Next Article in Journal
Special Issue on Proton Transfer Processes
Previous Article in Journal
C- versus O-Arylation of an Enol-Lactone Using Potassium tert-butoxide
Article

Theoretical Calculation of Absolute Radii of Atoms and Ions. Part 2. The Ionic Radii

Department of Chemistry, University of Kalyani, Kalyani – 741235, India
*
Author to whom correspondence should be addressed.
Int. J. Mol. Sci. 2003, 4(6), 379-407; https://0-doi-org.brum.beds.ac.uk/10.3390/i4060379
Received: 9 May 2003 / Accepted: 12 May 2003 / Published: 31 May 2003
The theoretical method of determination of absolute atomic size, discussed in Int. J. Mol. Sci. 2002, 3, 87-113, is exploited to calculate absolute radii of the ions whose experimental radii are published by Shanon. The computed radii are found to reproduce the expected periodic variation of size in periods and in groups and nicely reproduce the d-block and f-block contractions in the respective series. It is pointed out that experimental radii of d and f block transition metal ions make erroneous and misleading representation of the size behaviour of the respective series. A detailed comparative study of the crystal radii vis-à-vis the theoretical radii is reported. A rationale of the double hump curve of the experimental radii of 3 d-block transition metal ions is put forward in terms of the crystal field theory and Jahn-Teller distortion. The theoretical radii are exploited to calculate the diamagnetic susceptibility, polarizability and chemical hardness of the ions and compared with available experimental data. The fact of good agreement between the experimental and computed global hardness of ions and correct demonstration of d-block and f-block contraction by the computed radii are used as benchmark to test the validity of the values of the computed theoretical radii of the ions as their representative sizes. It is concluded that the theoretically computed radii of ions are visualizable size representation of ions and can be used as their absolute radii at the respective oxidation states. View Full-Text
Keywords: Crystal radii; Absolute radii; Chemical hardness; Polarizability Crystal radii; Absolute radii; Chemical hardness; Polarizability
Show Figures

Figure 1

MDPI and ACS Style

Ghosh, D.C.; Biswas, R. Theoretical Calculation of Absolute Radii of Atoms and Ions. Part 2. The Ionic Radii. Int. J. Mol. Sci. 2003, 4, 379-407. https://0-doi-org.brum.beds.ac.uk/10.3390/i4060379

AMA Style

Ghosh DC, Biswas R. Theoretical Calculation of Absolute Radii of Atoms and Ions. Part 2. The Ionic Radii. International Journal of Molecular Sciences. 2003; 4(6):379-407. https://0-doi-org.brum.beds.ac.uk/10.3390/i4060379

Chicago/Turabian Style

Ghosh, Dulal C., and Raka Biswas. 2003. "Theoretical Calculation of Absolute Radii of Atoms and Ions. Part 2. The Ionic Radii" International Journal of Molecular Sciences 4, no. 6: 379-407. https://0-doi-org.brum.beds.ac.uk/10.3390/i4060379

Find Other Styles

Article Access Map by Country/Region

1
Only visits after 24 November 2015 are recorded.
Back to TopTop