows the selective elimination of CAR T cells that were genetically engineered to code
for genes that transform non-toxic molecules into toxic ones, which can be used to induce
apoptosis [147]. Likewise, drug-induced elimination systems have also been designed. One
such approach is the rituximab-induced elimination system, wherein engrafted T cells are
turned into antibody ligands after the administration of rituximab [148].

5.2. Tumor Microenvironment

As previously stated, the tumor microenvironment represents an obstacle to CAR T
cell therapies. After infiltration, T cells suffer a functional switch that inhibits their antitu-
moral activities, thus hindering tumor suppression [149]. The addition of co-stimulating
molecules such as CD28 [150] or 4-1BB [26] has been proposed to circumvent this problem.
These molecules extend T cell activation, prolonging its persistence. In addition, the con-
cept of “switch receptors” has been proposed. These receptors are capable of converting
inhibitory signals into stimulators. Furthermore, constructs of CARs with co-stimulatory
domains capable of activating specific pathways that lead to IL-Rrb release after antigen
recognition have also been conceived [151].

Other models called remote controlled CARs are only activated in the presence of adaptor
molecules designed to become specific targets that can be modified after therapy administration,
a property that is especially useful for universal CARs [152]. In addition, this modality could be
developed faster than customized varieties of these receptors [153,154]. Similarly, recent clinical
trials have yielded promising results regarding the efficacy of GD2 CARs after transcription
factor JUN addition, obtaining improvements in T cell resistance and antitumor efficacy in
both liquid and solid neoplasms [154]. Moreover, studies have also delved into the possible
external activation of CAR T cells in lymphoid tissues by antigen-presenting cells (APCs)
and the combination of these enterotoxins in order to increase the expansion and antitumor
responses [155].
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One of the most popular therapeutic strategies to combat immunosuppression involves
fourth-generation CARs or TRUCKs [24,156,157], which are specially designed to produce
and secrete proinflammatory cytokines and other transgenic products, such as IL-15 [158],
IL-18 [159], and IL-21 [160]; however, IL-12 is the most prominent immunomodulator.
This cytokine facilitates the conversion of suppressor cells and increases T-cell-mediated
cytotoxicity. Furthermore, cells that express IL-12 are capable of polarizing Th1 lymphocytes
in order to attract other immune cells and promote the elimination of tumor cells that are
“invisible” to CAR T cells. Likewise, this method can also be used for the selective delivery
and release of other elements with local effects or whose toxicity is too high for systemic
administration [161,162]. Several clinical trials have corroborated the success of TRUCKs
and their positive effects on persistence, survival, and cytotoxic activity [163].

One of the most notorious effects that tumors have on the immune response is the
modulation of immune checkpoints [164]. In this line, the tumor microenvironment is a
major player in the alteration of the function of these control points, resulting in anergia,
general depression of T cell activity, and, consequently, tumor progression [165]. For this
reason, new therapies include antibodies directed specifically toward checkpoint receptors
such as PD-1, LAG3, TIM3, VISTA, and CTLA-4 [166,167]. This combination has yielded
promising results in solid tumors. For example, in one study on hepatocellular carcinoma,
the addition of anti-PD1 and co-stimulatory molecule CD28 resulted in better antitumor
efficacy and avoidance of second-generation CAR anergy [90] (See Figure 5). In addition, the
CRISPR/CAS9 system has been used to remove genes responsible for immune checkpoints,
such as PD-1 and CTLA-4 [168,169]. However, the combination of multiple inhibitor
systems is necessary to achieve adequate suppression since the presence of receptors
differs according to cell type. Currently, ipilimumab, nivolumab, and pembrozulimab are
FDA-approved immune checkpoint blockers [170]; however, these therapeutic techniques
continue under development since the mechanism of action of some checkpoints has not
been elucidated yet. Also, some patients have developed resistance and autoimmune
syndromes, which warrants further optimization [171].
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Figure 4. Novel strategies to improve CAR T cell efficacy in solid tumors.
Currently, a variety of techniques focused on increasing specificity and restricting tumor
escape are being implemented. Chimeric receptor models with multiple targets have been
proposed., such as (a) dual CAR T cells, (b) TanCARs (c) iCARs, (d) SynNotch CARs, (e)
switch CARs (f) CARs with suicide genes. In addition, modifications that improve TME
penetration have been introduced. This class includes the co-stimulatory molecules (g) CARs
4-1BB and CD28. Likewise, CARs that are activated or inactivated through signaling
molecules have been designed, e.g. (h) CARs Switch Receptors y (i) Remoted Controlled
CARs. To resist the harsh microenvironment, T cells have been modified into (j) CARs
TRUCKS to produce and secrete pro-inflammatory cytokines such as IL-15 and IL-18. (k)
CARs that combine anti-immune therapy checkpoints have also been designed, for example,
the addition of CARs combined with anti-PD-1 molecules or the combination of an
endodomain with a CD28 molecule and a PD-1 exodomain. Moreover, the use of the
CRISPR/Cas9 system has been proposed in order to eliminate genes responsible for the

Figure 5. Novel strategies to improve CAR T cell efficacy in solid tumors: currently, a variety of
techniques focused on increasing specificity and restricting tumor escape are being implemented.
Chimeric receptor models with multiple targets have been proposed, such as (a) dual CAR T cells,
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(b) TanCARs, (c) iCARs, (d) SynNotch CARs, (e) switch CARs, and (f) CARs with suicide genes. In
addition, modifications that improve TME penetration have been introduced. This class includes the
co-stimulatory molecules (g) CARs 4-1BB and CD28. Likewise, CARs that are activated or inactivated
through signaling molecules have been designed, e.g., (h) CARs switch receptors and (i) remote
controlled CARs. To resist the harsh microenvironment, T cells have been modified into (j) CARs
TRUCKS to produce and secrete proinflammatory cytokines such as IL-15 and IL-18. (k) CARs
that combine anti-immune therapy checkpoints have also been designed, for example, the addition
of CARs combined with anti-PD-1 molecules or the combination of an endodomain with a CD28
molecule and a PD-1 exodomain. Moreover, the use of the CRISPR/Cas9 system has been proposed
in order to eliminate genes responsible for the expression of immune checkpoints such as PD-1 or
CTLA-4. Finally, to improve delivery and infiltration into the neoplastic area, therapies have been
developed that use (l) oncolytic viruses for their ability to be deposited in the tumor area.

Similarly, the results of multiple clinical trials have shed some light on the association
between intestinal microbiota composition and responses to immune checkpoint inhibitors
(ICI). This evidence has led to the formulation of certain hypotheses based on the mod-
ulation of the microbiota as a tool to modify TME in conjunction with ICI, increase the
antitumor efficacy of CAR T cells, and reduce adverse immune effects [172].

In another vein, the cellular metabolism in the TME suffers changes that promote
carcinogenesis. On the one hand, the heightened glycolytic and anabolic activities reduce
the glucose levels in the TME [173]; therefore, the hypoxia-induced factor 1a (HIF-1a) has
been considered as a potential therapeutic target since it stabilizes glucose levels [174].
This transcription factor induces the production of elements such as S-2 hydroxyglutarate,
a molecule associated with epigenetic changes and increased expression of IL-2. This
cytokine potentiates CD8+ T cell cytotoxicity [175]. On the other hand, the inhibition
of IP3 prevents the initiation of the glycolytic pathway through its calcium-ion-blocking
effect [176].

Contrary to glucose levels, the MTE is characterized by a high concentration of reactive
oxygen species (ROS) that exert suppressive effects on immune cells [177]. For this reason,
the enzyme catalase has been included in clinical trials and has shown favorable effects
on cellular antitumor functions [178]. Likewise, amino acid depletion in the tumor area is
one of the greatest immunosuppressants; therefore, administration of cyclophosphamide
or fludarabine has been used to inhibit amino-acid-metabolizing enzymes such as IDO or
TDO [179] to restore protein concentrations in the microenvironment [112,180]. Similarly,
negative dominant TGF-b receptors have also been implemented due to the association
between TGF-b and lymphocyte inhibition, tumor invasion, and metastasis [181]. Finally,
since prostaglandin E2 seems to depress lymphocyte activation, it has been considered de-
sirable to disrupt this pathway in order to improve both antitumor function and activation
of CAR T cells [182].

5.3. Trafficking and Infiltration into the Tumoral Area

Unlike hematological malignancies where the target cells are accessible to CAR recog-
nition [183], the location, abnormal cytokine profile, and physical barriers such as tumor
stroma or neovascularization make solid tumors a problematic target in terms of T cell
delivery and infiltration [184]. Since lymphocytic cells have no affinity for cytokines ex-
pressed in the tumor microenvironment, new receptors targeting TME-specific ligands have
been proposed. This principle has been corroborated by studies that used transgenic recep-
tors [185] such as CXCR2, CCR2b, CXCR3, and CCR4. In these studies, CAR T cells were
more effectively delivered to different kinds of solid tumors, including melanomas [186],
neuroblastomas [187], ovarian cancer [188], renal cancer [189], prostate cancer [190], and
mesotheliomas [191]. In this context, CD8+ lymphocyte recruitment is increased, leading
to eventual tumor regression in some cases. However, due to tumor heterogeneity, this
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approach requires extensive background knowledge about the cytokine profile found in
each cancer type.

Other therapeutic options consist of modifications in the ligands secreted by the
microenvironment [192]. In this respect, low radiation doses and phosphoramide have been
used to induce the expression of CXCR4 and CXCL-12 [193], block inhibitory cytokines and
receptors such as CXCL12 and CXCL15 [194], and reduce the expression of the endothelin B
receptor, a molecule that restrict immune cell infiltration in ovarian cancers [195] Currently,
experimental studies in murine models have shown encouraging results on pancreatic
cancer through the negative regulation of pro-tumor cytokines. Furthermore, clinical
trials with CAR/RIAD T cells (regulatory subunit 1 anchoring disrupter) have found
similar outcomes through the inhibition of protein kinase A, a suppressor of lymphocyte
receptors [196].

Another strategy to augment cell trafficking is the combination of immune therapy
with oncolytic viruses (OVs), which are capable of being deposited specifically in the
tumor region [197–199]. In addition to their specific tropism, OVs can be modified to
attract T cells to the TME through cytokine secretion [200]. Current clinical trials using
adenoviruses equipped with RANTES (CCL15) and IL-15 have obtained favorable results
in causing direct lysis of infected cancer cells and increasing T cell migration, survival,
and growth [201]. Furthermore, by implementing these methods, any neoplasm could
produce cytokines and growth factors that promote “trafficking” regardless of their origins,
thus ruling out the need to study the cytokine profiles of each tumor. However, more
clinical trials that use different types of viruses (e.g., adenovirus, herpesvirus, retrovirus, or
poxvirus, among others) in both primary and secondary tumors are needed [202].

An alternative to improve trafficking effectiveness is local delivery of CAR T cells [203–205].
According to the location of the neoplasm, cell infusions have been performed directly into
the hepatic artery in colorectal cancer [206], breast cancer using CAR anti-c Met T cells [207],
intracavitary and intraventricular in glioblastomas where it was observed that while the first
option managed to reduce tumor diameter, the second managed to dramatically reduce the size
of all intracranial tumors [208], without presenting relevant toxicities in any of the registered
cases. Other clinical trials have taken these procedures further by using microscopic titanium
or “nitinol” plates loaded with CAR T cells, depositing them in the tumor area and resulting in
decreased neoplastic development [209].

Once immune cells reach the neoplastic zone, physical barriers such as stroma or
microenvironment-induced neovasculature represent challenges for tumor parenchyma
infiltration. The addition of ECM-degrading enzymes such as heparanase or relaxin has
been proposed [210]; however, during the manufacture of CAR T cells, functional changes
that affect heparanase secretion occur, which led to the development of CAR T cells that
express HPSE, thus increasing matrix degradation, infiltration, and anti-cancer effects.
Similarly, the combination of CAR T cell therapy with junction openers (JOs) has facilitated
infiltration thanks to its ability to self-dimerize and expand communicating junctions in
union with desmoglein 2.

In addition to the tumor stroma, the TME vasculature may represent a complication
for T cell therapy. For this reason, techniques aimed at eliminating or normalizing it
have emerged in order to restrict the flow of nutrients to tumor tissue and simultaneously
increase immune infiltration [211]. One of the main targets is the molecule VEGF-2 ex-
pressed in pro-tumor endothelial cells. Therapy targeting this molecule produced vascular
repressions with successful infiltrations and tumor regression in experimental models in
which CAR T cells employed IL-12 [212]. Similarly, Angiogenic ligands, e.g., echitastin,
which is capable of binding anb3 integrins expressed in tumor epithelium, have been
incorporated into CARs. Consequently, Te-CARs have been developed, whose activities, in
addition to being specific, have caused tumor regressions in pancreatic, ovarian, and breast
cancer [213].

Furthermore, other applications for CAR T cells have been considered outside oncol-
ogy. Currently, these immunotherapies are being tested in a different range of pathologies
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with limited therapeutical options or refractory cases, from refractory systemic lupus ery-
thematosus through the induction of B cell aplasia and hypogammaglobulinemia as well
as other autoimmune disorders [214], fibrosis of various tissues including the myocardium,
mainly through genetic ablation of activated fibroblasts, and removal of senescent cells to
improve age-related conditions and infectious diseases such as human immunodeficiency
virus (HIV) via targeting CD4+ cells [215]. However, the research is far from over. Currently,
the expanding interest has led to considering CAR T cell applications in different fields
from cardiology to pneumonology, endocrinology, nephrology, and many others, leading
to the notion that perhaps this is only the tip of the iceberg for immunotherapies and
specifically CAR T cells.

6. Conclusions and Future Perspectives

CAR T cell therapies have emerged as revolutionary advances in oncology and regen-
erative medicine. These therapies take advantage of the endogenous mechanisms of the
immune system to identify and eradicate tumor cells with specificity, potentially offering a
curative outcome in certain patients. These properties set them apart from conventional
therapeutic interventions that often have a less specific spectrum.

From the perspective of complexity, the rise of CAR T therapies shows a paradigmatic
transition in oncoimmunology, reflecting the inherent interconnection between biological
systems and the adaptability of modified cells. Despite the noticeable success, particularly
in hematological neoplasms, challenges regarding universal use still remain. On the one
hand, the need for clinical studies with broader cohorts is indispensable to assess the
robustness and replicability of the benefits. Since solid tumors impose specific barriers, a
deeper understanding of the tumor microenvironment and immune dynamics within this
context is essential.

The manufacturing and scalability of these therapies also represent significant chal-
lenges. Therefore, seeking strategies to universalize production could be the key to democ-
ratizing access and reducing associated costs.

In spite of the aforementioned challenges, the adaptability and evolution of CAR
T cell therapies have shown resilience. The current limitations are not considered to be
overwhelming barriers but opportunities for innovation and refinement. The constant opti-
mization of these therapies, either through genetic engineering, novel antigen identification,
or structural modification, aims to potentiate their effectiveness and security.

Although CAR T cells were originally focused on neoplasms due to their high inci-
dence and morbimortality, the versatility of this technology is being explored in various
other fields. Current research is venturing into their potential use in autoimmune and
chronic diseases as well as infections, suggesting a broad and promising horizon for this
therapeutic modality in multiple branches of medicine.
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