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Abstract: Clear-cell renal-cell carcinoma (ccRCC) is a silent-development pathology with a high
rate of metastasis in patients. The activity of coding genes in metastatic progression is well known.
New studies evaluate the association with non-coding genes, such as competitive endogenous RNA
(ceRNA). This study aims to build a ceRNA network and a gene signature for ccRCC associated
with metastatic development and analyze their biological functions. Using data from The Cancer
Genome Atlas (TCGA), we constructed the ceRNA network with differentially expressed genes,
assembled nine preliminary gene signatures from eight feature selection techniques, and evaluated
the classification metrics to choose a final signature. After that, we performed a genomic analysis,
a risk analysis, and a functional annotation analysis. We present an 11-gene signature: SNHG15,
AF117829.1, hsa-miR-130a-3p, hsa-mir-381-3p, BTBD11, INSR, HECW2, RFLNB, PTTG1, HMMR, and
RASD1. It was possible to assess the generalization of the signature using an external dataset from the
International Cancer Genome Consortium (ICGC-RECA), which showed an Area Under the Curve
of 81.5%. The genomic analysis identified the signature participants on chromosomes with highly
mutated regions. The hsa-miR-130a-3p, AF117829.1, hsa-miR-381-3p, and PTTG1 were significantly
related to the patient’s survival and metastatic development. Additionally, functional annotation
resulted in relevant pathways for tumor development and cell cycle control, such as RNA polymerase
II transcription regulation and cell control. The gene signature analysis within the ceRNA network,
with literature evidence, suggests that the lncRNAs act as “sponges” upon the microRNAs (miRNAs).
Therefore, this gene signature presents coding and non-coding genes and could act as potential
biomarkers for a better understanding of ccRCC.

Keywords: renal carcinoma; ceRNA network; transcriptional signature; machine learning; metastasis

1. Introduction

Renal cancer is a group of neoplasms originating in the renal tissues and classified
by cell type or histologic characteristics, such as clear-cell renal-cell carcinoma (ccRCC),
papillary renal carcinoma (pRCC), and chromophobe renal carcinoma (chRCC) [1–3]. Due
to the silent characteristic of this disease [4], the diagnosis at the metastatic state occurs in
approximately 30% of ccRCC patients [5,6].

In a study of 537 ccRCC patients, The Cancer Genome Atlas (TCGA) consortium [7]
characterized significant alterations in the ccRCC cohort. The changes include mutations in
genes such as VHL, PBRM1, SETD2, and BAP1; the deletion of the q arm of chromosome 3;
and distinct arrangements involving messenger RNA (mRNA) and microRNA (miRNA).
These alterations signify crucial mechanisms in ccRCC. More recently, other studies re-
vealed important roles for non-coding RNAs (ncRNAs), a class of RNAs that comprise
approximately 80% of the transcriptome [8–10].
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The functions of lncRNAs are determined by their interactions with DNA, proteins,
or other RNAs and their cellular localization [9–13]. The lncRNAs can act as a (i) decoy
or “sponge” modulating the effector of their targets, (ii) guide the enzyme modifiers of
histones or chromatin, and (iii) respond to various stimuli [14,15]. In particular, the ligation
of the lncRNA with the miRNA affects their targets, characterizing endogenous competition
between the lncRNA and the mRNA target of the miRNA [9,10].

The proposed “Competing Endogenous RNA” (ceRNA) hypothesis was based on the
idea of communication between miRNAs, mediated by the miRNA recognition elements
(MREs), with mRNA, lncRNA, and other ncRNAs [16]. Alteration in the ceRNA networks is
observed in cancer and other pathologies, associating them with biomarkers for metastasis
and other clinical outcomes or therapeutic targets [10,17–20].

Research involving RNA expression generates extensive and intricate datasets. In-
tegrating this data with clinical information through machine learning techniques could
facilitate the extraction of patterns in gene expression, enriching our comprehension of
gene functions within the biological context [21,22]. Among the vast applications of ML,
methods of classification and prediction are commonly applied in health research [23,24].
However, the lack of feature selection associated with the outcome variable could influence
the performances of the algorithms [25]. Feature selection involves the analysis of variables
based on their impact on the outcome, eliminating irrelevant ones, and enhancing their
consistency and relevance for the model [26].

Recently, studies investigated the ceRNA network and gene signature association
in ccRCC. Most of them focus on the relationship between ceRNA, immune response
regulation, and prognosis [27–36], and there is a lack of information about gene signatures
involving the ceRNA network and metastasis in ccRCC.

In this study, we constructed a ceRNA network and generated a gene signature
based on feature selection algorithms to classify the metastatic profiles of ccRCC patients.
We achieved an Area Under the Curve (AUC) of 81.5% and an accuracy of 72% in the
classification task. The signature was validated using an independent dataset, and the
biological functions of its components were investigated in the ceRNA network. The
flowchart shown in Figure 1 displays a summarized view of the discovery process for the
novel Recursive Feature Elimination (RFE) gene signature of ccRCC.
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Figure 1. Flowchart of the current study to obtain a gene signature based on the Recursive Feature
Elimination (RFE) approach. The datasets are indicated by the cylindrical shape; the white rectangles
represent the steps of the study. TCGA-KIRC and ICGC-RECA are the ccRCC datasets.
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2. Results
2.1. ceRNA Network

To construct the ceRNA network, we used the differentially expressed (DE) genes of
the TCGA-KIRC (n = 602) project. This analysis resulted in 2842 mRNAs and 271 lncRNAs
DE based on the thresholds of |log2FC| > 2 and p-value adjusted for the False Discovery
Rate (FDR) < 0.01 (Figure S1). With these DE genes, we constructed the ceRNA network
composed of 18 lncRNAs, 128 mRNAs, and 75 miRNAs (Figure 2). The miRNAs were
included in the ceRNA network as described (Section 4.2).
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Figure 2. The ceRNA network was constructed based on the differentially expressed (DE) genes from
ccRCC patients. The network is composed of 18 lncRNAs (green diamond), 75 miRNAs (orange
ellipses), and 128 mRNAs (red rectangles). Individual clusters and clusters composed of gene
signatures with their first neighbors are enumerated from 1 to 6, and highlighted by the red line circle.

The network structure explicitly reveals the connections between miRNAs, lncRNAs,
and mRNAs. Within this inferred network, we have observed the presence of a diverse
group of genes that share miRNAs and some lncRNAs. This characteristic points to a
clustered organization, where these genes are related to a common outcome. Upon closer
analysis of this cluster organization, we noticed a pattern in which one cluster is fully
connected while others are sparser.

In order to evaluate the topology of our ceRNA network, we tested the fitness of
the degree distribution to a power-law model, P(k) = ∝ kα, resulting in α = 2.163. We
performed a Kolmogorov–Smirnov test with our ceRNA network, and the distribution
of our data did not fit strictly to a power-law model. Nevertheless, using the likelihood
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ratio test, our network fitted between a power-law and a log-normal positive distribution
(Figure S2).

2.2. Feature Selection

With the expression data from the 221 ceRNA network genes and the metastatic
classification from the 192 patients, we conducted balanced performance assessments.
Subsequently, we executed a training process for feature selection and developed nine
initial gene signatures (Figure 3). Among the feature selection techniques, only stepAIC did
not converge. The Recursive Feature Elimination (RFE) shows an accuracy of 76.30% and
a Kappa coefficient of 0.5663, showing a moderate level of agreement between the actual
metastatic samples and the predicted ones.
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constructed. On the Y-axis are the models applied to the signature construction, and on the X-axis are
the genes (red squares) from each obtained signature.

We dismissed the outcomes from the stepAIC method and performed the first bench-
mark. The xgbTree presented the best result, with an accuracy of 80% during the training,
60% for the test, and 68.3% for validation. Employing the Youden statistics, we selected the
top four signatures. The four signatures shared some genes, and we constructed the final
signature through majority voting, composed of INSR, PTTG1, BTBD11, RASD1, HECW2,
HMMR, RFLNB, hsa-miR-130a-3p, hsa-miR-381-3p, SNHG15, and AF117829.1. To evaluate
gene importance in random forest, we present a multi-way importance plot (Figure S3).

We conducted the second benchmark to the constructed signature (Table 1), using the
ICGC-RECA project as a test dataset. We observed an accuracy of 72%, an AUC (Figure S4)
of 81.5%, and a Brier Score of 0.1955.

Table 1. Metrics evaluated for validation using an external dataset.

Method Accuracy AUC Brier Score

Random forest 1 72.2% 81.48% 0.1955442
SVM 50% 66.67% 0.2500714

xgBoost 61.1% 62.34% 0.2343498
kNN 50% 61.72% 0.4817816

Naïve Bayes 50% 54.32% 0.5000000
1 Bold represents the best classification.

To highlight the separability of the data through the 11-signature genes, we applied
k-means clustering to partition TCGA-KIRC samples into two groups (C1 and C2). Sub-
sequently, for dimensionality reduction and visualization, we implemented principal
component analysis (PCA). Predominantly, the metastatic samples (M1) are located within
the positive range of the first dimension (C1), whereas the non-metastatic samples are
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positioned on the opposite side (C2) (Figure S5a). The chi-squared test revealed a signifi-
cant association (p-value = 0.007) between the metastatic samples and the cluster 1. The
analysis of gene contribution with Cos2 to the sample characteristics shows that positively
correlated genes are located in the first quadrant within the majority of metastatic samples
(M1) and group C1 samples (Figure S5b).

2.3. Integrative Analysis of the Transcriptional Signature Components
2.3.1. Genomic Alteration Analysis

Performing a genome-level alteration analysis enables us to evaluate their impact on
the gene product. The alterations can include changes in the genetic structure, disruptions
in protein synthesis, or variations in the quantity of the gene product. We used the
Maftools package to investigate single-nucleotide polymorphisms (SNPs) and copy number
variations (CNVs) in the TCGA-KIRC cohort.

The missense mutation is the most frequent alteration in SNP data, with approximately
44 variants per sample and a prevalence of cytosine and thymine transversions. Moreover,
ten samples showed mutations in signature-coding genes (Figure S6). Specifically, we
detected missense mutations in the genes HECW2, BTBD11, INSR, and PTTG1; a frameshift
deletion in BTBD11; and a multi-hit mutation in HECW2. However, the genes HMMR,
RASD1, and RFLNB did not present any mutations.

The analysis of copy number variation reveals substantial and frequent alterations
in chromosomes 1, 4, 5, 6, 7, 12, 17, 18, and 20 across the samples. Upon investigating
the chromosome locations of our gene signature in the National Center of Biotechnology
Information, we found that while our genes were situated in the chromosomes undergoing
significant alterations, they were not specifically located in the regions exhibiting notable
modifications (Table S2).

2.3.2. Risk Analysis

To evaluate the relationship between the expression level of signature genes, the
metastatic development, and the survival status of the patients, we performed a risk
analysis. Aalen’s additive regression shows a significant relationship between some genes
from the gene signature and patient survival, such as (i) AF1117829.1 (p-value = 0.0001627),
(ii) hsa-miR-130a-3p (p-value = 0.016), (iii) hsa.miR.381.3p (p-value = 0.027), and (iv) PTTG1
(p-value = 0.020), see Figure S7.

The odds ratio analysis shows that the miRNA hsa-miR-130a-3p and the lncRNA
AF117829.1 are the only ones that had significant associations, with p-value = 0.011 and
p-value = 0.029, respectively (Figure 4).

2.3.3. Functional Annotation Analysis

We performed a functional analysis using the signature-coding genes and the targets
of the signature miRNAs against the Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways.

When evaluating the targets from the miRNAs and their biological pathways, well-
known oncology-related pathways, such as the PI3K-AKT signaling pathway, the p53
signaling pathway, the transforming growth factor-beta (TGF-beta) signaling pathway,
renal cancer, and the HIF-alfa pathway, were also observed in a statistically significant
manner (Figure S8a).

The annotated biological processes were associated with cellular division regulation,
such as chromatid sister separation, and chromosome segregation (Figure 5). The pathways
annotated for miRNA targets were related to the cellular division process. Also, other
pathways related to signal transduction, growth factors, and DNA polymerase I regulation
were significantly enriched (p-value < 0.05) (Figure S8b).
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2.4. Gene Signature and ceRNA Network

As the signature construction was performed upon the genes from the ceRNA network,
the evaluation of their location and their first neighbors could improve knowledge about
their functions and the possible metastatic effects in the ccRCC.
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The ceRNA network presents a cluster organization, and the signature genes are
located in clusters with distinct properties. Two of the signature genes are located in
cluster 1,while others resided in locations with dense interconnections, such as cluster 2.
Additionally, certain areas contained only one gene, as observed in clusters 3, 4, 5, and 6.
Table 2 presents the genes from the signature, their first ligands within the ceRNA network,
and their cluster localization.

Table 2. Gene signature participants, their first ligands within the ceRNA network, and their cluster
localization. Bold represents the gene from the signature’s first ligands.

Cluster Gene First Ligands

1 AF117829.1 hsa-miR-361-5p, POLE2, HMMR
2 BTBD11 hsa-miR-374a-5p, hsa-miR-374b-5p, MAGI2-AS3

3 HECW2 hsa-miR-130a-3p, hsa-miR-130b-3p, hsa-miR-454-3p,
hsa-miR-4295, hsa-miR-3666, H19

1 HMMR hsa-miR-361-5p, POLE2, AF117829.1

3 hsa-miR-130a-3p HECW2, WNK3, RASD1, PFKFB3, SCARA3, LDLR,
PMEPA1, TCF4, PXDB, BCL11A, NHSL1, H19

4 hsa-miR-381-3p RSRP1, CORO1C, ATAD5, RNF149, AC016876.2
3 INSR hsa-miR-16-5p, hsa-miR-424-5p, C1RL-AS1.
5 PTTG1 hsa-miR-186-5p, AC021078.1

3 RFLNB hsa-miR-29a-3p, hsa-miR-29b-3p, hsa-miR-29c-3p,
hsa-miR-16-5p, hsa-miR-424-5p, H19, AC005154.1

3 RASD1 hsa-miR-130a-3p, hsa-miR-130b-3p, hsa-miR-3666,
hsa-miR-4295, hsa-miR-454-3p

6 SNHG15 hsa-miR-24-3p, IL2RB, NFKBIE, CITED4

3. Discussion

In the present study, a transcriptional signature associated with metastatic devel-
opment was constructed using feature selection techniques in conjunction with ceRNA
network data for the cases of patients diagnosed with clear-cell renal-cell carcinoma. Addi-
tionally, the biological behavior of the genes comprising the signature was evaluated to
understand their actions within the tumoral environment in ccRCC.

Regarding the network topology, our ceRNA presents a characteristic topology that
does not follow the power-law degree distribution or represent a scale-free network. As
indicated by Broido-Clauset [37] and Clauset, Shalizi, and Newman [38], the existence
of scale-free topologies in the real world is rare, and most of them follow a log-normal
distribution, like ours, or an exponential distribution once they have a heavy-tailed pattern.

3.1. Gene Signature

A set of nine feature selection methods produced preliminary gene signatures for the
metastatic classification of ccRCC. The learning curves derived from RFE present a Kappa
coefficient falling within the range of 0.41 to 0.6, which signifies a substantial agreement
between the method’s outcomes and the data [39]. The combined application of these two
metrics enhances classification accuracy [40].

Some benchmark models displayed overfitting, and we used the Youden statistics to
select the models with the best sensitivity and specificity performances. Among the top
four signatures, their Youden coefficients ranged from 0.13 to 0.18, approaching values
closer to 1, signifying the optimal classification results [41].

The use of majority voting with the top four signatures results in the final signature of
our work, composed of seven mRNAs: PTTG1, BTBD11, HECW2, INSR, RFLNB, HMMR,
RASD1; two lncRNAs, SNHG15 and AF117829.1; and two miRNAs, hsa-miR-381-3p and
hsa-miR-130a-3p.

Validation with an external dataset is a process in the ML field used to evaluate model
generalization [42]. We performed external validation to classify metastatic tissue using
the gene expression of our signature. The training was performed with TCGA-KIRC and
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testing with ICGC-RECA, resulting in an accuracy of 72% and an AUC of 81.5%. Since
the classification relied on health data, these evaluation metrics might not perfectly align
with the objective of the study [43]. This limitation can be partially explained by the
heterogeneity of the data, the sample size, and the inherent complexity of the biological
process underlying the ccRCC. As far as we know, this is the first study that analyzes the
relationship between a ceRNA network and a metastatic gene signature in ccRCC.

3.2. Validation and Biological Interpretation
3.2.1. Genomic and Functional Alterations

The somatic alterations of the coding genes in the signature were more commonly
associated with missense or frame_shift_del, except for HMMR and RFLNB. Regarding the
copy number variations, the amplified or deleted regions were not in the exact location of
the genes in the signature.

Analyzing the risk associated with survival or metastasis development showed a
significant association between four genes in the gene signature. The lncRNA AF117829.1
and the miRNA hsa-miR-130a-3p were present in both analyses. The miRNA associa-
tion is related to various cancers, such as bladder, breast, hepatocellular, glioma, and
osteosarcoma [44–49]. Therefore, the presence of the PTTG1 and hsa.miR.130a.3p genes
corroborate the literature, where in a situation of high expression, the prognosis is poor, and
the hsa.miR.13p and hsa.miR.381.3p are associated with metastatic development. However,
the lncRNA remains unknown, and these features could be added to its actions, which are
still under study.

The functional annotation revealed diversified pathways. Both approaches, using the
coding genes and miRNAs, highlighted biological processes associated with cell cycle regu-
lation, controlling the separation and segregation of the sister chromatids, RNA polymerase
II transcription, and the up-regulation and accommodation of the transcription activity of
coding and non-coding genes [50], as well as processes related to cell–cell communication.

3.2.2. Gene Cluster Analysis

The ceRNA network presents a cluster organization, showing dense regions with
highly connected gene networks, others with more sparse networks, and some isolated
small clusters. We perform a cluster-by-cluster analysis, using the signature genes and their
first ligands (Table 2) to evaluate a possible role in metastasis development.

The first cluster is composed of two genes from the signature: the mRNA HMMR and
the lncRNA AF117829.1, as well as the miRNA hsa.mir.361.5p and the mRNA POLE2. The
Hyaluronan Mediated Motility Receptor (HMMR) is responsible for the regulation of tumor
cell motility [51], and its knockdown reduced peritoneal metastasis in gastric cancer [52].
The role of lncRNA AF117829.1 remains unknown, but it was described as related to the
proliferation, differentiation, and regulation of T-cell immunity [53,54], and its expression
is implied with metastatic development and the worst prognosis of ccRCC patients. In this
context, the lncRNA AF117829.1 could be acting as a sponge over the miRNA, impairing
the degradation of POLE2 and HMMR, and promoting cell differentiation and metastasis
development.

Cluster 2 presents the BTB Domain Containing 11 (BTBD11) gene from the signature.
Its mechanism remains unknown, but it is described as a target in the TGF-beta pathway,
responsible for cell cycle and apoptosis regulation [55]. The BTBD11 first ligands are the
lncRNA MAGI2-AS3 and the miRNAs hsa.miR.374a.5p and hsa.miR.374b.5p isoforms.
The lncRNA–miRNA interactions are related to tumor suppression in breast and hepa-
tocellular cancers [56,57], suppressing proliferation, migration, and invasion. With the
down-expression of the lncRNA, the miRNA can degrade BTBD11, negatively regulating
the TGF-beta pathway and promoting tumor development.

The third cluster is located in the most dense region of the ceRNA network and presents
five of the signature protein genes, as well as three lncRNAs and eight miRNAs directly
linked to the former. The insulin receptor (INSR) regulates the insulin signaling pathway
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and activates the oncogenic PI3K/Akt/mTOR pathway, and its high expression is inversely
associated with patient survival in ccRCC and gastric cancer [58]. Refilin b (RFLNB) is
responsible for the epithelial–mesenchymal transition (EMT) and inhibits tumoral growth
in neuroblastoma and pleural malignant mesothelioma [59–61]. HECT-Type E3 Ubiquitin
Transferase HECW2 (HECW2) acts in apoptosis regulation, and its high expression is related
to a good prognosis in ccRCC [62,63]. Ras-Related Dexamethasone-Induced 1 (RASD1)
inhibits the RAS superfamily of the short GTPases and, in high expression, induces a
decrease in cell growth, leading to apoptosis [64]. The increased expression of H19, C1RL-
AS1, and AC005154.1 lncRNAs presented in the cluster suggests their roles as miRNA
sponges (Table 2). The impairment or attenuation of miRNAs could potentially stabilize
RFLNB and INSR expression, promoting tumor growth. Furthermore, the decreased
expression of RASD1 implies that the miRNAs remain stable, also favoring a tumorigenic
environment.

Cluster 4 is composed of the miRNA hsa.miR.381.3p and its targets. Coronin 1C
(CORO1C) regulates apoptosis and cell cycle progression [65], acting as an oncogene in
ccRCC and non-small-cell lung cancers [66,67]. The ATPase Family AAA Domain Con-
taining 5 (ATAD5) is responsible for DNA duplication [68] and cell cycle regulation in
neuroendocrine hepatic tumors [69]. The Arginine and Serine Rich Protein 1 (RSRP1) is in-
volved in spliceosome assembly and has a good prognosis in breast cancer, but its biological
mechanism is still unknown [70]. Ring Finger Protein 149 (RNF149) regulates ubiquitina-
tion and proteasomal degradation and is associated with pancreatic cancer [71,72]. The
high expression of lncRNA AC016876.2 can promote the capture of the hsa.miR.381.3p,
hence stabilizing the miRNA targets and facilitating tumor development.

Cluster 5 presents the signature Pituitary Tumor-Transforming Gene 1 (PTTG1), an
oncogene that regulates sister chromatid separation [73]. The interaction with the miRNA
hsa.miR.186.5 regulates the TGF-beta and MAPK pathways in breast cancer and ccRCC [74].
These pathways are associated with essential processes, such as tissue development, pro-
liferation, senescence, migration, apoptosis, and cell differentiation [75,76]. The lncRNA
AC021078.1 is involved in cell differentiation and DNA repair [77], and its high expression
can negatively regulate the miRNAs, giving the PTTG1 the possibility to act in tumoral and
metastatic progression.

The signature lncRNA Small Nucleolar RNA Host Gene 15 (SNHG15) is located on
the sixth cluster and regulates the NF-kappa-B pathway that represses cell proliferation
and the epithelial–mesenchymal transition (EMT) in ccRCC [78]. In cases of high expres-
sion, SNHG15 correlates to metastatic progression in colorectal and non-small-cell lung
cancers [79,80]. This cluster is also composed of the protein coding genes’ NFKB Inhibitor
Epsilon (NFKBIE) inhibitor of the NF-kappa-B signaling pathway associated with the
inflammatory process in cancer [81,82], the Interleukin 2 Receptor Subunit Beta (IL2RB),
and Cbp/P300 Interacting Transactivator With Glu/Asp Rich Carboxy-Terminal Domain 4
(CITED4), which are the regulators of the T-cell immune response and gene transcription,
respectively [83,84], both, in cases of high expression, present a poor prognosis and are
related to metastasis development. As the SNHG15 presented an elevated expression,
it could indicate a sponge effect upon the miRNA on the cluster, promoting the normal
activity of miRNAs-target.

Thus, the behavior observed in some genes from signature corroborates with the
literature. SNHG15, hsa.miR.130a.3p, PTTG1, INSR and HMMR were described in a ccRCC
environment, exhibiting the higher expression that induces metastasis and promotes cancer
development. Conversely, lower expression of miRNA hsa.miR.381.3p is associated with
a poor prognosis and linked to the development of metastasis. However, the remaining
genes in the signature are reported in the literature across several other solid tumors, and
play a crucial role in cancer and metastasis development.
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4. Materials and Methods
4.1. Data

The RNA-seq and clinical datasets from the TCGA-KIRC project (n = 602) were down-
loaded from Genomic Data Commons (https://portal.gdc.cancer.gov/, accessed on 1 May
2023) [85] and UCSC Xenabrowser (https://xena.ucsc.edu/, accessed on 1 May 2023) [86]
(University of California, Santa Cruz, CA, USA). For external validation, we used the dataset
of ccRCC (n = 91 patients) from the International Cancer Genome Consortium (ICGC-RECA,
accessed on 1 June 2023) [87] (Ontario Institute of Cancer Research in Toronto, Canada).

4.2. ceRNA Network Construction

The ceRNA network was constructed from the differentially expressed genes’ mRNAs
and lncRNAs. We use the DESeq2 (v1.36.0) [88] package for the differential expression
analysis between the normal (n = 72) and tumor tissues (n = 530) from the TCGA-KIRC
cohort, with an absolute |log-fold change (LFC)| > 2 and an adjusted p-value (FDR) < 0.01.

With the differentially expressed genes, the ceRNA was constructed using the GDCR-
NATools package (v. 1.16.6) [89] associated with the starBase [90]. This database provides
the iteration networks through numerous RBPs and RNAs, to supply the miRNAs shared
by the differentially expressed lncRNAs and mRNAs from our KIRC dataset. The pair
were selected using the following statistical analyses: (i) the hypergeometric test, where
the probability of miRNAs shared by the lncRNA-mRNA pair was evaluated, observing
the success of finding an association between the lncRNA–mRNA pair with the same
miRNA; (ii) the Pearson correlation, used to measure the expression correlation between
the lncRNA and the mRNA to understand the relation between them; and (iii) regulatory
similarity, which will count the Pearson correlation and the total of miRNAs shared by the
lncRNA–mRNA pair.

This analysis used a p-value threshold of 0.01 for the Pearson correlation and hyperge-
ometric test and a value different from 0 for the regulatory similarity. The ceRNA network
visualization was implemented using Cytoscape software (v 3.10.1) [91].

Once the network was constructed, its topology was evaluated following the Barabási-
Oltvai [92] concepts of network biology, associating it with the likelihood ratio test based
on the method of Broido-Clauset [37], using the package powerlaw [93] in Python (v 3.12).

4.3. Dataset Construction, Feature Selection, and Gene Signature Construction

The signature construction used the ceRNA network genes following the methodology
of Terrematte and colleagues [94]. The gene signatures were produced using the feature
selection techniques in Table S1 and the OmicSelector package (v1.0.0) [95].

Within the gene expression dataset from the TCGA-KIRC (n = 602), a missing metastatic
classification in 30 patients was observed, causing their remotion, and due to the unbal-
anced characteristic of the metastasis classification of presence (M1) or absence (M0), a
propensity matching score balance was performed, maintaining 190 patients, with 95 from
each class.

This new dataset was split randomly into three new datasets, following the ratio of
60% for training (n = 114), 20% for testing (n = 38), and 20% for validation (n = 38). For
the signature construction process, we used the following feature selection techniques:
Recursive Feature Elimination (RFE) and two iterated versions, Boruta, the Generalized
Linear Model (GLM), the Akaike Information Criterion (AIC), Linear Discriminant Analysis
(LDA), Lasso, and ElasticNet.

To improve the construction of the signature and optimize computational efficiency,
we performed hyperparameter adjustments to the feature selection. The RFE techniques
used cross-validation with ten folds, using a window frame of 50 genes in each iteration,
and the iterated RFE versions used a window frame of ten genes for the signature.

With the nine signatures constructed, a first benchmarking stage was performed to
select the signature with the best metrics for metastatic classification using the test and
validation datasets. The first benchmark compared the signatures using the following mod-

https://portal.gdc.cancer.gov/
https://xena.ucsc.edu/
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els: random forest (rf), the Generalized Linear Model (GLM), eXtreme Gradient Boosting
(xgbTree), and the Support Vector Machine with a Radial Kernel (svmRadial), performed
ten times to seek the best parameter adjustment for each of them. The metrics used to
evaluate this benchmark were accuracy, specificity, sensitivity, and the Youden statistics.

To evaluate the signature generalization, the external dataset from the ICGC-RECA
project (n = 91) was used with the mlr3verse package (v0.2.7) [96] to perform the second
benchmark, applying the following classification techniques: random forest, naive Bayes,
kNN, svmradial, and XGBoost. The evaluation metrics were accuracy, balanced accuracy,
the Brier score, and the AUC. The validation process used the TCGA-KIRC for training and
the ICGC-RECA for testing.

4.4. Somatic and Copy Number Alteration Analysis

The somatic alterations analysis was conducted using the Mutation Annotation Format
(MAF) datafile, using the Maftools package (v2.16.0) [97], extracting information about (a)
the types and classification of variations, (b) the variation quantity by sample, and (c) the
top 10 genes altered.

The copy number variation analysis requires the construction of the GISTIC file. The
Genomic Identification of Significant Targets in Cancer (GISTIC) pipeline [98] resulted in
information about amplification and deletions within the data, analyzed via the Maftools
package. To perform GISTIC analysis, it was necessary to obtain the segmentation file
obtained from the GDC Data Portal [85] and the reference genome, version 41, from the
GENCODE [99].

4.5. Risk Analysis

To evaluate the relationship between the expression level of the signature genes, the
metastatic development, and the survival statuses of the patients, we performed a risk
analysis. With the survival (v3.5.7) [100] and finalfit (v1.0.6) [101] packages, we executed
Aalen’s additive regression and an odds ratio analysis, respectively. Aalen’s regression
acts as a complementary, or alternative, form of the Cox model. In this method (Aalen
Regression), the covariables associations and their effects are determined, taking into
account the gene set association to the death event [102]. The odds ratio quantifies the
strength of association between each of the analyzed covariables separately and the outcome
(metastasis) [103].

4.6. Functional Annotation Analysis

The identification of the pathways enriched by the genes of the signature was per-
formed against the gene ontology [104], focusing on the biological processes and molec-
ular functions, using the clusterProfiler package (v4.8.2) [105] and the mirPath platform
(v3.0) [106] for the functional characterization of miRNAs from the signature. Enriched
terms with p-values < 0.05 were considered statistically significant.

4.7. Development

This study was constructed using the R programming language (v4.2.0) with the
RStudio platform (v4) hosted on the servers of the Multiuser Bioinformatics Center of the
Metropolis Digital Institute at UFRN. The constructed codes are available in the GitHub
repository (https://github.com/epfarias/transcriptonal_sig_ceRNA_KIRC, accessed on 27
July 2023).

5. Conclusions

This study aimed to build a transcriptional signature of clear-cell renal-cell carcinoma
from differentially expressed genes that act as a competitor endogenous RNA network.

Using feature selection techniques for signature construction represents a promising
application in this vast area of pattern recognition and machine learning. By integrating
expression data with clinical information, we successfully constructed transcriptional

https://github.com/epfarias/transcriptonal_sig_ceRNA_KIRC
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signatures comprising multiple genes. The incorporation of evaluative metrics allowed us
to gain valuable insights into the signature, assessing the metrics of the accuracy, sensitivity,
and specificity of the signature in order to classify metastatic tissue expression. Using the
external dataset permitted the examination of the signature generalization, thus validating
its action as a metastatic classifier in clear-cell renal cancer.

With the cluster analysis, it was possible to know the actions performed by the signa-
ture genes within the cellular environment of clear-cell renal-cell carcinoma and how the
effects of this regulatory process occur, indicating new roles for the lncRNA AF117829.1
and the mRNA RASD1. As research in the realm of lncRNA actions on cancer development
undergoes constant evolution, our latest findings provide novel insights that illuminate
promising avenues for future exploration. The dynamic nature of this field underscores the
importance of our study, pointing toward potential directions for further investigation.
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