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Abstract: Lysine is an essential amino acid that cannot be synthesized in humans. Rice is a global
staple food for humans but has a rather low lysine content. Identification of the quantitative trait
nucleotides (QTNs) and genes underlying lysine content is crucial to increase lysine accumulation.
In this study, five grain and three leaf lysine content datasets and 4,630,367 single nucleotide poly-
morphisms (SNPs) of 387 rice accessions were used to perform a genome-wide association study
(GWAS) by ten statistical models. A total of 248 and 71 common QTNs associated with grain/leaf
lysine content were identified. The accuracy of genomic selection/prediction RR-BLUP models
was up to 0.85, and the significant correlation between the number of favorable alleles per acces-
sion and lysine content was up to 0.71, which validated the reliability and additive effects of these
QTNs. Several key genes were uncovered for fine-tuning lysine accumulation. Additionally, 20 and
30 QTN-by-environment interactions (QEIs) were detected in grains/leaves. The QEI-sf0111954416
candidate gene LOC_Os01g21380 putatively accounted for gene-by-environment interaction was
identified in grains. These findings suggested the application of multi-model GWAS facilitates a
better understanding of lysine accumulation in rice. The identified QTNs and genes hold the potential
for lysine-rich rice with a normal phenotype.

Keywords: rice; free lysine content; genome-wide association study; quantitative trait nucleotide;
gene; QTN-by-environment interaction; genomic selection/prediction

1. Introduction

Lysine is one of the nine essential amino acids (EAAs), which cannot be synthesized
in humans and needs to be obtained from external diets, especially from plant-based di-
ets [1–4]. Lysine in the human diet comes from the digestion of lysine-containing proteins
rather than from free lysine in the plant or animal cell. Lysine deficiency in the human body
leads to health concerns such as retarded growth, tiredness, anemia, calcium absorption,
chronic malnutrition, and antibody production [2,5]. Rice represents an important staple
food, which is a major source of calories and amino acids intake for humans and live-
stock [6–8]. However, the inadequate nutritional value of rice is the EAA lysine, which is
known as the most limiting amino acid and a limitation of the nutrient quality [2,5,9]. Thus,
enhancing the lysine content in rice is becoming an emerging goal to meet the nutrition
demands of the ever-growing global population.

In order to increase the rice lysine accumulation in a feasible and cost-effective man-
ner, extensive efforts on biofortification have been made using genetic and metabolic
engineering strategies [1,2,10]. Most of this research concentrated on enhancing lysine
anabolism and reducing lysine catabolism [3,4,11]. To date, the characterized mechanism
of lysine biosynthesis and degradation remains far from comprehensive and detailed.
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Lysine is synthesized through a branch of the aspartate (Asp) family pathway; two key
enzymes involved in the lysine biosynthesis are Asp kinase (AK) and dihydrodipicolinate
synthase (DHDPS), and one important enzyme participating in the lysine degradation
pathway is the bifunctional lysine ketoglutarate reductase/saccharopine dehydrogenase
(LKR/SDH) [3,4,12]. For instance, the expression of bacterial DHDPS with a seed-specific
promoter in an LKR/SDH knockdown mutant line showed an approximately 64-fold in-
crease of free lysine content in Arabidopsis [13,14]. The overexpression of maize DHDPS in
rice results in only a 2.5-fold increase of lysine in mature grains but with a low seed germi-
nation rate [15]. Using the combined expression of AK and DHPS with RNA interference of
the LKR/SDH approach in rice, the free lysine contents increased up to 12-fold in leaves
and 60-fold in seeds [16]. However, the strengths and constraints are always presented in
these transgenic lines with relatively high lysine levels, which are generally accompanied
by some deleterious effects, such as alterations in plant height, germination rate, seed vigor,
seed color, and oil content [10,17,18]. Therefore, further study is likely needed to fully
elucidate the genetic mechanism for a comprehensive understanding of metabolic fluxes
about the lysine-related pathway.

The genome-wide association study (GWAS) detects the marker and trait associations
in a powerful and robust manner, which is commonly used in the genetic research of the
quantitative trait controlled by polygenes [19–22]. Due to the differences in the genetic
algorithm, GWAS models can be mainly classified into the generalized linear model (GLM),
mixed linear model (MLM), and its derived single-locus models (MLM, GEMMA, EM-
MAX, and CMLM etc.), and multi-locus models (MLMM, FarmCPU, mrMLM, pLARmEB,
FASTmrEMMA, pKWmEB, FASTmrMLM, ISIS EM-BLASSO, and 3VmrMLM etc.) [23–33].
These models have several advantages and also a few shortcomings. For example, MLM
and its derived single-locus models have been proven to control spurious associations and
show high performance in the detection of quantitative trait nucleotide/locus (QTN/QTL)
with a large effect [30,34,35]. Thus, a range of multi-locus models have been proposed to de-
tect the QTNs/QTLs with large and small effects in an accurate and robust manner [35–38].
According to the results obtained in our previous studies, the combined use of multiple sta-
tistical models for GWAS facilitates a better understanding of the genetic mechanism of the
complex and multi-omics trait, particularly for the free amino acid content in rice [36–39].

To date, the content alteration is well explained by the genetic variation through
the metabolite-based genome-wide association study (mGWAS), which provides refined
mechanistic insights into primary and secondary metabolic genes and pathways in plants.
To unravel the genetic basis underlying the primary and secondary metabolic interface,
various QTLs/QTNs and candidate genes have been exploited using this approach [37,
38,40–47]. Previous studies generally focused on the structural genes in the biosynthesis
and metabolism pathways. However, transcription factors (TFs) are powerful tools for
regulating the biosynthesis and degradation of certain metabolites, which activate or
suppress the expressions of multiple genes participating in one or more pathways [48,49].
As a primary metabolite, the accumulation of a free branched-chain amino acid in rice has
been uncovered by the positive regulation of the TF OsWRKY78 in grains and OsbZIP18 in
leaves [45,46]. In contrast, the theanine (a non-proteinaceous amino acid) biosynthesis in
tea is negatively regulated by the TF CsMYB73, and the proanthocyanidin accumulation in
grape berry is also negatively regulated by the TF VvMYBC2-L1 [50,51]. The accumulation
of free lysine in rice is mainly related to the biosynthesis in leaves and catabolism in
seeds, and no evidence shows that free lysine transports from leaves into seeds [16].
Therefore, the exploration of key genes and corresponding TFs in rice grains and leaves
is of utmost importance for the fine-tuning of the lysine biosynthesis and metabolism
pathways. Additionally, to confront the challenge of global climate change and meet
the nutrition demands of the increasing population, the genetic basis of the QTN-by-
environment interactions (QEIs) related to the lysine content in rice grains and leaves needs
to be elucidated.



Int. J. Mol. Sci. 2024, 25, 4667 3 of 24

To explore the QTNs and potential genes enhancing lysine accumulation in rice grains
and leaves, a GWAS was performed on a diverse panel of 387 rice accessions with 4,630,367
SNPs. This association panel contained 244 indica accessions and 143 japonica accessions.
The QTNs and QEIs associated with the lysine content in rice grains and leaves were
detected across five grain and three leaf lysine content datasets using multiple GWAS
models. These models included GLM, three single-locus models (MLM, CMLM, and
EMMAX), and six multi-locus models (mrMLM, FASTmrEMMA, FASTmrMLM, ISIS EM-
BLASSO, pKWmEB, and pLARmEB). The objective of this study was to identify the QTNs,
key genes contributing to lysine accumulation, and the QEIs related to the lysine content
in rice.

2. Results
2.1. Lysine Content in Rice Grains and Leaves

To assess the content variation of lysine in 387 rice accessions, LC-MS/MS technology
was used to quantify the lysine content in grains and leaves. The coefficient of variation
(CV) of lysine content in grains ranged from 93.59% to 165.98%, whereas in leaves, it
ranged from 43.53% to 52.62% (Table 1). The skewness and kurtosis of all the lysine content
datasets were observed in less than one (Table 1). The estimated broad-sense heritability
(H2) of grain/leaf lysine content was 0.69 and 0.16 (Table 1). Interestingly, significant
differences in grain/leaf lysine content were observed between japonica and indica rice.
Higher grain lysine levels were found in indica accessions than in japonica accessions
(Figure 1A). However, higher leaf lysine contents were observed in japonica accessions than
in indica accessions (Figure 1C). Correlation analyses were conducted among five grain
lysine content datasets (Grain_env1_r1, Grain_env1_r2, Grain_env2_r1, Grain_env2_r2, and
Grain_BLUP) and three leaf content datasets (Leaf_env3_r1, Leaf_env3_r2, and Leaf_BLUP).
Across all the grain lysine content datasets, the highest correlation coefficients (r = 0.94)
were observed between Grain_env1_r2 and Grain_BLUP and between Grain_env2_r2 and
Grain_BLUP, while the lowest was found between Grain_env1_r1 and Grain_env2_r1
(r = 0.72) (Figure 1B). In the leaf lysine content datasets, the highest correlation relationship
was found between Leaf_env3_r2 and Leaf_BLUP (r = 0.86), while the lowest was observed
between Leaf_env3_r1 and Leaf_env3_r2 (r = 0.40) (Figure 1D). The data distribution and
correlation results indicated the lysine content in rice grains and leaves is quantitatively
inherited and affected by genetic and environmental interactions.

Table 1. Descriptive statistics of the grain and leaf lysine content datasets.

Dataset Number Range Mean SD Variance Skewness Kurtosis CV (%) a H2

Grain_env1_r1 272 6.22 12.35 1.24 1.54 0.10 −0.74 93.59

0.69
Grain_env1_r2 364 8.19 13.75 1.44 2.08 −0.03 −0.63 107.49
Grain_env2_r1 365 10.41 13.90 2.29 5.26 −0.18 −0.82 165.98
Grain_env2_r2 365 7.68 12.82 1.38 1.91 −0.09 −0.40 102.84

Leaf_env3_r1 387 3.65 22.02 0.62 0.39 −0.14 −0.12 43.53
0.16Leaf_env3_r2 387 3.96 21.31 0.70 0.49 0.07 −0.01 52.62

a Calculated from the original dataset. CV: coefficient of variation; SD: standard deviation; H2: broad-sense
heritability; Grain_env1_r1, Grain_env1_r2, Grain_env2_r1, Grain_env2_r2, Leaf_env3_r1, and Leaf_env3_r2
represent two replicates in 2012 and 2013 for grains (Grain_env1 and Grain_env2), and 2014 for leaves (Leaf_env3),
respectively.
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Figure 1. Grain and leaf lysine contents and correlation analyses in rice accessions. (A,C) Violin plot 
of lysine content for the 244 indica and 143 japonica accessions. Env1_r1, Env1_r2, Env2_r1, Env2_r2, 
Env3_r1, and Env3_r2 represent lysine content datasets with two biological replicates in 2012 and 
2013 for grains (Grain_env1 and Grain_env2), and 2014 for leaves (Leaf_env3). (B,D) Distribution 
and correlation matrix of lysine content datasets with two biological replicates in Grain_env1, 
Grain_env2, and Leaf_env3, and the best linear unbiased prediction values (BLUP). For plot (B) a–
e represent the grain lysine content datasets Grain_env1_r1, Grain_env1_r1, Grain_env2_r1, 
Grain_env2_r2, and Grain_BLUP. For plot (D), a–c represent leaf lysine content datasets 
Leaf_env3_r1, Leaf_env3_r2, and Leaf_BLUP. *** indicates statistical significance at the 0.1% proba-
bility level. 

2.2. Population Analysis 
To analyze the genetic structure of the 387 rice accessions, the identified 107,761 SNPs 

were used for the assessment of the genetic relationship. These accessions were divided 
into two groups and comprised of 244 indica accessions and 143 japonica accessions by the 
principal component analysis (PCA) (Figure 2A,B). The consistent classification was ob-
tained by the population structure and neighbor-joining (NJ) tree-based phylogenetic 
analyses (Figure 2C,D). Therefore, a population structure matrix with K = 2 was used for 
the subsequent GWAS analyses. The r2-based linkage disequilibrium (LD) analysis 
showed the averaged whole genome LD of this genetic panel was approximately 122 kb. 
Additionally, a higher decay rate was observed in indica accessions than that in japonica 
accessions (Figure 2E). Therefore, the 122 kb flanking region of each QTN was used for 
putative candidate gene prediction in the following analyses. 

Figure 1. Grain and leaf lysine contents and correlation analyses in rice accessions. (A,C) Violin plot
of lysine content for the 244 indica and 143 japonica accessions. Env1_r1, Env1_r2, Env2_r1, Env2_r2,
Env3_r1, and Env3_r2 represent lysine content datasets with two biological replicates in 2012 and
2013 for grains (Grain_env1 and Grain_env2), and 2014 for leaves (Leaf_env3). (B,D) Distribution and
correlation matrix of lysine content datasets with two biological replicates in Grain_env1, Grain_env2,
and Leaf_env3, and the best linear unbiased prediction values (BLUP). For plot (B) a–e represent the
grain lysine content datasets Grain_env1_r1, Grain_env1_r1, Grain_env2_r1, Grain_env2_r2, and
Grain_BLUP. For plot (D), a–c represent leaf lysine content datasets Leaf_env3_r1, Leaf_env3_r2, and
Leaf_BLUP. *** indicates statistical significance at the 0.1% probability level.

2.2. Population Analysis

To analyze the genetic structure of the 387 rice accessions, the identified 107,761 SNPs
were used for the assessment of the genetic relationship. These accessions were divided
into two groups and comprised of 244 indica accessions and 143 japonica accessions by
the principal component analysis (PCA) (Figure 2A,B). The consistent classification was
obtained by the population structure and neighbor-joining (NJ) tree-based phylogenetic
analyses (Figure 2C,D). Therefore, a population structure matrix with K = 2 was used
for the subsequent GWAS analyses. The r2-based linkage disequilibrium (LD) analysis
showed the averaged whole genome LD of this genetic panel was approximately 122 kb.
Additionally, a higher decay rate was observed in indica accessions than that in japonica
accessions (Figure 2E). Therefore, the 122 kb flanking region of each QTN was used for
putative candidate gene prediction in the following analyses.
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Figure 2. Population structure of 387 rice accessions. (A,B) Scatter plots of the first three principal 
components (PCs) of 387 rice accessions. (C) Population structure estimated by ADMIXTURE. (D) 
Phylogenetic analysis of 387 rice accessions. (E) Genome-wide LD decay analysis of the genetic 
panel. The squared correlation coefficient (r2) between SNPs is shown on the y-axis, and the distance 
of LD decay is shown on the x-axis. The indica and japonica accessions are indicated in red and blue. 

2.3. Identification and Application of QTNs Associated with Lysine Content 
Using ten statistical models, a total of 43,569 and 29,115 putative QTNs were detected 

on the basis of 387 rice accessions with 4,630,367 SNPs and eight content datasets 
(Grain_env1_r1, Grain_env1_r2, Grain_env2_r1, Grain_env2_r2, and Grain_BLUP for the 
grain lysine content, Leaf_env3_r1, Leaf_env3_r2, and Leaf_BLUP for the leaf lysine con-
tent) (Supplementary Table S1, Supplementary Figure S1). According to the differences in 
these genetic algorithms, ten GWAS models were classified into GLM, MLM-based single-
locus model (MLM-SL), and mrMLM-series multi-locus model (mrMLM-ML) for the fur-
ther identification of common QTNs of each lysine dataset. MLM-SL contained MLM, 
CMLM, and EMMAX models. mrMLM-ML included mrMLM, FASTmrEMMA, 
FASTmrMLM, ISIS EM-BLASSO, pKWmEB, and pLARmEB. The largest number of QTNs 
was detected by the GLM model in each lysine content dataset, while the smallest number 
of QTNs was generally detected by MLM-SL and mrMLM-ML. For example, no QTN was 
detected by the FASTmrEMMA and mrMLM models in Leaf_BLUP (Supplementary Ta-
ble S1). A QTN detected by two or more statistical models in a lysine dataset was defined 

Figure 2. Population structure of 387 rice accessions. (A,B) Scatter plots of the first three principal
components (PCs) of 387 rice accessions. (C) Population structure estimated by ADMIXTURE.
(D) Phylogenetic analysis of 387 rice accessions. (E) Genome-wide LD decay analysis of the genetic
panel. The squared correlation coefficient (r2) between SNPs is shown on the y-axis, and the distance
of LD decay is shown on the x-axis. The indica and japonica accessions are indicated in red and blue.

2.3. Identification and Application of QTNs Associated with Lysine Content

Using ten statistical models, a total of 43,569 and 29,115 putative QTNs were de-
tected on the basis of 387 rice accessions with 4,630,367 SNPs and eight content datasets
(Grain_env1_r1, Grain_env1_r2, Grain_env2_r1, Grain_env2_r2, and Grain_BLUP for the
grain lysine content, Leaf_env3_r1, Leaf_env3_r2, and Leaf_BLUP for the leaf lysine con-
tent) (Supplementary Table S1, Supplementary Figure S1). According to the differences
in these genetic algorithms, ten GWAS models were classified into GLM, MLM-based
single-locus model (MLM-SL), and mrMLM-series multi-locus model (mrMLM-ML) for
the further identification of common QTNs of each lysine dataset. MLM-SL contained
MLM, CMLM, and EMMAX models. mrMLM-ML included mrMLM, FASTmrEMMA,
FASTmrMLM, ISIS EM-BLASSO, pKWmEB, and pLARmEB. The largest number of QTNs
was detected by the GLM model in each lysine content dataset, while the smallest number
of QTNs was generally detected by MLM-SL and mrMLM-ML. For example, no QTN was
detected by the FASTmrEMMA and mrMLM models in Leaf_BLUP (Supplementary Table
S1). A QTN detected by two or more statistical models in a lysine dataset was defined as a
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common QTN. In total, 248 and 71 common QTNs were identified as potentially underly-
ing the grain/leaf lysine content in rice (Supplementary Table S2). The largest number of
common QTNs associated with the grain/leaf lysine content were detected in Grain_BLUP
(117 QTNs) and Leaf_env3_r2 (30 QTNs) (Table 2). The phenotypic variance explained
(PVE) by the common QTN associated with grain lysine content ranged from 0.03% to
27.65%, and the PVE by the common QTN associated with leaf lysine content was from
0.03% to 16.18% (Table 2 and Supplementary Table S2). A vast majority of common QTNs
were detected by the GLM model in all lysine content datasets, except for 20 and 8 common
QTNs co-detected by MLM-SL and mrMLM-ML models in the grain/leaf lysine content
dataset (Supplementary Table S2). Moreover, the combined use of GLM and MLM-SL mod-
els identified the highest number of common QTNs (164) in grain lysine datasets (Table 2).
For instance, QTN-sf0825353310 was co-detected by GLM, MLM, CMLM, EMMAX, FASTm-
rMLM, ISIS EM-BLASSO, mrMLM, and pLARmEB in Grain_BLUP dataset (Supplementary
Table S2, Supplementary Figure S2). However, the most common QTNs (38) in leaf lysine
datasets were identified by the GLM and mrMLM-ML models (Table 2), such as QTN-
sf0702729577 detected by GLM, MLM, CMLM, EMMAX, FASTmrEMMA, FASTmrMLM,
ISIS EM-BLASSO, mrMLM, and pLARmEB in the Leaf_env3_r2 dataset (Supplementary
Table S2, Supplementary Figure S3). The position and number of all detected putative
and common QTNs associated with the lysine content in rice grain/leaf are shown on a
CIRCOS map (Supplementary Figure S4). Furthermore, ten and six common QTNs were
co-detected in more than two lysine content datasets in grains/leaves separately, which
were considered as the dataset stable QTNs (Supplementary Table S2).

Table 2. Common quantitative trait nucleotides (QTNs) detected in grain/leaf lysine content datasets.

Dataset

No. of Detected Common QTNs

R2 (%)GLM|MLM-
SL

GLM|mrMLM-
ML

MLM-
SL|mrMLM-ML

GLM|MLM-
SL|mrMLM-ML Total

Grain_env1_r1 5 11 4 3 23 0.83–20.25
Grain_env1_r2 21 26 5 3 55 0.12–25.82
Grain_env2_r1 50 12 4 2 68 0.03–24.44
Grain_env2_r2 7 27 3 1 38 0.05–26.08
Grain_BLUP 81 26 4 6 117 0.16–27.65

Leaf_env3_r1 5 17 3 3 28 0.03–16.18
Leaf_env3_r2 16 10 3 1 30 0.27–12.21
Leaf_BLUP 4 11 2 2 19 0.03–13.45

MLM-SL: MLM-based single-locus model, mrMLM-ML: mrMLM-series multi-locus model. Grain_env1_r1,
Grain_env1_r2, Grain_env2_r1, Grain_env2_r2, Leaf_env3_r1, and Leaf_env3_r2 represent two replicates in 2012
and 2013 for grains (Grain_env1 and Grain_env2), and 2014 for leaves (Leaf_env3), respectively. BLUP: the best
linear unbiased prediction values.

To assess the potentials of these QTNs for nutrient quality breeding, 16 genomic
selection/prediction (GS/GP) models were constructed on the basis of 248 and 71 common
QTNs and eight lysine content datasets (five for grain lysine, and three for leaf lysine).
Using the five-fold cross-validation scheme, the highest predictive ability was generated in
the Grain_BLUP and Leaf_BLUP datasets with the accuracy of (r) 0.85 and 0.77 (Table 3).
Correspondingly, their SNP-based heritability (h2) was estimated to be up to 0.64 and 0.34
(Table 3). In addition, the dataset stable QTNs and the grain/leaf content datasets were
used to test the additive effect further. The significant correlation between the number of
favorable alleles (NFA) and the lysine content ranged from 0.59 to 0.71 in grains and 0.43 to
0.51 in leaves (Supplementary Figure S5).
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Table 3. SNP-based heritability (h2) and genomic predictive ability (r) for the lysine content.

Dataset h2 RRBLUP-r

Grain_env1_r1 0.54 0.76
Grain_env1_r2 0.62 0.84
Grain_env2_r1 0.56 0.76
Grain_env2_r2 0.62 0.83
Grain_BLUP 0.64 0.85

Leaf_env3_r1 0.30 0.71
Leaf_env3_r2 0.30 0.65
Leaf_BLUP 0.34 0.77

2.4. Candidate Genes for the Lysine Accumulation in Rice Grains

For the prediction of the genes putatively underlying the grain lysine content in rice, a
total of 3550 genes were identified (Supplementary Table S3). To uncover the key genes
involved in the amino acid-related pathways, a KEGG pathway analysis was conducted,
which showed several genes played important roles in the lysine biosynthesis, lysine degra-
dation, biosynthesis of amino acids, alanine, aspartate and glutamate metabolism, beta-
Alanine metabolism, cyanoamino acid metabolism, cysteine and methionine metabolism,
and tryptophan metabolism pathways (Figure 3 and Table 4). Of these genes, the lysine
biosynthesis gene LOC_Os07g20544 encoding aspartokinase (AK) protein was localized in
the LD block Chr7: 11,864,886–11,951,886 bp of QTN-sf0711949886 (sf0711949886 indicates
chromosome 7 at 11,949,886 bp) locus (Figure 4A and Table 4). Furthermore, the haplo-
typic variation of it was examined. The AK gene carried three haplotypes which included
Hap1 (GGCCGGAATTTTGG, n = 314), Hap2 (CCCCAACCCCCCAA, n = 41), and Hap3
(GGAAGGAATTTTGG, n = 27) (Figure 4B). Across all the grain lysine content datasets,
significantly lower lysine levels were observed in the accessions with Hap2 compared to
accessions carrying Hap1 and Hap3 (Figure 4C–F). To further explore the potential regula-
tors of this AK gene, the transcript factor (TF) binding site analysis was performed using
the web tool PlantRegMap (Table 4). Interestingly, a TF gene LOC_Os12g32250 (WRKY
DNA-binding domain-containing protein, namely WRKY) binding to the cis-elements in
the AK gene promoter region with the matched motif sequence CCTAGTCAACC was also a
candidate gene of another QTN-sf1219521482 locus (Figure 4G, Table 4, and Supplementary
Table S3). Similarly, haplotype and content analysis of this WRKY TF showed significantly
higher lysine contents in the accessions with Hap1 (GGTT, n = 254) than in the accessions
carrying Hap2 (AACC, n = 131) (Figure 4H–L). For the subsequent investigation of the
expression profile of the WRKY TF and AK gene, the seed and leaf RNA-seq data of the
japonica rice Nipponbare, the indica rice Minghui63, and Zhenshan97 were used. A simi-
lar expression pattern was observed between the WRKY TF and AK gene in Nipponbare
(r = 0.90), Minghui63 (r = 0.25), and Zhenshan97 (r = 0.45) varieties (Supplementary Figure
S6A–C).



Int. J. Mol. Sci. 2024, 25, 4667 8 of 24Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 8 of 24 
 

 

 
Figure 3. UpSet plot of the candidate genes involved in amino acid-related KEGG pathways. The 
blue bar chart shows the enriched KEGG pathways of candidate genes associated with lysine accu-
mulation. The red bar chart shows the enriched KEGG pathways of candidate genes detected from 
different lysine content datasets. 

Table 4. Key candidate genes identified for grain lysine accumulation. 

Common QTN Gene Id KEGG Pathway/Annotation Functional Annotation E-Value 
QTN-sf0711949886 LOC_Os07g20544 Lysine biosynthesis Aspartokinase 5.9 × 10−181 

QTN-sf0906935953 LOC_Os09g12290 Lysine biosynthesis 
Bifunctional aspartokinase/homoserine 

dehydrogenase 
0 

QTN-sf0103080436 LOC_Os01g06600 Lysine degradation Glutaryl-CoA dehydrogenase 8.5 × 10−152 

QTN-sf1012964749 LOC_Os10g25130 
Alanine, aspartate, and glutamate 

metabolism 
Aminotransferase 6 × 10−247 

QTN-sf1012964749 LOC_Os10g25140 
Alanine, aspartate, and glutamate 

metabolism 
Aminotransferase 1.7 × 10−214 

QTN-sf0311302595 LOC_Os03g19930 
Alanine, aspartate, and glutamate 

metabolism 
Adenylosuccinate lyase 3.6 × 10−187 

QTN-sf0717867262 LOC_Os07g30170 Beta-Alanine metabolism Nitrilase 1.4 × 10−222 
QTN-sf0825353310 LOC_Os08g40110 Biosynthesis of amino acids Peptidase 1.1 × 10−149 
QTN-sf1013407412 LOC_Os10g26010 Biosynthesis of amino acids Cystathionine gamma-synthase 1.9 × 10−158 
QTN-sf0419067736 LOC_Os04g31960 Biosynthesis of amino acids Thiamine pyrophosphate enzyme 5.9 × 10−204 
QTN-sf0419067736 LOC_Os04g32010 Biosynthesis of amino acids Thiamine pyrophosphate enzyme 1.2 × 10−233 
QTN-sf0100906859 LOC_Os01g02880 Biosynthesis of amino acids Fructose-bisphosphate aldolase isozyme 9.3 × 10−195 
QTN-sf0110799569 LOC_Os01g19220 Cyanoamino acid metabolism Beta-D-xylosidase 1.7 × 10−304 

QTN-sf0607725091 LOC_Os06g13820 
Cysteine and methionine 

metabolism 
Dynamin, putative 0 

QTN-sf0803340682 LOC_Os08g06100 Tryptophan metabolism O-methyltransferase 3.5 × 10−199 

QTN-sf0105539291 LOC_Os01g10504 Transcription factor 
MADS-box family gene with MIKCc type-

box 
1 × 10−95 

QTN-sf0308698430 LOC_Os03g15660 Transcription factor AP2 domain-containing protein 1.7 × 10−35 
QTN-sf0606188796 LOC_Os06g11780 Transcription factor MYB family transcription factor 4 × 10−80 

QTN-sf0626549077 LOC_Os06g44010 Transcription factor 
Superfamily of TFs having WRKY and 

zinc finger domains 
NA 

QTN-sf0703936507 LOC_Os07g07974 Transcription factor 
Tesmin/TSO1-like CXC domain-

containing protein 
1.9 × 10−78 

QTN-sf1219521482 LOC_Os12g32250 Transcription factor 
WRKY DNA-binding domain containing 

protein 
NA 

QTN-sf0336203804 LOC_Os03g64260 Transcription factor AP2 domain-containing protein 2.1 × 10−78 
QTN-sf0101545236 LOC_Os01g03720 Transcription factor MYB family transcription factor 8.7 × 10−68 

Figure 3. UpSet plot of the candidate genes involved in amino acid-related KEGG pathways. The blue
bar chart shows the enriched KEGG pathways of candidate genes associated with lysine accumulation.
The red bar chart shows the enriched KEGG pathways of candidate genes detected from different
lysine content datasets.

Table 4. Key candidate genes identified for grain lysine accumulation.

Common QTN Gene Id KEGG Pathway/Annotation Functional Annotation E-Value

QTN-sf0711949886 LOC_Os07g20544 Lysine biosynthesis Aspartokinase 5.9 × 10−181

QTN-sf0906935953 LOC_Os09g12290 Lysine biosynthesis
Bifunctional

aspartokinase/homoserine
dehydrogenase

0

QTN-sf0103080436 LOC_Os01g06600 Lysine degradation Glutaryl-CoA dehydrogenase 8.5 × 10−152

QTN-sf1012964749 LOC_Os10g25130 Alanine, aspartate, and
glutamate metabolism Aminotransferase 6 × 10−247

QTN-sf1012964749 LOC_Os10g25140 Alanine, aspartate, and
glutamate metabolism Aminotransferase 1.7 × 10−214

QTN-sf0311302595 LOC_Os03g19930 Alanine, aspartate, and
glutamate metabolism Adenylosuccinate lyase 3.6 × 10−187

QTN-sf0717867262 LOC_Os07g30170 Beta-Alanine metabolism Nitrilase 1.4 × 10−222

QTN-sf0825353310 LOC_Os08g40110 Biosynthesis of amino acids Peptidase 1.1 × 10−149

QTN-sf1013407412 LOC_Os10g26010 Biosynthesis of amino acids Cystathionine gamma-synthase 1.9 × 10−158

QTN-sf0419067736 LOC_Os04g31960 Biosynthesis of amino acids Thiamine pyrophosphate enzyme 5.9 × 10−204

QTN-sf0419067736 LOC_Os04g32010 Biosynthesis of amino acids Thiamine pyrophosphate enzyme 1.2 × 10−233

QTN-sf0100906859 LOC_Os01g02880 Biosynthesis of amino acids Fructose-bisphosphate aldolase
isozyme 9.3 × 10−195

QTN-sf0110799569 LOC_Os01g19220 Cyanoamino acid metabolism Beta-D-xylosidase 1.7 × 10−304

QTN-sf0607725091 LOC_Os06g13820 Cysteine and methionine
metabolism Dynamin, putative 0

QTN-sf0803340682 LOC_Os08g06100 Tryptophan metabolism O-methyltransferase 3.5 × 10−199

QTN-sf0105539291 LOC_Os01g10504 Transcription factor MADS-box family gene with
MIKCc type-box 1 × 10−95

QTN-sf0308698430 LOC_Os03g15660 Transcription factor AP2 domain-containing protein 1.7 × 10−35

QTN-sf0606188796 LOC_Os06g11780 Transcription factor MYB family transcription factor 4 × 10−80

QTN-sf0626549077 LOC_Os06g44010 Transcription factor Superfamily of TFs having WRKY
and zinc finger domains NA

QTN-sf0703936507 LOC_Os07g07974 Transcription factor Tesmin/TSO1-like CXC
domain-containing protein 1.9 × 10−78

QTN-sf1219521482 LOC_Os12g32250 Transcription factor WRKY DNA-binding domain
containing protein NA

QTN-sf0336203804 LOC_Os03g64260 Transcription factor AP2 domain-containing protein 2.1 × 10−78

QTN-sf0101545236 LOC_Os01g03720 Transcription factor MYB family transcription factor 8.7 × 10−68
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19,190,279 bp, encoding citrate synthase (CS) enzyme was a candidate gene harboring in 
the QTN-sf1119083279 locus (Figure 5A and Table 5). The haplotypic variation analysis 
showed this CS gene had seven functional haplotypes, which contained Hap1 (GGCCG-
GAA, n = 212), Hap2 (GGTTGGAA, n = 82), Hap3 (TTCCAAAA, n = 45), Hap4 
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Figure 4. Analyses of the key candidate genes LOC_Os07g20544 and LOC_Os12g32250 associated with
lysine content in grains. (A) Local linkage disequilibrium block analysis, red star and red dot indicate
LOC_Os07g20544 and QTN-sf0711949886 locus. (B) Three haplotypes of LOC_Os07g20544 and their
distribution in indica and japonica accessions. Haplotypic variation and lysine content analysis of
LOC_Os07g20544 in 387 rice accessions in Grain_env1_r1 (C), Grain_env1_r2 (D), Grain_env2_r1
(E), and Grain_env2_r2 (F) content datasets. (G) Local linkage disequilibrium block analysis, red
star and red dot indicate LOC_Os12g32250 and QTN-sf1219521482 locus. (H) Two haplotypes of
LOC_Os12g32250 and their distribution in indica and japonica accessions. (I–L): Haplotypic vari-
ation and lysine content analysis of LOC_Os12g32250 in 387 rice accessions in Grain_env1_r1,
Grain_env1_r2, Grain_env2_r1, and Grain_env2_r2 content datasets. Different letters indicate statisti-
cally significant differences at the 5% probability level in the LSD test. The blue, red, and green boxes
represent the coding sequence (CDS), five prime UTR, and three prime UTR of a gene, respectively.

2.5. Candidate Genes for the Lysine Accumulation in Rice Leaves

In order to identify the putative genes associated with lysine content in rice leaves, a
number of 1893 genes localized within the flanking region based on the averaged whole
genome LD decay. Subsequently, a KEGG pathway analysis showed these genes mainly
enriched in the amino acid accumulation and metabolism-related pathways, such as lysine
degradation, biosynthesis of amino acid, alanine, aspartate, and glutamate metabolism,
and cysteine and methionine metabolism (Figure 3 and Table 5). Of note, the amino acid
biosynthesis gene LOC_Os11g33240, localized in the LD block Chr11: 19,081,279–19,190,279
bp, encoding citrate synthase (CS) enzyme was a candidate gene harboring in the QTN-
sf1119083279 locus (Figure 5A and Table 5). The haplotypic variation analysis showed this
CS gene had seven functional haplotypes, which contained Hap1 (GGCCGGAA, n = 212),
Hap2 (GGTTGGAA, n = 82), Hap3 (TTCCAAAA, n = 45), Hap4 (GGCCGGTT, n = 41),
Hap5 (GTCCAAAA, n = 3), Hap6 (GGCCGGAT, n = 2), and Hap7 (GTCCGAAA, n = 2)
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(Figure 5B). Significant higher leaf lysine levels were observed in the accessions with Hap2
compared with those accessions carrying the other Haps in all the leaf lysine content
datasets (Figure 5C,D). Furthermore, a MYB TF (LOC_Os01g19970) binding to the cis-
elements in the CS gene promoter region (matched motif sequence: CAACCTACCG) was
predicted by the web tool PlantRegMap (Table 5). This MYB TF localized in the LD block of
Chr1: 11,238,543–11,356,543 bp was a candidate gene of another QTN-sf0111240543 locus
(Figure 5E, Table 5, and Supplementary Table S3). Additionally, the accessions carrying
Hap2 (GGGGCC, n = 153) exhibited a significantly higher lysine level in leaves than those
with Hap1 (GGTTCC, n = 185) of the MYB TF in the Leaf_env3_r1 dataset (Figure 5G).
However, no significance of the leaf lysine content was shown among the accessions with
the three haplotypes in the Leaf_env3_r2 dataset (Figure 5H). In Nipponbare, a similar
expression trend between the MYB TF and CS gene was shown in Supplementary Figure
S6D (r = 0.90).
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Figure 5. Analyses of the key candidate genes LOC_Os11g33240 and LOC_Os01g19970 associated with
lysine content in leaves. (A) Local linkage disequilibrium block analysis, red star and red dot indicate
LOC_Os11g33240 and QTN-sf1119083279 locus. (B) Seven haplotypes of LOC_Os11g33240 and their
distribution in indica and japonica accessions. Haplotypic variation and lysine content analysis of
LOC_Os11g33240 in 387 rice accessions in Leaf_env3_r1. (C) and Leaf_env3_r2 (D) content datasets.
(E) Local linkage disequilibrium block analysis, red star and red dot indicate LOC_Os01g19970 and
QTN-sf0111240543 locus. (F) Three haplotypes of LOC_Os01g19970 and their distribution in indica
and japonica accessions. Haplotypic variation and lysine content analysis of LOC_Os01g19970 in 387
rice accessions in Leaf_env3_r1 (G) and Leaf_env3_r2 (H) content datasets. Different letters indicate
statistically significant differences at the 5% probability level in the LSD test. The blue, red, and
green boxes represent the coding sequence (CDS), five prime UTR, and three prime UTR of a gene,
respectively.
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Table 5. Key candidate genes identified for leaf lysine accumulation.

Common QTN Gene Id KEGG
Pathway/Annotation Functional Annotation E-Value

QTN-sf0140574604 LOC_Os01g70220 Lysine degradation Histone-lysine
N-methyltransferase 1.9 × 10−121

QTN-sf1119083279 LOC_Os11g33240 Biosynthesis of amino
acids Citrate synthase 2.1 × 10−140

QTN-sf0140574604 LOC_Os01g70170 Alanine, aspartate, and
glutamate metabolism Transaldolase 2 × 10−83

QTN-sf0300274740 LOC_Os03g01600 Alanine, aspartate, and
glutamate metabolism

Aminotransferase
domain-containing protein 3.2 × 10−147

QTN-sf0314034319 LOC_Os03g24460 Alanine, aspartate, and
glutamate metabolism

Aminotransferase
domain-containing protein 9 × 10−57

QTN-sf0822892970 LOC_Os08g36320 Alanine, aspartate, and
glutamate metabolism Decarboxylase 2.5 × 10−115

QTN-sf0200325193 LOC_Os02g01510 Cysteine and methionine
metabolism

Lactate/malate
dehydrogenase 2 × 10−156

QTN-sf0111240543 LOC_Os01g19970 Transcription factor MYB family transcription
factor 1.3 × 10−76

QTN-sf0103404473 LOC_Os01g07120 Transcription factor AP2 domain-containing
protein 4.5 × 10−40

QTN-sf0135366231 LOC_Os01g60960 Transcription factor DUF260
domain-containing protein NA

QTN-sf0603336542 LOC_Os06g06900 Transcription factor
Helix-loop-helix

DNA-binding
domain-containing protein

NA

QTN-sf0702729577 LOC_Os07g05720 Transcription factor TCP family transcription
factor NA

2.6. Candidate Regulators Underlying the Lysine Accumulation in Rice Grains and Leaves

Notably, two transcription factors (TFs) potentially regulating the expression of AK
and CS genes were identified in the candidate genes associated with the grain/leaf content
in rice. For example, using the TF binding site prediction of PlantRegMap, the AK and
CS gene promoter regions both contained the matched cis-element sequence TTCTTTTC-
TATTTTATAAA of the TF LOC_Os01g10504 (MADS-box family gene with MIKCc type-box,
MADS). This MADS TF localized in the LD block of Chr1: 5,537,291–5,568,291 bp, which
was also a candidate gene of the QTN-sf0105539291 locus associated with the grain lysine
content (Figure 6A). Moreover, a relatively high lysine content of the accessions with the
functional haplotype Hap2 (CC, n = 163) of the MADS TF was observed than those with
Hap1 across all the grain lysine content datasets (Figure 6B–F). On the basis of the expres-
sion data in Nipponbare, an almost opposite expression pattern of the MADS TF and the
AK gene was observed (Figure 6G). Correlation analyses showed the correlation coefficient
between the MADS and AK was −0.60, while the correlation coefficient between the MADS
and CS was 0.10. In Minghui63, the different expression patterns of the MADS TF, AK, and
CS genes are shown in Figure 6H (r = −0.42 between MADS and AK, r = −0.30 between the
MADS and CS). Consistent with the results obtained in Minghui63, a distinct expression
profile of the MADS TF compared to the AK and CS genes was observed in Zhenshan97
(r = −0.63 between MADS and AK, r = −0.68 between the MADS and CS) (Figure 6I). In
addition, similar findings were shown between another AP2 (LOC_Os03g15660) TF and the
AK and CS genes separately (Supplementary Figure S7).
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Grain_env2_r1 (E), and Grain_env2_r2 (F) content datasets. Different letters indicate statistically 
significant differences at the 5% probability level in the LSD test. Heat map of the expression pattern 
of these key genes in grain and leaf tissue of Nipponbare (G), Minghui 63 (H), and Zhenshan 97 (I) 
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The PVE by each QEI in grain lysine content datasets ranged from 0.13% to 0.87%, while 
it in leaf lysine content datasets was from 0.24% to 2.16% (Supplementary Table S4). How-
ever, no common QEI was detected between the grain and leaf lysine content datasets 
(Supplementary Table S4). In total, 689 and 1066 genes were predicted as the candidate 
genes of QEIs related to the lysine content in rice grains and leaves (Supplementary Table 
S5). Furthermore, the KEGG pathway analyses showed various genes were involved in 
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Figure 6. Analyses of the transcription factor LOC_Os01g10504 related to lysine accumulation in
rice. (A) Local linkage disequilibrium block analysis, red star and red dot indicate LOC_Os01g10504
and QTN-sf0105539291 locus. (B) Three haplotypes of LOC_Os01g10504 and their distribution in
indica and japonica accessions. The blue, red, and green boxes represent the coding sequence (CDS),
five prime UTR, and three prime UTR of a gene, respectively. Haplotypic variation and lysine
content analysis of LOC_Os01g10504 in 387 rice accessions in Grain_env1_r1 (C), Grain_env1_r2 (D),
Grain_env2_r1 (E), and Grain_env2_r2 (F) content datasets. Different letters indicate statistically
significant differences at the 5% probability level in the LSD test. Heat map of the expression pattern
of these key genes in grain and leaf tissue of Nipponbare (G), Minghui 63 (H), and Zhenshan 97 (I)
varieties. The red indicates a high expression, and the blue represents a low expression.

2.7. Lysine Content-Related QEI Detection and Candidate Genes

To discover the loci accounted for the potential interactions between the gene and envi-
ronmental factor, a total of 20 and 30 QEIs were detected in rice grain and leaf lysine content
datasets using the 3VmrMLM model (Figure 7A,B, and Supplementary Table S4). The PVE
by each QEI in grain lysine content datasets ranged from 0.13% to 0.87%, while it in leaf ly-
sine content datasets was from 0.24% to 2.16% (Supplementary Table S4). However, no com-
mon QEI was detected between the grain and leaf lysine content datasets (Supplementary
Table S4). In total, 689 and 1066 genes were predicted as the candidate genes of QEIs related
to the lysine content in rice grains and leaves (Supplementary Table S5). Furthermore, the
KEGG pathway analyses showed various genes were involved in the lysine degradation,
biosynthesis of amino acids, and glycine, serine, and threonine metabolism pathways in rice



Int. J. Mol. Sci. 2024, 25, 4667 13 of 24

grains. Likewise, plenty of genes that participated in the lysine degradation, biosynthesis of
amino acids, cysteine and methionine metabolism, and tryptophan metabolism pathways
were identified in rice leaves (Table 6). Of these genes, the LOC_Os01g21380 in the lysine
degradation pathway (KEGG annotation: sarcosine oxidase/L-pipecolate oxidase) was a
candidate gene (the local LD block: Chr1, 11,942,416–11,956,416 bp) of the QEI-sf0111954416
locus related to grain lysine content in rice (Figure 7C,D, Table 6, and Supplementary Table
S5). Haplotypic variation analysis showed the grain lysine content of the accessions with
Hap1 (GG, n = 337) of this gene were significantly higher than those with Hap2 (AA, n =
50) in three out of four grain lysine content datasets (Figure 7E–H).
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Figure 7. Analyses of lysine accumulation related to QTN-by-environment interactions (QEIs) and the
key candidate gene LOC_Os01g21380. Manhattan plots for QEIs detected in grain lysine (A) and leaf
lysine content datasets (B). Black horizontal lines in the Manhattan plots represent the genome-wide
significant threshold. (C) Local linkage disequilibrium block analysis, red star and red dot indicate
LOC_Os01g21380 and QEI-sf0111954416 locus. (D) Two haplotypes of LOC_Os01g21380 and their
distribution in indica and japonica accessions. Haplotypic variation and lysine content analysis of
LOC_Os01g21380 in 387 rice accessions in Grain_env1_r1 (E), Grain_env1_r2 (F), Grain_env2_r1 (G)
and Grain_env2_r2 (H) content datasets. Different letters indicate statistically significant differences
at the 5% probability level in the LSD test. The blue box represents the coding sequence (CDS) of a
gene.
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Table 6. QTN-by-environment interactions (QEIs) and candidate genes detected for lysine content in
rice grains and leaves.

Dataset QEI Gene Id KEGG Pathway Functional Annotation E-Value

Lys_grain QEI-sf0111954416 LOC_Os01g21380 Lysine degradation
FAD-dependent
oxidoreductase

domain-containing protein
3.2 × 10−115

Lys_grain QEI-sf0519512601 LOC_Os05g33380 Biosynthesis of
amino acids

Fructose-bisphosphate
aldolase isozyme 3.5 × 10−197

Lys_grain QEI-sf1004407883 LOC_Os10g08022 Biosynthesis of
amino acids

Fructose-bisphosphate
aldolase isozyme 9.1 × 10−196

Lys_grain QEI-sf0828052927 LOC_Os08g44530 Biosynthesis of
amino acids Dihydroxy-acid dehydratase 2.7 × 10−301

Lys_leaf QEI-sf0103224994 LOC_Os01g06600 Lysine degradation Glutaryl-CoA dehydrogenase 2.5 × 10−152

Lys_leaf QEI-sf1016812592 LOC_Os10g31950 Lysine degradation 3-ketoacyl-CoA thiolase 7 × 10−225

Lys_leaf QEI-sf0140517811 LOC_Os01g70170 Biosynthesis of
amino acids 3-ketoacyl-CoA thiolase 1.1 × 10−83

Lys_leaf QEI-sf1125165035 LOC_Os11g42510
Cysteine and
methionine
metabolism

Tyrosine aminotransferase 1.7 × 10−166

Lys_leaf QEI-sf1220860715 LOC_Os12g34380
Cysteine and
methionine
metabolism

Glutathione synthetase 6.2 × 10−187

Lys_leaf QEI-sf1105428802 LOC_Os11g10140 Tryptophan
metabolism Flavin monooxygenase 7.5 × 10−158

Lys_leaf QEI-sf1105428802 LOC_Os11g10170 Tryptophan
metabolism Flavin monooxygenase 3.5 × 10−184

3. Discussion
3.1. Evaluation of QTNs Associated with Lysine Content in Rice

The number of detected QTNs varied across all the used GWAS models, which resulted
from the differences in the genetic algorithm implemented in different models. Even though
previous studies suggested that multi-locus models outperform single-locus models on the
statistical power of QTN/QTL detection, especially in the accuracy of QTN effect estimation
and reduction of false positive rate [35,37,39,52–54]. In this study, the largest number of
QTNs was detected by GLM across all the lysine content datasets. Additionally, most of the
detected common QTNs were identified using the GLM model. In contrast to the averaged
R2 (10.86%) of common QTNs detected by mrMLM-ML models, the averaged R2 (12.04%) of
GLM-detected common QTNs is relatively high. These results are consistent with previous
studies suggesting certain advantages of the GLM model on QTN detection [36,55–60].

Of note, 14 QTNs detected by GLM were reported in previous study, such as QTN-
sf0132487790, QTN-sf0135547034, QTN-sf0141745810, QTN-sf0200277506, QTN-sf0207238898,
QTN-sf0315007488, QTN-sf0822844571, QTN-sf0122971223, QTN-sf0135547034, QTN-sf014
0365169, QTN-sf0200277506, QTN-sf0207238898, QTN-sf0315007488, QTN-sf0726273868,
QTN-sf0810291904, QTN-sf0822844571, QTN-sf1021801564, and QTN-sf1102273126 (Sup-
plementary Table S1) [61]. However, few QTNs controlling the lysine content in grains
were found in the cereal GWAS study [44]. In the present study, the grain lysine content
associated QTN-sf0139799523 and QTN-sf0430630516 were 0.22 kb and 1.38 kb out of the
previously reported QTNs [44]. Therefore, adopting multiple statistical models for GWAS
may help the identification of both known and novel QTNs associated with the lysine
content in rice. Using a similar approach, several novel QTNs associated with leaf free
amino acid levels have been identified in rice [37].
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3.2. Candidate Genes Associated with Lysine Accumulation

To further reveal the genetic basis of lysine accumulation in rice grains and leaves,
candidate genes were predicted. Of these genes, OsAAP3 (LOC_Os06g36180), OsDof3
(LOC_Os02g1535), and a bifunctional aspartokinase/homoserine dehydrogenase gene (LOC_Os09
g12290) were reported as the lysine biosynthesis and metabolism-related genes, which were
also identified in this study (Supplementary Table S3) [46,62,63]. Notably, the grain lysine
accumulation associated homolog gene AK (LOC_Os07g20544), encoding a key enzyme in
the branch of the Asp family pathway, and lysine is synthesized through this pathway in
plants [2,3,64]. The analysis of AK haplotype and lysine content of corresponding accessions
showed the relatively low grain lysine content of Hap2 accessions (mainly represented
for indica rice) compared with those Hap1 accessions (mainly enriched in japonica rice).
Likewise, the Hap2 accessions of the WRKY (LOC_Os12g32250, the putative TF of AK) stood
for the japonica rice and showed lower grain lysine content than the Hap1 accessions which
represented the indica rice (Figure 4C–F,I–L). It was identical to the content differences in
grain lysine content between indica rice and japonica rice (Figure 1A). Similar results of
japonica and indica content variation were also obtained in another study about the free
branched-chain amino acid (BCAA) content in rice grains [46]. Furthermore, the expression
patterns of WRKY TF and AK gene were all positively correlated, which implied the
WRKY TF may positively regulate the production of lysine by binding to the cis-elements
in the AK gene promoter regions in Nipponbare, Minghui63, and Zhenshan97 varieties
(Supplementary Figure S6A–C). In a parallel study, the OsWRKY78 TF is co-expressed with
the branched-chain amino acid (BCAA) content associated gene OsAUX5 and activates the
expression of OsAUX5 for the BCAA accumulation in rice grains [46]. Moreover, TFs can
positively regulate the genes in the metabolite biosynthesis pathways, such as ZmDOF36
for the starch synthesis in maize [49], SmMYC2a/b and SmMYB98 for the phenolic acid and
tanshinone biosynthetic pathway in Salvia miltiorrhiza [48], NbbHLH1 and NbbHLH2 for
nicotine accumulation in Nicotiana benthamiana [65].

Additionally, the leaf lysine-associated gene CS (LOC_Os11g33240) involved in the
amino acid biosynthesis pathway was annotated according to the KEGG analysis (K01647).
In plants, the citrate synthase (CS) catalyzes the condensation of oxaloacetate (OAA)
and acetyl-CoA and further synthesizes the citric acid (CA). Through the production
of glutamate, CA can be used for amino acid biosynthesis, such as lysine, proline, and
arginine [66–69]. The CS haplotype and lysine content analysis showed the leaf lysine
content in Hap2 accessions (mainly japonica rice) was higher than those in Hap1 accessions
(mainly indica rice) across two lysine content datasets (Figure 5B–D). Similarly, the lysine
content in Hap2 accessions (mainly japonica rice) of the MYB (LOC_Os01g19970, the putative
TF of CS) was higher than those in Hap1 accessions (mainly indica rice) only in one leaf lysine
content dataset (Figure 5F–H). It was consistent with the content differences in leaf lysine
content between indica rice and japonica rice (Figure 1C). Similar content alteration between
indica and japonica accessions was also observed in the other studies about the free amino
acid content in rice leaves [37,45]. Moreover, the expression relationship of these two genes
suggested the MYB TF may positively regulate the production of lysine by binding to the
cis-elements in the CS gene promoter regions in Nipponbare (Supplementary Figure S6D).
A previous study reported the OsbZIP18 TF positively regulates BCAA synthesis by directly
binding to cis-elements in the promoters of the biosynthetic genes OsBCAT1 and OsBCAT
in rice leaves [45].

The MADS (LOC_Os01g10504) was potentially able to bind to the promoter regions of
the lysine biosynthesis gene AK (LOC_Os07g20544) and CS (LOC_Os01g19970). Functional
haplotype and content analysis showed a higher lysine content in Hap2 accessions (indica
rice) than those in Hap1 accessions (japonica rice) across all the grain lysine content datasets
(Figure 6B–F). It was consistent with the content differences in grain lysine content between
indica rice and japonica rice (Figure 1A). The distinct expression pattern between MADS
and two potentially target genes, AK and CS, implied the MADS TF plays negatively
regulated roles on the lysine accumulation by binding to the cis-elements in the AK and CS
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gene promoter regions in MingHui63 and Zhenshan97 varieties. In plants, multiple genes
involved in one or more biosynthetic pathways are negatively/positively regulated by one
TF, such as MYB14 in the sesquiterpenes and flavonoids pathway, MYC2 in the anthocyanin
pathway, and WRKY76 in the diterpenoid and flavonoid pathway [48,50,51,70,71]. Taken
together, the identification of the potential TF targeting the key genes in lysine biosynthesis
and metabolism pathways might contribute to the regulation of lysine accumulation in
the entire life cycle of rice. To decipher the molecular mechanism of these key genes and
corresponding regulators underpinning the lysine accumulation in rice, further validation
is warranted to be carried out in the laboratory.

3.3. Candidate Gene of Rice Lysine Accumulation Related QEI

Given the challenge of global climate change and the food demands of the ever-
growing population, QEI loci accounted for the interactions between the genes and the
environment, which hold the potential to be mined for unraveling the genetic basis of
complex traits in plant GWAS. Among the candidate genes of QEIs related to the grain
lysine content, the genetic variation of the lysine degradation gene LOC_Os01g21380 (KEGG
annotation: sarcosine oxidase/L-pipecolate oxidase) resulted in the lysine content alteration
in three out of four content datasets (Figure 7E–H). The lysine content of Hap1 accessions
(indica rice) was higher than those of Hap2 accessions (japonica rice). This result was
also in concordance with the content differences between indica and japonica accessions
(Figure 1A). In summary, these suggested this gene might participate in the biological
process of lysine accumulation, which was affected by environmental factors. In plants,
lysine can be converted to L-pipecolate by the catabolic activity of L-pipecolate oxidase
(PIPOX). Importantly, PIPOX is a key enzyme in the lysine metabolism pathway [72–77].
Due to the catabolic activity of PIPOX with sarcosine, it is also described as sarcosine
oxidase [72–74,78]. In this study, the identified QEI loci contain alternative information for
the genetic improvement of lysine accumulation to cope with climate change. Moreover,
the lysine content of rice accessions can be predicted using these QEI loci in specific
environments. Identification of specific genetic markers of QEI loci and their candidate
genes will facilitate the development of lysine-rich rice varieties that are better adapted to
specific environmental conditions.

3.4. Breeding Applications of Lysine Accumulation Associated QTNs and Genes

In this study, the significant correlations between the number of favorable alleles (NFA)
and lysine contents (r = 0.43~0.71) implied the additive effect of the lysine-accumulation
associated QTNs, particularly in the content datasets Grain_env1_r2 and Grain_BLUP
(r = 0.71) (Supplementary Figure S5B,E). Based on this, the highest lysine levels were ob-
served in the accessions with a few NFAs, such as W242 with five NFAs in Grain_env1_r1,
Grain_env1_r2, and Grain_env2_r2 dataset, C094 with four NFAs in Grain_env2_r1 dataset,
W088 with four NFAs in Leaf_env3_r1 dataset, and W001 with four NFAs in Leaf_env3_r2
dataset. These accessions carrying a few NFAs provide potential targets for the lysine-rich
rice breeding programs using the loci pyramiding approach. In addition, the detected
QTNs are also beneficial for the genomic selection/prediction (GS/GP) breeding pro-
grams (predictive ability up to 0.85 in grains and 0.77 in leaves), which may transform
the rice nutrient quality breeding from a labor-intensive and time-consuming mode into
an efficient and accurate one. The QTNs/QTLs with large and small effects have been
successfully applied in the GS breeding to improve the disease resistance, quality, and
yield in plants [79–83]. Apart from these QTNs, the identified key genes related to the
lysine accumulation in rice grains and leaves can also be applied to the molecular breeding
program of lysine-biofortified rice. The higher grain lysine contents were mainly observed
in indica accessions than in the japonica ones (Figure 1A). Therefore, the indica accessions
with favorable haplotypes of the key genes hold the promise to increase the grain lysine
content through the direct hybridization with japonica elite varieties, such as the high grain
lysine indica accession C049 with the favorable haplotype GGCCGGAATTTTGGGGTTAA
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(Supplementary Table S6). In contrast, the japonica rice generally showed higher leaf lysine
contents than that in the indica rice (Figure 1C). Therefore, the leaf lysine level of indica rice
can be elevated by the hybridization with japonica rice, such as the high leaf lysine japon-
ica accession W041 with the favorable haplotype GGTTGGAAGGGGCC (Supplementary
Table S6).

4. Materials and Methods
4.1. Plant Materials and Sample Sequencing

In this study, a genetic panel containing 387 rice accessions from a previously released
worldwide rice collection was used for all the analyses [40]. This diverse panel contains
244 indica accessions (Oryza sativa indica) and 143 japonica accessions (Oryza sativa japonica).
Of these accessions, 337 accessions are from Asia, followed by 16 accessions from Europe,
14 accessions from South America, 9 accessions from North America, 8 accessions from
Africa, and 3 accessions from Oceania. These accessions were planted in the normal rice-
growing seasons at two different blocks of Huazhong Agricultural University Experimental
Station (Wuhan, China, longitude 114◦21′ E, latitude 30◦28′ N). The planting density
was 16.5 cm between plants in a row, and the rows were 26 cm apart. A randomized
complete-block design with two rows of each accession and ten plants in each row was
employed in the field-grown plants with two replicates in three consecutive years (2012
for Grain_env1, 2013 for Grain_env2, and 2014 for Leaf_env3). To capture the genetic
variation of this plant population, approximately 1 Gb high-quality genome sequences
of each accession were obtained through the Illumina HiSeq 2000 genome sequencing
platform (Illumina, Inc., San Diego, CA, USA) [40]. The Nipponbare rice reference genome
(version MSU 6.1) and its annotation were downloaded from the Rice Genome Annotation
Project (http://rice.uga.edu/index.shtml, accessed on 26 December 2023). Using BWA
software (v 0.7.17) (https://sourceforge.net/projects/bio-bwa/, accessed on 26 December
2023) with default settings, the clean reads of sequence data were mapped to the MSU
6.1 genome. The SAMtools software (v 1.9) and the HaplotypeCaller, CombineGVCFs,
and GenotypeGVCFs functions with default settings in GATK (v 4.0.5.1) (https://gatk.
broadinstitute.org/hc/en-us, accessed on 26 December 2023) software were implemented
for the SNP joint calling of the 387 rice accessions. A total of 4,630,367 high-quality SNPs
were obtained by the filter of -maf 0.05 and -geno 0.1 settings in PLINK software (v 1.9)
(https://zzz.bwh.harvard.edu/plink/, accessed on 26 December 2023). These SNPs were
used as genotypic datasets in the following analyses.

4.2. Metabolite Profiling

In the field, the randomly collected mature grains from three different plants were
pooled for further metabolic profiling in the laboratory. The leaves from three random
plants at the five-leaf stage were sampled for metabolite extraction as previously de-
scribed [40,84]. For each accession, two samples of leaf (Leaf_env3_r1 and Leaf_env3_r2 rep-
resent 2014_r1 and 2014_r2) and four samples (Grain_env1_r1, Grain_env1_r2, Grain_env2_r1,
and Grain_env2_r2 represent 2012_r1, 2012_r2, 2013_r1, and 2013_r2) of grain were pre-
pared for the following metabolomics analyses [84]. For the relative quantification of the
free amino acids in the samples above, a liquid chromatography–electrospray ionization–
tandem mass spectrometry system was used. Using a mixer mill (MM 400, Retsch GmbH,
Haan, Germany) with a zirconia bead for 1.5 min at 30Hz, 100 mg crushed rice sample was
extracted overnight at 4 ◦C with 1.0 mL pure methanol (or 70% aqueous methanol) which
contains 0.1 mg/L lidocaine (internal standard) for lipid-solubility free amino acids. A
scheduled multiple reaction monitoring method was adopted to conduct the quantification
of free amino acids. By dividing the relative signal intensities of metabolites by the inten-
sities of the internal standard (lidocaine, 0.1 mg/L), the relative intensities of free amino
acids were normalized. The log2-transformed metabolite data were used for improving the
normality in further analyses. A metabolic data matrix with the three relative intensities of
free amino acid lysine from 2322 runs (387 accessions × six sample sets) was yielded for

http://rice.uga.edu/index.shtml
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https://gatk.broadinstitute.org/hc/en-us
https://zzz.bwh.harvard.edu/plink/
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the rice genetic panel. The broad-sense heritability H2 of the lysine in rice grains/leaves
was estimated using the two and four free lysine content datasets separately. To account
for environmental variation, the R package lme4 was implemented to generate the best
linear unbiased prediction (BLUP) datasets for the lysine content in rice grains and leaves,
respectively [85].

The formula for the estimation of broad-sense heritability H2:

H2 =
σ2

G
σ2

G + σ2
ε

(1)

where the σ2
G is the genotypic variance and σ2

ε is the residual variance.
The formula for the calculation of the best linear unbiased prediction (BLUP) value:

y(grain) = µ + Line + Env + (Line × Env) + Rep(Env) + ε (2)

y(lea f ) = µ + Line + Env + ε (3)

where y, µ, Line, and Env represent phenotype, intercept, accession effects, and environ-
mental effects, respectively. Rep represents different replications, and ε represents random
effects. Line × Env is used to display the interaction between accession and environment,
and Rep (Env) indicates the nested effect of replication within the environment.

4.3. Population Structure and Linkage Disequilibrium Analysis

To address the redundancy issue of a haplotype block formed by several SNPs within
the same linkage disequilibrium (LD) region, using the parameter -indep-pairwise, 200, 100,
0.1 in PLINK software (https://zzz.bwh.harvard.edu/plink/, accessed on 26 December
2023), a total of 107,761 high-quality SNPs were retained for the assessment of genetic
relationships. To investigate the population structure of this diverse panel, the principal
component analysis (PCA) was implemented by the GCTA software (v1.94.1) based on the
high-quality SNPs above (https://github.com/jianyangqt/gcta, accessed on 26 December
2023). Meanwhile, a neighbor-joining (NJ) phylogenetic analysis was performed by the
MEGA-CC software (v 11.0.11) with the settings of pairwise gap deletion and 1000 boot-
strap replicates [86]. The web tool Inter-active Tree of Life (iTOL) was used for the data
visualization of the phylogenetic tree [87]. The ADMIXTURE software (v 1.3.0) was also
implemented for the analysis of population stratification [88]. To assess the genome-wide
LD decay of this population, the squared correlation coefficient (r2) between SNPs was cal-
culated using the PopLDdecay software (v 3.42) [89]. The local LD block in a chromosome
was estimated by the LDBlockShow software (v 1.40) [90].

4.4. Genome-Wide Association Study

Using ten statistical models, the genome-wide association study (GWAS) analyses for
lysine content in rice grains and leaves were performed on the genetic panel, including
387 rice accessions with 4,630,367 SNPs and eight content datasets. Of these lysine content
datasets, five datasets were the grain lysine content in 2012 and 2013 with two biological
replicates (Grain_env1_r1, Grain_env1_r2, Grain_env2_r1, and Grain_env2_r2) and their
derived BLUP dataset (Grain_BLUP), and the rest three datasets contained the leaf lysine
content in 2014 with two biological replicates (Leaf_env3_r1 and Leaf_env3_r2) and the
BLUP dataset of them (Leaf_BLUP). Due to the differences in the genetic algorithm, these
models were mainly classified into three groups, namely GLM, MLM-based single-locus
models (MLM-SL), and multi-locus random-SNP-effect Mixed Linear Model (mrMLM)-
series multi-locus models (mrMLM-ML) for the following identification of common de-
tected QTNs. For instance, MLM-SL contained MLM [30], CMLM [32], and EMMAX [31].
mrMLM-ML included mrMLM [24], FASTmrEMMA [26], FASTmrMLM [91], ISIS EM-
BLASSO [25], pKWmEB [27], and pLARmEB [28]. The kinship matrices for individual
relationships were generated by each GWAS software package mrMLM (5.0), IIIVmrMLM
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(1.0). The TASSEL software (v 5.2.40) containing GLM, MLM, and CMLM models was
used for the QTN detection with default settings, such as -mlmVarCompEst P3D for
MLM and CMLM, -mlmCompressionLevel None for MLM, and -mlmCompressionLevel
Optimum for CMLM [92]. The EMMAX software was used to test the marker–trait
associations by the implementation of the mixed-model EMMAX with default settings
(https://csg.sph.umich.edu/kang/emmax/, accessed on 26 December 2023). The R pack-
age mrMLM, including all the mrMLM-ML methods, was implemented to detect the QTNs
using parameters SearchRadius = 20, CriLOD = 3, and Bootstrap = FALSE [91]. The R
package IIIVmrMLM was used for grain/leaf lysine content-related QEI detection [93]. The
parameters for QEI detection were method = Multi_env, SearchRadius = 20, and svpal = 0.01.
The marker–trait associations (QTNs/QEIs) in mrMLM and IIIVmrMLM packages were de-
termined by the threshold of LOD score ≥ 3. For the association signals detected by the rest
models, the genetic type I error calculator based on the modified Bonferroni correction was
adopted to determine the threshold of significant association (p-value = 3.22 × 10−7 at Type
I error α = 0.05 for GLM, and p-value = 6.43 × 10−6 at α = 1 for MLM, CMLM, and EMMAX).
Manhattan plots were generated using the IIIVmrMLM package and R package CMplot
with default settings (https://cran.r-project.org/web//packages/CMplot/index.html,
accessed on 26 December 2023).

4.5. QTN Identification, Candidate Gene Analysis, and Genomic Prediction

To identify the QTNs associated with the lysine content in rice grains and leaves, a
GWAS was performed in each grain/leaf lysine content dataset. In each dataset, a common
QTN was defined by the QTN, which was detected by two or more GWAS models of
GLM, MLM-SL, and mrMLM-ML. The R2 value of each common QTN was determined by
the proportion of total variation explained by the lysine content associated QTN. The rice
genes localized within the 122 kb (the averaged whole genome LD decay) flanking regions
and the local LD block of a QTN/QEI were potentially predicted as the candidate genes
associated with the lysine content in rice grains/leaves. Using the KofamKOALA web
tool (https://www.genome.jp/tools/kofamkoala, accessed on 26 December 2023) with
default parameters (E-values ≤ 0.01 and hits with scores above the pre-computed adaptive
thresholds), the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation
of each candidate gene was obtained. The CandiHap software (v 1.2) was applied to detect
the proposed functional haplotypes/sites in the potential candidate genes [94]. Using the
multiple comparisons in one-way ANOVA with the LSD method in R package agricolae,
the following haplotype and content analysis were conducted for the candidate genes;
the different letters indicate statistically significant differences at the 5% probability level.
To analyze the transcript factor binding sites of a candidate gene, the function Binding
Site Prediction of PlantRegMap web tool (http://plantregmap.gao-lab.org/, accessed on
26 December 2023) was used. The temporal and spatial expression pattern of candidate
genes was investigated by the japonica rice Nipponbare (http://rice.uga.edu/expression.
shtml, accessed on 26 December 2023), indica rice Zhenshan97, and Minghui63 RNA-seq
data [95].

The R package rrBLUP was implemented to fit the ridge regression best linear unbi-
ased prediction (RR-BLUP) models for the genomic selection/prediction (GS/GP) of lysine
content [96,97]. For grain lysine model construction, the grain lysine-associated QTNs and
five lysine content datasets (Grain_env1_r1, Grain_env1_r2, Grain_env2_r1, Grain_env2_r2,
and Grain_BLUP) were used. Likewise, the leaf lysine-associated QTNs and three leaf ly-
sine content datasets (Leaf_env3_r1, Leaf_env3_r2, and Leaf_BLUP) were used to construct
GS/GP models for leaf lysine. Five-fold cross-validation with 500 times was adopted to
estimate the predictive ability of each RR-BLUP GS/SP model. The predictive ability (r) of
each GS/GP model was determined by Pearson’s correlation coefficient between the ge-
nomic estimated breeding values (GEBVs) and the observed content values. To investigate
the phenotypic variation explained by the SNPs across various lysine content datasets, the
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SNP-based heritability (h2) was estimated by the mixed linear model implemented in the
GCTA software (v1.94.1) [98].

The formula for the estimation of SNP-based heritability h2:

h2 =
σ2

g

σ2
g + σ2

ε
(4)

where the σ2
g is estimated using the restricted maximum likelihood (REML) method based

on the GRM estimated from all SNPs, and σ2
ε is the residual variance.

5. Conclusions

Using a multi-model GWAS approach, this study identified several QTNs and can-
didate genes associated with the lysine content in rice grains/leaves and also detected
various QEIs and candidate genes related to the grain/leaf lysine content in rice. The
reliability and additive effects of 248 and 71 common QTNs associated with grain/leaf
lysine content were validated by the significant correlation between the NFA per acces-
sion and lysine content (up to 0.71) and the highest accuracy of the GS/GP model (0.85),
which provide potential targets for the genetic improvement of lysine accumulation in
rice. The three potential regulation modules include positive regulation between the tran-
scription factor LOC_Os12g32250 and LOC_Os07g20544 gene in grains, positive regulation
between the transcription factor LOC_Os01g19970 and LOC_Os11g33240 in leaves, and the
negative regulation of the transcription factor LOC_Os01g10504 to LOC_Os07g20544 and
LOC_Os01g19970 may hold the promise of the fine-tuning of the lysine accumulation in
rice. The 20 and 30 QEIs detected in rice grain/leaf lysine content datasets will facilitate the
exploration of gene-by-environment interactions, and ultimately leading to the breeding of
lysine-rich and better-adapted rice. Taken together, this study uncovers several novel QTNs
and key genes underpinning grain and leaf lysine accumulation and may be expected to
provide potential targets for biofortified rice with sufficient levels of lysine and minimal
negative effects on plant phenotype.
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