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Abstract: Although much has been discovered, discussed and written as to problems of 
contamination by various military unique compounds, particularly by the nitrogen based 
energetics (NOCs), remaining problems dictate further evaluation of actual and potential 
risk to the environment by these energetics and their derivatives and metabolites through 
determination of their environmental impact—transport, fate and toxicity. This work 
comprises an effort to understand structural relationships and degradation mechanisms of 
current and emerging explosives, including nitroaromatic; cyclic and cage cyclic nitramine; 
and a nitrocubane. This review of our computational chemistry and spectroscopic research 
describes and compares competitive degradation mechanisms by free radical oxidative, 
reductive and alkali hydrolysis, relating them, when possible, to environmental risk. 

Keywords: nitroaromatic / nitramine explosives; structural / activity relationships; 
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1. Introduction 

It is well known that actual and potential environmental risk assessment of nitrogen based energetic 
compounds (NOCs) is greatly complicated by the potential of these reactive compounds to form large 
numbers of environmental transformation products that can exhibit a wide range of physical properties 
and reactivities. In addition, physical properties such as aqueous dissolution rate, water solubility, 
partitioning to lipids and organic matter are important determinants of such environmental behavior as 
transport and bioaccumulation [1-11]. All these mentioned factors contribute to environmental risk, 
including hazard to personnel, in ways that are still mainly not assessed [8-9, 12-17]. So far, 
remediation methods for treating nitroaromatic and nitramine contaminants have included alkaline 
hydrolysis, advanced chemical oxidation processes utilizing hydroxyl radical initiators such as 
peroxone, dark and photo-enhanced Fenton’s reagents, titanium dioxide and other semiconductors as 
well as photo-induced irradiation. Resultant problems have frequently included incomplete 
degradation and high cost as well as toxic and recalcitrant transformation products [18-53]. Also, 
resources have historically been made available for practical laboratory studies of only a very low 
percentage of NOCs and other compounds of military interest that become environmental 
contaminants [41-42]. In recent years, computational chemistry (CC) has enabled prediction and 
theoretical analysis of these and other NOCs not accessible for a variety of reasons, including those 
deemed too hazardous for experimental research. As computational and experimental data is compiled, 
the continuous accumulation of information can be expected to provide environmental scientists with 
means to expedite assessment of environmental risk as well as to prioritize emerging compounds for 
research and management [54-61].   

This discussion of competitive degradation mechanisms of NOCs by free radical oxidative, 
reductive and alkaline hydrolysis deals with i) nitroaromatics: 2,4,6-trinitrotoluene (TNT); 1,3,5-
trinitrobenzene (TNB); 2,4,6-trinitrophenol (TNP or picric acid); ii) cyclic nitramines: hexahydro-
1,3,5-trinitro-1,3,5-triazine (RDX); octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX); iii) cage 
cyclic nitramines: 2,4,6,8,10,12-hexanitrohexa-azoisowurtzitane (CL-20); and 2,4,6,8-
tetranitro1,3,5,7-tetraaza-cubane (TNTAC), predicted but not yet synthesized; and iv) cage cubane: 
octonitrocubane (ONC). These compounds are shown in Figure 1. 

Our hypothesis was proven computationally and spectroscopically: molecular structure, under 
homologous conditions, determines preferred, theoretically predictable degradation pathways. Thus, 
environmental impact—fate and effects—of energetic materials can also be predicted from their 
molecular structure. This hypothesis was examined through predictive methods, using quantum 
mechanical and classical force field mechanics to investigate most likely transition states and 
intermediates through comparison as to bond lengths and angles; heat of formation; steric energy; 
dipole moments; solvent accessibility and electrostatic potential surfaces; partial charges; and 
HOMO/LUMO energies. Then, since molecular structures exhibit characteristic spectra, ultraviolet 
(UV), visible (Vis) and Fourier Transform Infrared (FTIR) and Stopped Flow (SF) were used to test 
theoretical predictions and hypothesis by accomplishing the tasks of measuring concentration changes, 
following courses of reactions, and measuring changes in functional groups during appearances and 
disappearances of intermediate species. Since changes in UV/Vis/FTIR spectra were consistent with 
predictions, they constitute experimental verification [54-59]. Thus, combining CC prediction with 
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experimental verification through spectroscopic techniques offers a flexible, clean, comparatively 
inexpensive and quick methodology that tracks subtle spectral changes while following rates of fast-
forming transition states, intermediate and final products. Where spectroscopic verification is used, it 
is described in the sections discussing the various compounds. 

 

 

2.  Utilization of Computational Chemistry Prediction                                                                              

2.1  Theoretical 

Computational prediction reveals relationships between structures; stabilities; site, manner and 
degree of reactivity; and formation rates of both transition states and fast-forming intermediates 
leading to final products, thus disclosing transformation pathways. Computational analysis thereby 
enables further theoretical prediction as to most likely environmental products and interactions, 
important to facilitating assessment and management of NOC risks to the environment. Also, since 
predictive theoretical chemistry is based on the premise that molecular characteristics determine 
chemical and physical properties and reactivities, molecular structure can be correlated with a 
homologous series of molecules which, in turn, can be used to predict properties and reactivities of 
new members—providing a rational basis for predicting most probable environmental reaction 
mechanisms and transformation products. Given that a slight change in molecular structure can result 
in considerable change in chemical and, thus, environmental behavior of a compound, CC’s powerful 
tools are needed to investigate these relationships. Improved computational methods are constantly 

Figure 1. Selected cyclic and cage cyclic nitramine compounds and octonitrocubane (ONC). 
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being developed to accommodate various sizes of molecules as well as to give more precise 
calculations. Further, because of their accuracy, new methods can be expected to correlate particularly 
well with spectroscopic verification techniques.   

2.2 Application 

Quantum and classical (also known as “force field”) mechanics from simple to complex were 
employed to characterize molecular properties of NOCs, revealing such physicochemical 
characteristics as functional groups; sites of reactivity; number of carbon-carbon (C-C), nitrogen-
nitrogen (N-N) and carbon-nitrogen (C-N) bonds as well as number of nitro groups; size of molecules; 
symmetry; polarity; solvent accessible surfaces, and topography, all of which play their roles in 
determining structurally reactive behavioral relationships—such as toxicity and impact on the 
environment [54-60].  

Semiempirical, e.g., quantum mechanical, computational tools were used to calculate bond lengths 
and angles; molecular orbitals; dihedral angles; formation and steric energies; partial charges, 
electrostatic potentials, and dipole charges/dipole moments; cosmo solvation; solvent accessibility; 
highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO). 
HOMO and LUMO not only indicate aspects of molecular structure but, as in the case of a CL-20 first 
tier derivative (discussed later), can reveal that the product is potentially toxic and recalcitrant. These 
semiempirical Molecular Orbital PACkage (MOPAC) methods, used first, quickly gave information 
sufficiently accurate to compare similar structural modes of transformation, with Molecular Mechanics 
(MM2 and MM3) employing classical mechanics to calculate such molecular parameters as steric 
hindrance—used for geometrical optimization and for distinguishing between stabilities of molecular 
conformers, both important parameters for the nitramine energetics. Modified Neglect of Differential 
Overlap (MNDO) and Austin Model (AM1) use Self-Consistent Field (SCF) approximations equally 
applicable to nitroaromatic and nitramine NOCs. Due to comparative values, AM1 is more suitable 
than MNDO for calculating minimized formation of crowded compounds such as nitroaromatics, 
whereas, AM1 better accounts for hydrogen bonding than MNDO. MNDO approximations are better 
suited than those of AM1 for non-planar cyclic non-aromatics, such as RDX, and for less crowded 
molecules [62].  

Density Functional Theory (DFT) was utilized at various levels (mainly B3LYP) to calculate 
energies and other properties of both nitroaromatic and nitramine NOCs a priori as well as for 
verification and refinement of semiempirical predictive methods [63-65]. 

Quantitative Structural Property Relationships (QSPR) and Quantitative Structural Activity 
Relationships (QSAR) approaches were successfully applied to chemical/physical structural 
relationships. HOMO and LUMO values for nitroaromatic, nitramine and cage nitramine energetics 
were calculated. Definite trends were observed, e.g., the importance of position in substitution of 
amine or hydroxyl groups in nitroaromatic compounds. Different but definite trends were also seen for 
derivatives of nitramine and cage nitramine compounds. For instance, first tier derivatives, such as 
nitroso, hydroxyl amines and formation of double bonds on the ring were observed [66].  
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3.  Nitroaromatics  

3.1  TNT (2,4,6-trinitrotoluene) 

3.1.1  Background 

 More than a century of production and extensive use of TNT have made it a major global soil and 
groundwater contaminant [8-11, 13, 24-25, 51, 67-69] with contaminated soil concentrations being 
reported to range from 10 mg/kg (~47 μmol/kg) to 12000 mg/kg (~56000 μmol/kg) [69] and 
sometimes as high as 35000 mg/kg. Aqueous waste streams containing TNT concentrations as high as 
70 mg/L (330 μM) have been reported [29]. At these concentrations, TNT is toxic, mutagenic, and 
potentially carcinogenic. Ingested TNT in small amounts manifests in headache, anemia, and skin 
irritation. Larger amounts of TNT can result in liver, eye and neurological damage [16]. Further, 
products of TNT metabolism in the human body interact with such macromolecules as DNA, causing 
genetic defects and cancer [14]. The chance of human contact is heightened by the fact of 
environmental bioaccumulation [4, 8-9].  

Endeavors to effectively, rapidly and economically degrade TNT into less toxic intermediates with 
the goal of achieving complete transformation of TNT in contaminated soils and aqueous solutions 
have included both physico-chemical and biological means as well as efforts to incorporate chemical 
with biological means. Depending upon mode of degradation, difficulties have included high cost, 
incomplete/slow transformations, toxic resultant products, and lack of stability of treatment cultures 
[17, 21-22, 24-26, 29-30, 33, 36-37, 39, 41-43, 49-51, 67-71, 76-77]. 

3.1.2  Structure 

 The TNT carbon ring is planar and aromatic, with equal angles of 120˚ [78]. The π system of TNT 
is electron-deficient due to its planar aromatic structure where its π electrons are drawn away from the 
ring by resonance towards the electron-withdrawing nitro groups. TNT electron deficiency and 
planarity make complexation possible with the non-bonding (n) electrons of a donating group, such as 
the oxygen atoms in a co-planar medium (e.g., in clay [10]), lessening TNT dissolution and mobility in 
the environment. Substitution at the ortho positions of TNT by such electron-donating groups as 
methyl, amino and hydroxide ions (OH-) can lessen the electron deficiency of the π system and prevent 
co-planarity with electron donating groups from the media—thus minimizing complexation, which 
increases dissolution [79-85] and may, therefore, affect risk to the environment. 

3.1.3  Results of applied methods     

 Sets of experiments designed to enhance biodegradation [41-43, 50, 86] were carried out with 
further expectation that loss of aromaticity would lead to degradation. TNT was chemically 
transformed into products with high biodegradability by utilizing nucleophilic reactions with sodium 
hydroxide (NaOH) or with calcium hydroxide (Ca[OH]2) as hydrolyzing agents, thereby initiating 
complex competing reactions in which time and nucleophilic concentration influenced production of 
mono- and di-hydroxylated aromatic intermediates. OH- was added to TNT analogues TNB and picric 
acid. UV/Vis spectra revealed that TNT, TNB and picric acid share some time-dependent common 
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intermediates that absorb in the visible region (450 nm) and later disappear, indicating a breaking of 
the aromatic ring, complete loss of aromaticity and, therefore, irreversible degradation [41-43, 50, 86]. 
NaOH and Ca(OH)2 added to TNT also resulted in loss of both UV and Vis absorption bands, strongly 
suggesting degradation to non-aromatic compounds—thus irreversible degradation. Although UV/Vis 
spectra did not reveal obvious loss of aromaticity, as in the case of TNT, OH- added to picric acid 
formed, through different competing mechanisms, various ortho and para mono- and di-hydroxylated 
products—some of which can be expected to be biodegradable, similar to picric acid [41-43, 50, 86]. 
Due to competing mechanisms, in addition to possible formation of picric acid, other transformation 
products can be formed with the addition of OH- to TNT at C3 (nucleophilic substitution) or with the 
replacement of the nitro group by an OH- at C2 (via Meisenheimer complex intermediates). 

Upon addition of an OH- group to TNP, another TNT analog, the UV spectra shifted from near 360 
to close to 400 nm. Both removal of the electron-withdrawing nitro group and addition of OH- caused 
a shift in the same direction toward a longer wavelength. Formation energies of the possible products 
of these competing reactions indicate the ease of their formation. Since the entropies of these 
compounds are similar—due to similar aromatic structures—these formation energies, in turn, are 
proportional to their Gibbs free energies and thus to their reactivity. OH- are more likely to attack the 
carbon C1 having the methyl group attached rather than the C2 having the nitro group attached, as 
energy calculations indicate the transition state product of OH- addition to the former as being less 
sterically hindered  
[41-43, 50, 86]. 

3.1.4  Transformation mechanisms 

TNT reactions are governed by four effects: resonance, inductive, steric hindrance and 
intramolecular electrostatic interaction between the nitro group oxygen atoms and three methyl group 
hydrogen atoms. Nitro groups 2 and 6, adjacent to the methyl groups, are most subject to these four 
effects. They are the most sterically hindered by the methyl group, which inductively supplies them 
with electrons [41-43, 50, 86]. 

Although nitro groups deactivated all positions on the ring, Figure 2, the carbons ortho and para to 
the carbon having the nitro groups became the most deactivated through resonance stabilization, where 
the π electrons are drawn away by resonance from these ortho and para carbons toward the nitro group 
outside the ring. This deactivation renders the carbons ortho and para to the nitro group susceptible to 
nucleophilic attack by OH-. This mechanism competes with formation of the Meisenheimer complex 
where the OH- attacks the carbon carrying the nitro group, causing brief formation of a transition state 
in which both nucleophile and nitro group are still attached to the same carbon before elimination of 
the nitro group [41-43, 49, 50, 86].  

The presence of an OH- instead of the methyl group lowered steric hindrance sufficiently to 
facilitate removal of nitro groups—theoretically, according to our computations and textbook 
chemistry, good leaving groups in nucleophilic reactions [56, 79-85]. In March’s prioritizing of 
effective leaving groups in nucleophilic reactions, nitro groups is listed as second, after fluorine [82]. 
These electrostatic interactions between the hydrogen atoms of the methyl group and the oxygen atoms 
of the ortho 2nd and 6th position nitro groups prevent effective chemical transformations of TNT to 
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DNT by electrophilic attack on the carbon bonded to the electron withdrawing nitro groups. Therefore, 
chemical transformations of TNT should be carried out using nucleophilic rather than electrophilic 
substitutions. In addition, nucleophilic transformations result in formation of more easily biodegraded 
hydroxylated nitro compounds, particularly when the two hydroxyl groups are ortho or para to each 
other [41-43, 50, 79-86].  

TNT
Charge Density - showing the most deactivated carbon atoms 

(The numbering used by the software here is not the traditional numbering used for numbering organic compounds)

 

Figure 2. Charge Density of TNT. 
 

Polymerization reactions constitute another competing mechanism and can occur at various sites on 
the TNT molecule. For example, upon loss of a proton from the methyl group carbon (proton 
abstraction resulting from high concentration of base) one TNT molecule can act as a nucleophile for 
another TNT molecule by attacking its positively charged atoms, thus forming a dimer  
[41-43, 50, 79-86]. 

3.1.5  Potential for toxic interactions 

Dimerization can also occur at different TNT molecular sites, such as between nitrogen atoms of 
two molecules or between one nitrogen atom from one molecule and a carbon from another [37]. 
Polymerization can cause creation of toxic compounds. For instance, some di-azo polymers of TNT 
can be expected to be as toxic as certain azo dyes. Further, in regard to toxicity, OH- groups render 
molecules to which they are attached more water soluble, thus facilitating metabolism. For instance, 
adding two adjacent OH- to benzene causes benzene to become sufficiently soluble to be metabolized 
by humans. Under certain conditions, the two adjacent OH- yield a water molecule and form an 
epoxy—benzene oxide—the cause of benzene’s carcinogenicity. Due to its molecular structure, the 
same principles as to OH- contributing to solubility and to the occasional formation of an epoxy due to 
loss of a water molecule are also applicable to TNT.  
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Two other factors relating to toxicity: ortho are generally more toxic than para substituted amines 
(Table1) [41-43, 50, 79-86]. Yet, two adjacent hydroxyl groups or two hydroxyl groups para to each 
other may cause the aromatic parent compound to decompose into smaller molecules less toxic than 
the parent.  

 
Table 1. Energies and other Properties of TNT and Related Compounds. 

 
 Energies and Some Properties of TNT and Related Compounds

Compound MM2 AM1 Formation Dipole (debye)
(Kcal/mole) (Kcal/mole)

TNT 6.461 N=43 LUMO (eV) -2.43 42.25911 0.941
N=42 HOMO (eV) -11.72

2-ADNT -0.879 N=38 LUMO (eV) -1.63 28.57902 7.191
N=37 HOMO (eV) -9.53

4-ADNT -0.218 N=38 LUMO (eV) -1.65 31.08693 5.459
N=37 HOMO (eV) -9.45

2,6-DANTOL -4.966 N=33 LUMO (eV) -0.66 18.96846 7.116
N=32 HOMO (eV) -8.58

2,4-DANTOL -4.849 N=33 LUMO (eV) -0.62 20.82326 6.766
N=32 HOMO (eV) -8.41

2,4,6-TATOL -9.03 N=28 LUMO (eV) 1.31 15.48981 0.094
N=27 HOMO (eV) -7.66

PICRIC ACID 3.9152 N=43 LUMO (eV) -2.53 0.93944 1.53
N=42 HOMO (eV) -11.41

2-A PICRIC ACID 2.5323 N=38 LUMO (eV) -1.73 -12.48518 6.017
N=37 HOMO (eV) -9.38

4-A PICRIC ACID -5.604 N=38 LUMO (eV) -1.87 -8.37832 6.142
N=37 HOMO (eV) -9.31

2-HyDNTOL -3.155 N=38 LUMO (eV) -1.95 -13.64581 5.397
N=37 HOMO (eV) -10.47

4-HyDNTOL -8.175 N=38 LUMO (eV) -1.86 -11.7855 3.539
N=37 HOMO (eV) -10.37

2,6-DHyNTOL -4.994 N=33 LUMO (eV) -1.2 -66.27977 7.223
N=32 HOMO (eV) -9.69

2,4-DHyNTOL -2.199 N=33 LUMO (eV) -1.19 -65.1675 4.836
N=32 HOMO (eV) -9.56

TNB 3.204 N=40 LUMO (eV) -2.68 44.66182 0.002
N=39 HOMO (eV) -12.75

5-ADNB -6.313 N=35 LUMO (eV) -1.71 32.29372 6.748
N=34 HOMO (eV) -9.67

5-A,1HYD,3-NB -5.735 N=30 LUMO (eV) -0.93 -18.74772 7.26
N=29 HOMO (eV) -9.04

2,4-DNT -2.211 N=35 LUMO (eV) -1.85 28.29083 5.655
N=34 HOMO (eV) -11.03

2,6-DNT 2.3992 N=35 LUMO (eV) -1.82 31.20064 3.508
N=34 HOMO (eV) -10.95
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Haderlein asserted [68] that electron donor-acceptor interactions result in TNT reacting with soil 

and other natural organic materials in its environment, thus influencing its mobility, bioavailability, 
and reactivity—all of which impinge on toxicity levels. Although reactions of TNT with OH- have 
been analyzed, only fairly recently have investigations of TNT with OH- in aqueous solutions been 



Int. J. Mol. Sci. 2007, 8              
      

 

1242

considered as comprising or as partial potential treatment technology for TNT contaminated soils and 
groundwater [17, 21-22, 24-26, 29-30, 36-37, 39, 41-43, 48-51, 66-71, 76-77, 78]. Experimental data 
for hydrolysis of TNT in aqueous solutions—suggesting that alkali transformation of TNT takes place 
through formation of color-producing intermediates that are further transformed to non-aromatic 
compounds—have been reported at pH 12 [41-43]. This reaction at pH 12 is quite fast with 25 mg/L 
TNT transformed into non-aromatic compounds within six hours. Significant amounts of nitrite are 
also released, indicating that the resultant compounds are not only non-aromatic, but also less nitrated. 
The presence of nitro groups in the non-aromatic compounds, however, is not considered a drawback 
in light of the easy-leaving character of nitro-groups. Thus, oxidative attack on the exposed carbon 
backbone may even be enhanced by the electron-withdrawing nature of nitro-groups [41-43]. 

3.2  Selected TNT analogs—including TNB (1,3,5-trinitrobenzene) and TNP (2,4,6-trinitrophenol—
picric acid)                                                           
 
3.2.1  Results and mechanisms 
 

TNT and seventeen of its possible analogs were compared computationally in our first attempt to 
discover relationships between structure, reactivities and toxicity. Amino and hydroxyl groups were 
substituted at the 2,6 and 2,4 positions [86, 88]. Also, 2,6- and 2,4-dinitrotoluenes were included in the 
comparison as to formation, steric, HOMO/LUMO energies, and dipole moments. Significant 
correlations in relating structural changes to energy variations were obtained using both semiempirical 
(AM1) and DFT B3LYP computational approaches, which reflected the same trends  
[41-43, 50, 86-88].        

Due to inductive, steric and electrostatic effects of the methyl groups, TNB has slightly higher heat 
of formation and lower steric energy (MM2, level 1) than TNT. MM2 for picric acid is only slightly 
lower than that of TNT (which has the highest MM2)—followed by picric acid (TNP) then TNB. 
Replacing the methyl group with an OH- considerably lowered the heat of formation. For example, 
addition of an OH- to form picric acid drives the heat of formation drastically lower than for both TNT 
and TNB. In comparison with TNT, TNP and TNB, TNB has the highest heat of formation but the 
lowest steric and HOMO and LUMO energies. However, the heat of formation became lower as more 
OH- groups were added. Heat of formation and HOMO and LUMO energies are consistent  
[41-43, 50, 86-88]. 

Both computational methods, AM1 and DFT consistently showed that substituting an amine for the 
TNT nitro group lowers both AM1 and MM2 energies (Table 1). AM1, MM2 and HOMO energies 
were always lower when the amine was substituted on the ortho C2 than on the para C4 position with 
respect to the methyl group, because amines add electrons to the aromatic ring, thereby activating 
them. This lowering of energy on the ortho position to the methyl group is due to both inductive and 
steric effect of the methyl group (Resonance effect is the same for both ortho and para positions). 
Furthermore, for each amine group substituted for a nitro group on TNT, the greater was the lowering 
of MM2 steric energy and heat of formation. For both mono and di substituted amino and hydroxyl 
groups, the steric and formation energies and HOMO were always lowest when the substitution was on 
the ortho rather than the para position. For example, 2-amino molecular energy is lower than that of 4-
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amino, and 2-hydroxy molecular energy is always lower than that of 4-hydroxy. The same trend 
pertains to di-amino and di-hydroxy substitutions on TNT. That is, 2,6-di-amino and 2,6-di-hydroxy 
are always lower than 2,4-di-amino and 2,4-di-hydroxy substitutions.  

The TNT analogs 2,6- and 2,4-dinitrotoluene are equally affected by resonance. Therefore, the 
greater toxicity of 2,6- compared to that of 2,4-dinitrotoluene is attributed to 2,6-dinitrotoluene being 
subject to greater inductive, steric hindrance, and intramolecular bonding effects between the oxygen 
atoms of the nitro groups adjacent to the hydrogen atoms of the methyl group [50, 86]. In other words, 
due to this intramolecular interaction, complexation with media is less when the amino group is 
substituted on the ortho position and is more available to the environment. 

The more nitro groups are substituted by amino or hydroxyl groups, the higher the HOMO and 
LUMO energies will be and the lower will be the heat of formation. The most drastic lowering of the 
heat of formation occurs upon greatest hydroxyl group substitution (Table 1). The HOMO energy is 
lower when amines or hydroxyl groups are substituted at the ortho (2,6 ) rather than the para (4) 
position. This is true for both mono- and di- substitutions. For example, 2-amino- and 2-hydroxyl- are 
always of lower HOMO energy than 4-amino- and 4-hydroxyl-dinitrotoluene. Also 2,6-diamino- and 
2,6-hydroxyl-nitrotoluene are always of lower HOMO and LUMO energy than 2,4- dinitro- and 2,4-
dihyroxyl-nitrotoluene. On the other hand, due to the electron withdrawing nature of the nitro groups, 
the trend is reversed with the dinitrotoluenes—the 2,4 dinitrotoluene always having lower HOMO, 
LUMO and formation energies than 2,6 dinitrotoluene [50, 86-88]. 

 
4.  Cyclic nitramines                                                                                                         
 
4.1  RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine)                                                                                                
 
4.1.1  Background  

It is general knowledge that RDX is a commonly used explosive whose production and widespread 
military and commercial use has resulted in extensive contamination of soil and groundwater. RDX is 
considered a possible class C carcinogen and also affects the central nervous system in mammals [14]. 
A number of efforts have been made to determine the fate of RDX in the environment and to develop 
technologies for remediation of RDX contaminated soil and groundwater, including thermal 
degradation; photo- and chemical oxidation/reduction; alkaline hydrolysis, adsorption, free radical and 
biodegradation [12, 18-19, 23, 31, 33-34, 38, 41, 46-48, 52, 55-56, 59, 72-74, 89-91]. Knowledge of 
molecular structure, transformation mechanisms and range of potential RDX intermediates and 
products is necessary to management of contaminated real estate, particularly where military personnel 
are involved.  

4.1.2  Structure 

RDX is a cyclic hexanitramine with alternating carbon and nitrogen atoms and with nitro groups 
bonded to the three ring-nitrogen atoms. The angles between the atoms in the cyclic ring are a 
“compromise” between the 109○ of tetrahedral compounds and the 120o of cyclic hexagonal 
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compounds, making RDX a non-planar compound, structurally similar to cyclohexane  
[55-56, 59, 78-85].                                                                                     
Analysis via classical mechanical calculations (force-field molecular dynamics) to determine steric 
hindrance energy revealed that among all its cyclic amino, cyclic nitroso and cyclic hydroxylamine 
derivatives, only RDX showed two distinct observable conformers with different stable geometries (of 
the trans—or “chair”—configuration) as shown by Qasim et al [90]. Repeated calculations indicated 
the existence of these two stable conformers only in the presence of the three RDX nitro-groups and 
not when three nitroso or three hydroxyl amines were substituted for these nitro groups. Although 
RDX is not planar, all three nitro groups are directed toward the same side of the molecule. This 
particular geometric configuration makes it possible for positive ions to electrostatically attract the 
oxygen atoms of the nitro groups, indicating that they become good leaving groups for nucleophilic 
reactions [41, 55-56, 59, 90]. 

The heat of formation, but not steric energy, is the same for both conformers. One conformer has 
steric, MM2, energy of about 12 Kcal/mol and the other has steric energy of about –1.8 Kcal/mol. 
Thus, based on MNDO and MM2 values, RDX can easily be reductively transformed into its mono-, 
di-and tri- nitroso-derivatives. The trinitroso and the trihydroxylamine derivatives are similar as to heat 
of formation, but the latter have less steric energy—indicating that further RDX transformations are 
more likely to proceed via the trihydroxylamine derivative [41, 55-56, 59, 90]. 

 

 
 

Figure 3. Charge Density of RDX. 

4.1.3  Differences between RDX and TNT 

According to CC energy calculations, RDX reduction, unlike that of TNT, stops with the formation 
of nitroso and unstable hydroxylamine derivatives [41, 59-60, 86, 90]. Since, unlike TNT, RDX is 
non-planar and non-aromatic, it lacks the resonance stability of its π system. The nitro groups of RDX 
do not constitute an electron withdrawing sink—similar to that of TNT. Resonance, steric hindrance, 
strong intramolecular attraction between the hydrogen atoms of the methyl group and the oxygen 
atoms of the adjacent ortho nitro groups are factors that weaken the nitrogen-oxygen bonds of TNT—
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which explains why TNT forms aromatic amines as first-tier final derivative products. Nitroso and 
hydroxyl amines constitute the first-tier final derivative products of RDX. The oxygen atoms of the 
TNT nitro groups are more electronegatively charged than those of RDX. Molecular orbital 
calculations show that RDX hydroxyl amine derivatives have lower formation energies than their 
corresponding amines, whereas TNT amine derivatives have lower formation energies than their 
corresponding hydroxyl amines [41, 59-60, 86, 90]. Figures 2 and 3 show TNT and RDX charge 
densities, respectively. 

RDX nitro groups are quite stable relative to oxidation and to acid hydrolysis. The most significant 
oxidants of RDX are those compounds which can generate hydroxyl radicals. Although not a typical 
oxidative, the hydroxyl radical has high oxidation potential [55-59]. 

4.1.4 Modes of transformation  

Theoretical calculations [41, 55-56, 59, 90] reveal that, depending on reaction conditions, the 
predominant and competitive modes of transformation for RDX include utilization of:  
i) Hydroxide ions—in which addition of base initiates nucleophilic substitution of nitro groups; 
ii) Hydroxide ions—in which addition of base utilizes hydroxylation to initiate proton abstraction 

via second-order rate elimination (E2);  
iii) Reduction—consisting of both chemical (e.g, hydride ions, sodium hydrogen sulfite combined 

with zero valent iron) and biochemical degradation; 
iv) Free radicals—necessitating the introduction of free radical producing agents, such as Fenton, 

ozone, hydrogen peroxide, zero valent iron and photochemically induced reactions.  
In addition to the above modes of degradation, RDX transformation can be affected by such 

environmental conditions as the presence of other explosives; adsorption, binding capacity and 
complexation of media; also reactivities of proliferated transformation products.  

The N-N and C-N bonds as well as the oxygen atoms on the nitro-groups are potential reactive sites 
on RDX molecules and are subject to chemical attack via nucleophile; proton abstraction; or free 
radical.  
i) A nucleophile (OH-) can attack the N-N bond between the ring-nitrogen and the nitro-group 

nitrogen, and replace the nitro-group with an OH- [55-56, 59, 90]. 
ii) Proton abstraction by a base (or any other reducing group) changes the carbon-hydrogen (C-H) σ 

bond to a π bond—rendering the ring weaker and, thus, susceptible to subsequent transformation. 
Hydroxyl ion attack on the protons on ring carbons proceeds via a second-order E2 mechanism 
where a proton is abstracted and an adjacent nitro group is eliminated, changing the σ to a π 
bond—thus forming a double bond. This type of reaction depends on the concentration of both 
nucleophile/base and RDX [55-56, 59, 90]. Stopped Flow (SF) analysis of the reaction of RDX 
with NaOH is shown in Figure 4a-b, revealing steps of RDX alkaline hydrolysis degradation.  
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Figure 4a-b. Stopped-flow graphs of RDX with various concentrations of NaOH at 241 nm. 

 
Free radical attack on the N-N bond (iv) will also result in breaking this bond and will 

simultaneously generate two free radicals, one from the ring-nitrogen and the other from the nitrogen 
atom of the leaving nitro group. The C-N bond between the ring nitrogen and the adjacent carbon atom 
can also be attacked by a free radical, thus also generating two free radicals. Two or more such bonds 
can break simultaneously via a concerted mechanism. The C-N bonds in RDX are the longest bonds in 
the molecule and, therefore, are weakest and quite susceptible to free-radical attack. Although nitrous 
oxide (N2O) can also be formed in later steps by a combination of two nitrite free radicals, the 
appearance of nitrogen gas or N2O among the final products is an indication that the fragmentation 
most likely is not taking place at the N-N bonds between the heterocyclic ring and the nitro groups  
[55-56, 59, 90]. More transformation steps are shown for RDX than for HMX. Differences between 
these compounds are discussed under HMX.  

4.1.5 Transformation reactions 

RDX behaves as a strong Lewis acid, reacting with electron-donating compounds—such as 
hydroxide or hydride ions that act as base or as nucleophile depending on conditions of the reactions 
via either nucleophilic attack or the E2 mechanism, where proton abstraction and formation of double 
bonds takes place [59]. With the E2 mechanism, the base attack results in a transition state in which 
bond-breaking and bond-making happen concurrently. Proton extraction and breaking the σ bond 
between the ring carbon and hydrogen take place at the same time as the formation of the π bond 
between the ring carbon and ring nitrogen atoms. In other words, hydrogen abstraction occurs from the 
back while formation of the π bond occurs simultaneously from the front. Experimentally, it was 
shown that the tendency toward the E2 mechanism is dependent on both alkali and RDX concentration. 
Both nucleophilic replacement of the nitro groups and/or base proton abstraction via the E2 mechanism 
cause the RDX molecule to become unstable and thus amenable to transformation [55-56, 59, 90].  

First tier reductive chemical and biochemical degradation of RDX nitro groups leads to the 
formation of nitroso and hydroxylamine derivatives. Many second- and third-tier transformation 
products of RDX have been predicted and their energies and other properties calculated  
[41, 55-56, 59, 90]. The derived reduction scheme shows that substituted amines do not occur. 
Competition between the various modes of reaction drives the formation of final products [59]. 
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Free radical oxidation reactions—in which symmetrical bond-breaking and cleavage takes place—
occur upon addition of hydroxyl (or other, e. g., hydroperoxide) radicals. These free radical oxidation 
reactions break the C-N bonds symmetrically through sequential or concerted mechanisms  
[55-56, 59, 90]. Cyclic amines have the lowest MM2 energies and therefore, if formed, could be 
expected to be the least sterically hindered of the RDX transformation products. Only a single stable 
structure is predicted for such derivatives of RDX as trinitroso and trihydroxylamine. Further, RDX 
can be easily transformed into its trinitroso-derivative [55-56, 59, 90].  

Preliminary calculations predict that in symmetrical bond breaking, the free radical mechanism is 
more apt to predominate upon increase in number of symmetrical (N-N for RDX and HMX, C-C for 
CL-20) bonds contained within the molecule. Free radical reactions are generally most apt to take 
place where bonds are between the same types of atom. The less polar bonds have a greater tendency 
toward free radical bond-breaking. Therefore, the higher the ratio of symmetrical bonds the more 
likely it is that transformation will proceed via free radical oxidation, as reflected by the comparison 
between lower HOMO/LUMO molecular orbitals of the cyclic nitramine derivatives. Also, the more 
strained the molecular structure, the greater is the tendency toward free radical bond-breaking via 
intersystem crossing to the triplet state—where changes in molecular geometry relieve strain  
[55-56, 59, 90]. 

In summary, because under similar conditions, the free radical ring-breaking pathway competes 
effectively with nucleophilic/base degradation, transformation mechanisms for C-N bond breaking can 
tend toward either free radical cleavage or toward nucleophilic/base abstraction. An additional factor 
contributing to free radical bond-breaking is steric hindrance due to molecular strain—where high 
MM2 values obtain [55-56, 59, 90].  

Protonation of the oxygen atom on the nitro-group, followed by the loss of a water molecule will 
first transform the nitro-group into a nitroso group, and then into the less stable hydroxylamine 
derivative where the nitroso group exists in equilibrium with the hydroxylamine derivative in aqueous 
solution. This is followed by further transformation of the molecule via a concerted mechanism  
[55-56, 59, 90].  

Considerations pertaining to toxicity will be discussed after comparisons between RDX and HMX. 

4.2  HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) 

4.2.1  Background  

Her Majesty’s Explosive, HMX, has been compared to its cyclic nitramine “sister,” RDX, as to 
structure and reactivities [19, 27-28, 56, 59, 74, 94-95]. Questions as to environmental risk—fate, 
transport, toxicity, including hazard to personnel—have lead to HMX transformation studies. These 
studies have involved both experimental and CC methods. 

4.2.2 Structure 

HMX is an eight-member alternating nitrogen-carbon ring, whereas RDX is a six-member 
alternating nitrogen-carbon ring.  
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Computer predictive methods to ascertain structure and transformations of HMX include the four 
competitive modes of degradation that pertain to RDX: i)  hydroxide ions—addition of base utilizes 
hydroxylation to initiate proton abstraction via second-order rate elimination (E2); ii) hydroxide ions—
addition of base initiates nucleophilic substitution of nitro groups; iii) reduction—both chemical and 
biochemical degradation; iv) free radicals—introduction of free radical producing agents as: Fenton, 
ozone, hydrogen peroxide, zero valent iron and photochemically induced reactions [56, 59, 93-95]. 
Although the chemical structure of HMX is similar to that of RDX, more comprehensive studies are 
needed to account for the differences between these similar compounds. (Results of semiempirical 
calculations compare HMX to RDX in Table 2. HMX is compared to cyclic and cage cyclic nitramines 
as well as to the nitrocubane, ONC, in Figure 1.) 

4.2.3 Transformation mechanisms 

Our calculations of RDX and HMX charge densities (Figures 3 and 5, respectively) comprise an 
attempt to discover differences between RDX and HMX: i) RDX nitro group oxygen atoms are more 
negatively charged than those of HMX. ii) The nitro group nitrogen atoms of both RDX and HMX are 
positively charged. However, RDX nitro group nitrogen atoms are less positive than those of HMX. 
iii) The RDX ring nitrogen atoms are less negatively charged than those of HMX. iv) The carbon 
atoms of both RDX and HMX are almost neutral, with RDX carbons being slightly less than zero 
while HMX carbons being slightly positive. 

 
 

O(8)  -0.31170
N(9)  -0.42674 
N(10)  0.61824 
O(11)  -0.30432 
O(12)  -0.30418 
N(13)  -0.42679 
N(14)  0.61835 
O(15)  -0.30438 
 

C(1)  0.01647
C(2)  0.01648 
C(3)  0.01654 
C(4)  0.01639 
N(5)  -0.48362 
N(6)  0.61171 
O(7)  -0.31111 

O(16)  -0.29704 
N(17)  -0.55812 
N(18)  0.60456 
O(19)  -0.29299 
O(20)  -0.29121 
H(27)  0.06862 
H(28)  0.11691 
H(25)  0.06819 
H(26)  0.11743 
H(21)  0.11709 
H(22)  0.06864 
H(23)  0.11746 
H(24)  0.06816 

HMX Charges 

 
Figure 5. Charge Density of HMX. 

 
In comparing charge densities of RDX and HMX (Figures 3 and 5) with those of TNT (Figure 2), 

the TNT nitro group oxygen atoms are more negatively charged than those of RDX which, in turn, are 
more negatively charged than those of HMX. This may be a reason that: under certain reductive 
conditions, nitroaromatic compounds will be reduced to their corresponding amines, whereas RDX and 
especially HMX will be reduced to their corresponding nitro and hydroxyl amines (but not completely 
to amines). This is suggested by RDX and HMX formation energies [56, 59]. 
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Table 2. Comparison of HMX and RDX via Semiempirical methods of calculation. 

RDX--APPROXIMATION METHODS OF CALCULATION
Steric and Formation Energies = kcal/mole; LUMO anand Homo = eV

Heats of Formation RDX AM1 MNDO PM3
AM1 = 104.8850 LUMO -1.1008 -1.0978 -0.2168 N = 43

MNDO = 100.8966 HOMO -12.1057 -12.3302 -11.0842 N = 42  
PM3 = 42.1098
Steric Energy (MM2) = -1.899Dipole Moment = 6.964 Debye 1 RDX

RDX Reduction Products -- First Tier
RDX -- Mononitroso

Heats of Formation AM1 MNDO PM3
AM1 = 88.8247 LUMO -0.8675 -0.8998 -0.6856 N = 40
MNDO = 73.3264 HOMO -11.3769 -11.6232 -10.6531 N = 39

PM3 = 56.3635 2 MONSO RDX
Steric Energy (MM2) = 8 8.6644Dipole Moment = 6.398 Debye

RDX -- Monohydroxylamine
Heats of Formation AM1 MNDO PM3
AM1 = 89.610 LUMO -0.5772 -0.6948 -0.352 N = 41
MNDO = 72.8219 HOMO -11.0252 -11.295 -10.745 N = 40
PM3 = 39.933 3 Hydrx Am RDX

Steric Energy (MM2) = 2 2.755Dipole Moment = 6.803 Debye

HMX--APPROXIMATION METHODS OF CALCULATION
Steic and Formation Energies = kcal/mole; LUMO and HOMO = eV

Heats of Formation AM1 MNDO PM3
AM1 = 142.9591 LUMO -1.1188 -1.046 -0.8635 N = 57 

MNDO = 146.6710 HOMO -11.7305 -12.1415 -11.3642 N = 56 

PM3 = 58.9006 

Steric Energy (MM2) = 10.4457 Dipole Moment = 10.482 HMX
HMXReduction Products -- First Tier

HMX--Mononitroso
Heats of Formation AM1 MNDO PM3

AM1 = 125.6420 LUMO -0.866 -0.887 -0.8179 N = 54

MNDO = 118.6010 HOMO -11.2678 -11.5792 -10.685 N = 53
PM3 = 74.5536 

Steric Energy (MM2) = 22.8973 Dipole Moment = 10.176 HMX - Mononitroso
HMX--Monohydroxylamine

Heats of Formation AM1 MNDO PM3
AM1 = 119.2545 LUMO -0.9456 -0.8289 -0.5623 N = 55

MNDO = 117.3785 HOMO -10.219 -11.3209 -10.5506 N = 54

PM3 = 58.7301 Dipole Moment = 8.329

Steric Energy (MM2) = 9.3995 HMX - Hydroxylamine

 

Further comparing RDX and HMX, as well as their respective first tier reductive mononitroso and 
monohydroxylamine derivatives: the HMX structure has a higher heat of formation than that of RDX, 
which is to be expected as RDX is a smaller molecule. Using semiempirical methods of calculation, 
AM1, MNDO, PM3, and considering HOMO/LUMO energies, it was found that the heats of formation 
not only for HMX, but also its corresponding mononitroso and monohydroxylamine derivatives are 
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higher than for the corresponding mononitroso and monohydroxylamine derivatives of RDX. Also, 
mononitroso and monohydroxylamine heats of formation are comparable to each other—both in HMX 
and in RDX [56-59].  

Due to its size, the degradation of HMX is slower than that of RDX and is expected to show a 
slower disappearance in most media than RDX. (According to Heilmann et al, HMX disappearance via 
alkali hydrolysis is ten times slower than that of RDX [30]). HOMO energies of RDX and its                 
mononitroso and monohydroxylamine derivatives are shown to be more negative (have lower values) 
than HMX and its mononitroso and monohydroxylamine derivatives. Also, HOMO energies are lower 
for HMX and RDX than for their respective mononitroso and monohydroxylamine derivatives  
[56, 59].                                           

Moreover, both HMX and RDX are unlikely to form amine derivatives as TNT and other aromatic 
compounds tend to do. Being planar, aromatic compounds have intramolecular attraction between the 
hydrogen atoms of the methyl group and the ortho oxygen atoms of their adjacent nitro groups. The 
oxygen atoms on aromatic compounds are more electronegative and, therefore, the nitro groups tend to 
be reduced in steps to amines by addition of six protons, six electrons and loss of two water molecules. 
Aromatic nitro group oxygen atoms are more electronegatively charged than those of RDX. More 
importantly, RDX and HMX do not possess the π system and resonance stability that aromatic 
compounds do. These characteristics enable aromatic compounds to form an amine derivative, which 
RDX and HMX never reach, as they tend to degrade as nitroso and monohydroxylamine products  
[56, 59, 78-85].  

Stopped Flow analysis of HMX combined with NaOH shows the slow formation followed by the 
slow disappearance of a product in two steps. Stopped Flow data confirms that HMX is less reactive 
than RDX to alkaline hydrolysis [56, 59].  
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Figure 6a-b. Stopped flow graphs of HMX with various concentrations of NaOH at 229 nm. 

4.2.4 Toxicity considerations 

RDX and HMX are less apt to bind to media than TNT. Therefore, their dispersal into the 
environment and potential for toxic environmental interactions are expected to be greater. It is 
assumed, especially in the case of RDX, that conjugated π bonds may occur in its transformation 
products under high alkaline conditions. Therefore, because the E2 mechanism may become dominant 
over the substitution mechanism, transformation to small molecules may be hindered.  
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 RDX and HMX do not polymerize, as TNT can under certain circumstances, thus precluding 
environmental interaction due to polymerization.  

5 Cage cyclic nitramines                                                 

5.1 CL-20 (2,4,6,8,10,12-hexanitrohexa-azoisowurtzitane) 

5.1.2 Background 

CL-20 is a fairly recently synthesized NOC [97-100] and represents a newer generation of 
energetics expected to replace, at least partially, such older explosives as RDX and HMX in various 
applications. There is much current interest in the environmental interactions of CL-20 and its 
transformation derivatives as well as concern regarding environmental hazards, including potential 
harm to personnel. (For example, CL-20 was shown to be as toxic as nerve gas to segmented and non-
segmented worms [15].) Due to: CL-20 toxicity; the recalcitrance and toxicity of at least one 
degradation intermediate [57-58, 60, 63-65, 101]; and to CL-20’s potential usefulness—which should 
lead to its expanded presence in the environment—understanding the fate, transport and effects of CL-
20 [3, 5-6] and its transformation derivatives is essential.  

Examples of recent CL-20 research show a variety of approaches: photodegradation [3]; 
degradation in subsurface environments [5-6]; degradation through alkali hydrolysis [19, 57-58, 60, 
63-65, 101] biochemical degradation [45]; decomposition through use of iron [20]; comparisons with 
RDX as to structure and possible degradation pathways [84-86]; and predictive comparisons of cyclic 
and cage cyclic nitramines plus other computational approaches [55-58, 60, 63-65, 86-87, 93, 96].  

5.1.3 Structure 

 The first structural studies came out of China Lake where CL-20 was synthesized [97-100]. Later 
studies compared the cyclic nitramine, RDX, and new cage cyclic nitramine, CL-20, structurally, to 
ascertain possible similarities/differences in behavior [19, 55-56, 86]. RDX and CL-20 degradation 
pathways were compared through results of MOPAC quantum chemical methods and classical force 
field mechanics [55-56].  

As to geometrical structure, the CH-N-NO2 bonds are common to both compounds. However, CL-
20 is more complex than RDX due to the presence of its three C-C bonds, causing CL-20 to be more 
symmetrical and less polar. The “attic” bond joining the two cyclopentane rings and the two base 
bonds on opposite sides of the cyclohexane ring comprise these bonds. CL-20 is more sterically 
strained, has higher formation energy, and is denser than RDX [55-56, 86]. At first glance, the highly 
strained nature of the CL-20 molecule suggests that initial transformation reactions could be relatively 
rapid compared to those of RDX. Yet, CL-20's greater structural complexities, and SF rate 
calculations, indicated that complete transformation is expected to be slower than that of RDX [55-56, 
86]. Also, MOPAC energy calculations suggested RDX degradation to be less difficult than that of 
CL-20 due to the former involving fewer steps. Polarity and other features of CL-20 and RDX are 
compared in Figure 7. CL-20 bond lengths and charges in Figure 8 reveal that the C-C bonds are more 
stretched and longer than other bonds—to relieve molecular strain.  
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Figure 7. Comparisons between RDX and CL-20. 

5.1.4 Degradation mechanisms 

As with both TNT and RDX, CL-20 exhibits the same predominant and competitive modes of 
degradation that, again, depend on reaction conditions: i) addition of base utilizes hydroxylation to 
initiate proton abstraction via E2; ii) addition of base initiates nucleophilic substitution of nitro groups; 
iii) chemical and biochemical reduction; and iv) introduction of free radical producing agents to induce 
reactions [55-58, 86].  

It is more likely that the free radical symmetrical bond-breaking mechanism will occur with 
increase in number of symmetrical C-C bonds contained within the molecule. As with RDX, 
symmetrical bond breaking may occur simultaneously or sequentially [55-58]. Moreover, less polar 
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bonds have greater predisposition toward free radical bond breaking. Thus, under similar conditions, 
the higher the ratio of C-C bonds, the more likely it is that degradation will proceed via free radical 
oxidation. This is reflected in lower HOMO/LUMO energies, [55-58]. In addition, the more strained 
the molecular structure is, the greater is the affinity for free radical bond breaking via intersystem 
crossing to the triplet state, where changes in molecular geometry occur [55-58].  

 
  

 
 

Figure 8. CL-20 Charge Density. 
 

5.1.4.1 Transformation via alkali hydrolysis 

MOPAC [57-58], then DFT [63-65] computational studies identified the most likely CL-20 
transformation pathway and also predicted most likely transition states and intermediates. The lowest-
energy sequence of intermediates appears to constitute the pathway followed during CL-20 alkaline 
hydrolysis. As computationally predicted, the preferred bond-breaking is through the bond joining the 
“attic” peaks of the two clyclopentane rings and sequential peeling of the nitro groups. MOPAC 
theoretical studies [56-58] also unexpectedly predicted formation of an alkali hydrolysis CL-20 
aromatic transformation product appearing more recalcitrant and toxic than the parent due to the 
removal of the nitro groups and formation of a conjugated π system [56-58]. Szecsody’s findings [5-6] 
were consistent with these predictions. Okovyty [63, 65] and Kholod’s [64] DFT computational 
studies corroborated this resulting three-member ring pyrazine product, 1,3,4,5,7,8-
hexanitrododedahydroiimidazo[4,5-b;4’,5’-e]pyrazine, as having low formation and force field 
energies. Bond-breaking results in the stretching of the other two C-C bonds and also in stretching the 

Atom   Charge
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nitro group ring N-N bonds. Either OH- replaces the nitro groups or (preferred pathway) they abstract 
protons and eliminate nitro groups via the E2 mechanism [58]. Since calculations reveal that CL-20 
competing transformation mechanisms and intermediate products depend on numbers and sites of C-C 
bond-breaking, manipulation of C-C bond-breaking—to change preferred degradation pathways and 
make a less preferred mechanism dominant—can be accomplished [57-58].  

Spectroscopically obtained data confirmed CL-20 first-tier transformation products due to two 
competing modes of degradation through reactions due to addition of OH- and, in a different set of 
experiments, photo-induced free radicals. UV/VIS measured concentrations and followed the course of 
reactions while Stopped Flow (SF) followed the rates of CL-20 degradation to fast-forming transition 
states and intermediate products. FTIR followed CL-20 degradation through alkali hydrolysis, 
measuring changes in functional groups—nitro and amino as well as C-C and C-N bonds, thus 
indicating the breaking and formation of bonds as they occurred. Different compounds resulted, 
depending on which C-C bond broke [57-58].  

FTIR data [101] revealed that at lower OH- concentrations (less than 2:1 molar ratio of OH- to CL-
20), the resulting C-H bond stretch was most aliphatic (less than 3000 cm-1) while at higher OH- 
concentrations (1.0 N:1000 ppm of CL-20) the FTIR spectra revealed that most of the C-H stretch was 
greater than 3000 cm-1, indicating the formation of an aromatic intermediate with a C-C bond—similar 
to the TNT FTIR spectra [58]. FTIR data indicated a decrease in C-N intensity at 1049 cm-1. When 
reacted with high concentrations of OH- both UV and FTIR spectra of CL-20, strongly suggested the 
formation of an aromatic three-ring intermediate, 1,5-dihydrodiimidazo[4,5:4’5’-e]pyrazine. 
Formation of this aromatic structure is strongly supported by such UV/VIS spectral characteristics as 
the intense yellow-green (375 nm) color appearing when 1:1 by volume of 1.0 N NaOH was added to 
1000 ppm of CL-20 in dichloromethane. The FTIR spectra were obtained from the evaporated organic 
phase, whereas the UV/Vis spectra were obtained from the aqueous phase.  

Both pyrazine compounds are corroborated in the DFT studies of Okovytyy [63, 65] and Kholod 
[64]. UV spectra revealed a concentration-dependent shift toward longer wavelengths upon addition of 
OH-, suggesting sequential removal of nitro groups and formation of double bonds until the aromatic 
compound, 1,5-dihydrodiimidazo[4,5:4’5’-e]pyrazine, was formed [59]. However, upon further 
addition of OH-, an abrupt shift to shorter wavelengths occurred, suggesting a breaking of the 1,5-
dihydrodiimidazo[4,5:4’5’-e]pyrazine into smaller aromatic compounds.  

Breaking the other two C-C bonds of the cyclohexane ring resulted in different, less important non-
aromatic cyclic competing products of CL-20. Also, simultaneous breaking of both base C-C bonds 
results in a bi-cycloheptagonal ring intermediate, whereas breaking either of the base C-C bonds 
resulted in a compound consisting of two opposing cycloheptagonal rings, a cyclononagonal, and a 
cyclopentagonal ring [58-59]. 

5.1.4.2 Transformation via free radical reactions 

Free radical reactions were photo-induced through irradiation at wavelengths of maximum 
absorption (236 nm) via a monochromatic irradiation system. Calculations indicated [58-59] that the 
free radical mechanism is more apt to occur upon increase in number of symmetrical C-C (preferred) 
then N-N bonds contained within the molecule. Calculations indicated that the less polar the CL-20 
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bond is, the greater is the tendency toward free radical bond-breaking. As with RDX, bond-breaking 
can be either sequential or simultaneous [84-86]. Low HOMO/LUMO values indicated that predicted 
free radical C-C symmetrical bond-breaking degradation prevailed—probably via intersystem crossing 
to a triplet state, where bond strain was eased through changes in geometry, bond-breaking and 
formation of intermediates [58-59]. 

5.1.4.3 Potential toxicity 

Problems in assessing the toxicity of CL-20 and its intermediates in the environment are as great as 
the variety of possible reactive transitions. Also, transformation processes that may work in one mini-
environment may not work in another due to either apparent or obscure differences that cannot be 
controlled.  

Degradation processes, themselves, such as those producing free-radicals, may contribute to 
toxicity in the short run while producing desirable long term results. Free radicals are reactive and as 
such can affect type and degree of toxicity. Thus, non-ionic environmental media containing free 
radical inducing compounds (e.g., hydrogen peroxide, zero valent iron), also the presence of ultraviolet 
and visible light, can be expected to affect toxicity within the environment.  

5.2 ONC (octonitrocubane) 

Although categorized as a cage cyclic nitro energetic, ONC is not a nitramine since it has no amine. 
ONC has not yet been used as an explosive, and TNTAC has yet to be synthesized. However, their 
degradation mechanisms have been examined theoretically through both quantum and classical 
mechanics [55-56, 60, 86] and are compared to cage nitramines in Figure 1. 

5.2.1 Structure  

Of the compounds studied, only CL-20 and ONC have C-C bonds (Figure 1). ONC has twelve C-C 
and no N-N bonds. Since C-C bonds comprise the ONC cage, ONC is the most non-polar of the cage 
cyclic nitro compounds, and it is predicted that the free-radical C-C symmetrical bond-breaking 
degradation mechanism will prevail as indicated by low HOMO/LUMO values. This bond-breaking by 
a free radical mechanism may occur sequentially or simultaneously. Our energy calculations show that 
additional reactivity sites result at ONC bonds (as they do in CL-20) where stretching, symmetrical 
bond-breaking via intersystem-crossing to a triplet state, and production of intermediates occur [55-
56]. This stretching and symmetrical bond-breaking of the cage bonds alleviates bond strain. An 
additional factor contributing to ease of free radical bond-breaking in ONC is steric hindrance due to 
molecular strain—where extremely high MM2 values occur.  

Being non-polar and highly crowded with nitro groups, the main ONC sites of reactivity are the: 
cage C-C bonds; bonds between the cage carbon atoms; nitrogen atoms of the nitro groups; and, lastly, 
oxygen atoms of the nitro groups. Four ONC derivatives were studied via AM1 and MNDO [55-56], 
revealing highly non-polar compounds. Two occurred through free radical reactions with one 
derivative resulting from a broken C-C bond and the other resulting from the removal of a nitro group. 
The latter became 1,2,3,5,6,7,8 heptanitrocubane. Another derivative occurred through 
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hydroxylation—nucleophilic reactions (ONC – NO2 + OH -). The fourth derivative resulted from 
multiple reactions in which one NO2 and one C-C were removed. Depending on the attacking group, 
results indicate Fenton or photo-induced free radical reactions to be the most likely transformation 
methods of choice.                                                            

5.3 TNTAC (2,4,6,8-tetranitro 1,3,5,7-tetraaza-cubane) 

TNTAC and three of its derivatives were studied via MOPAC AM1 and MNDO. TNTAC, a cubane 
with four nitro groups emanating from the four cage carbon atoms, is comprised of alternating carbon 
and nitrogen atoms with nitro groups bonded only to the carbon atoms, Figure 1. Similar to ONC, the 
TNTAC nitro groups are attached to the carbon atoms of the cage (no N-N bonds), whereas HMX, 
RDX and CL-20 nitro groups are attached to the nitrogen atoms in the ring or cage. Each TNTAC 
carbon is bonded to four nitrogen atoms, three from the ring and one from the nitro group. All bonds 
are C-N bonds, with the cage C-N bonds being slightly longer and less polar within the molecule than 
those attached to the nitro groups [55-56]. According to our predictions, ONC and TNTAC exhibited 
the lowest HOMO/LUMO energies [55-56], but the highest formation energies, Figure 1. The latter 
makes TNTAC the hardest of the studied compounds to form. Although both ONC and TNTAC are 
non-polar, because their high degree of molecular symmetry cancels the effective polarity of their C-N 
bonds, TNTAC is the most non-polar. Due to: i) a high degree of symmetry; ii) even distribution of the 
charge among the C-N bonds; and iii) the molecules being highly strained, the free radical mechanism 
is likely to predominate in symmetrically breaking these C-N bonds.  

6. Conclusions and Summary 

Our hypothesis, proven computationally and spectroscopically, that molecular structure, under 
homologous conditions, determines preferred, theoretically predictable degradation pathways enables 
prediction of potential environmental impact of NOCs from their molecular structure. This hypothesis 
applies to the large number and structural variety of NOCs and their multivariate transformations as 
well as to both large and small molecules. Following the course and assessing degradation pathways of 
NOCs enables further predictions in terms of environmental risk—shortening research and application 
time and, thereby, expense through elimination of the chemically unfeasible. 

While use of computational predictive methods saves time, labor and cost by revealing possibilities 
which can be verified experimentally and further explored at different levels of computation, 
combining computational chemistry with experimental, particularly spectroscopic, techniques is 
appropriate not only to verify concept and predictive results, but also to determine what is chemically 
feasible, thus, providing a viable, powerful and relatively inexpensive tool which we highly 
recommend. This review of our computational and spectroscopic research described competitive 
degradation mechanisms of nitroaromatic and nitramine compounds by free radical oxidative, 
reductive and alkaline hydrolysis, relating them, when possible, to environmental risk. Problems in 
assessing the toxicity of NOCs and their intermediates in the environment are as great as the variety of 
possible reactive transitions. Also, transformation processes that may work in one mini-environment 
may not work in another due to either apparent or obscure differences difficult to control.  
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Listed are selected observations in brief: i) Polymerization can cause creation of toxic compounds, 
and some di-azo polymers of TNT can be expected to be toxic—similar to certain azo dyes. However, 
RDX and HMX do not polymerize; ii) OH- groups render molecules they are attached to more water 
soluble, facilitating metabolism; iii) Applicable to TNT, under certain conditions, two adjacent OH- 
can yield a water molecule and form an epoxy—a cause of carcinogenicity; iv) Ortho are generally 
more toxic than para substituted amines; v) Two adjacent hydroxyl groups or two hydroxyl groups 
para to each other may cause the aromatic parent compound to decompose into smaller molecules less 
toxic than the parent; vi) RDX and HMX are less apt to bind to media than TNT; therefore, their 
dispersal into the environment is expected to be greater; vii) Free radicals are reactive and as such can 
affect type and degree of toxicity. Thus, non-ionic environmental media containing free radical 
inducing compounds can be expected to affect environmental toxicity.  

As data is compiled and published, a theoretical framework develops that is expected to provide 
environmental scientists with means to predict, evaluate and develop new protocols for emerging 
NOCs and their environmental interactions for the purpose of developing capabilities to manage them.  
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