Supplementary Information

8-Fluoro-N-2-isobutyryl-2'-deoxyguanosine: synthesis and stability

Andrei Solodinin, James Helmkay, Samuel Ollivier, Hongbin Yan

Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario

L2S 3A1, Canada

List of figures

Figure S1. ¹H NMR of **6** in CDCl₃. Figure S2. ¹³C NMR of 6 in CDCl₃. Figure S3. COSY NMR of 6 in CDCl₃. Figure S4. HSQC NMR of 6 in CDCl₃. Figure S5. HMBC NMR of 6 in CDCl₃. **Figure S6**. ¹H NMR of **7** in CDCl₃. Figure S7. ¹³C NMR of 7 in CDCl₃. Figure S8. ¹⁹F NMR of 7 in CDCl₃. Figure S9. COSY NMR of 7 in CDCl₃. Figure S10. HSQC NMR of 7 in CDCl₃. Figure S11. HMBC NMR of 7 in CDCl₃. **Figure S12**. ¹H NMR of **4** in DMSO-d₆. Figure S13. ¹³C NMR of 4 in DMSO-d₆. **Figure S14**. ¹⁹F NMR of **4** in DMSO-d₆. Figure S15. COSY NMR of 4 in DMSO-d₆. Figure S16. HSQC NMR of 4 in DMSO-d₆. Figure S17. HMBC NMR of 4 in DMSO-d₆. Figure S18. ¹H NMR of 10 in CDCl₃. Figure S19. ¹³C NMR of 10 in CDCl₃. Figure S20. ¹⁹F NMR of 10 in CDCl₃. Figure S21. COSY NMR of 10 in CDCl₃. Figure S22. HSQC NMR of 10 in CDCl₃. Figure 23. HSOC NMR of 10 in CDCl₃. Figure S24. ¹H NMR of 11 in CDCl₃. Figure S25. ³¹P NMR of 10 in CDCl₃. Figure S26. ¹⁹F NMR of 10 in CDCl₃. Figure S27. COSY NMR of 10 in CDCl₃.

Figure S28. HPLC profile of the product where compound **4** was treated with concentrated aqueous ammonium hydroxide at 55°C overnight (as described in Scheme 3). The mixture was eluted off a Dionex Polar Advantage-2 C18 reverse phase column (4.6×150 mm) with a linear gradient of water–acetonitrile (100:0 to 60:40, v/v over 10 min) at 0.7 ml/min.

Figure S29. Mass spectra of products from the treatment of compound **4** with concentrated aqueous ammonium hydroxide at 55°C overnight. After the reaction mixture was cooled, it was lyophilized and purified by preparative C18-reverse phase column chromatography. a). Electrospray detected for positive ions (1.9-2.1min, background subtracted); b). zoomed-in portion, electrospray detected for positive ions (1.9-2.1min, background subtracted); c).

electrospray detected for negative ions (2.6-2.8 min, background subtracted); d). high-resolution EI analysis on m/z 265.

Figure S30. ¹H NMR of products from the treatment of compound **4** with concentrated aqueous ammonium hydroxide at 55°C overnight. After the reaction mixture was cooled, it was lyophilized and purified by preparative C18-reverse phase column chromatography. The spectrum was recorded in DMSO-d₆ at 400.2 MHz.

Figure S31. COSY NMR of products from the treatment of compound **4** with concentrated aqueous ammonium hydroxide at 55°C overnight. After the reaction mixture was cooled, it was lyophilized and purified by preparative C18-reverse phase column chromatography. The spectrum was recorded in DMSO-d₆ at 400.2 MHz.

Figure S1. ¹H NMR of 6 in CDCl₃.

Figure S2. ¹³C NMR of 6 in CDCl₃.

Figure S3. COSY NMR of 6 in CDCl₃.

Figure S4. HSQC NMR of 6 in CDCl₃.

Figure S5. HMBC NMR of 6 in CDCl₃.

Figure S6. ¹H NMR of 7 in CDCl₃.

Figure S8. ¹⁹F NMR of 7 in CDCl₃.

Figure S9. COSY NMR of 7 in CDCl₃.

Figure S10. HSQC NMR of 7 in CDCl₃.

Figure S11. HMBC NMR of 7 in CDCl₃.

Figure S12. ¹H NMR of 4 in DMSO-d₆.

Figure S13. ¹³C NMR of 4 in DMSO-d₆.

Figure S14. ¹⁹F NMR of 4 in DMSO-d₆.

Figure S15. COSY NMR of 4 in DMSO-d₆.

Figure S16. HSQC NMR of 4 in DMSO-d₆.

Figure S17. HMBC NMR of 4 in DMSO-d₆.

Figure S18. ¹H NMR of 10 in CDCl₃.

Figure S19. ¹³C NMR of 10 in CDCl₃.

Figure S20. ¹⁹F NMR of 10 in CDCl₃.

Figure S21. COSY NMR of 10 in CDCl₃.

Figure S22. HSQC NMR of 10 in CDCl₃.

Figure 23. HSQC NMR of 10 in CDCl₃.

Figure S24. ¹H NMR of 11 in CDCl₃.

Figure S25. ³¹P NMR of 10 in CDCl₃.

Figure S26. ¹⁹F NMR of 10 in CDCl₃.

Figure S27. COSY NMR of 10 in CDCl₃.

Figure S28. HPLC profile of the product where compound **4** was treated with concentrated aqueous ammonium hydroxide at 55°C overnight (as described in Scheme 3). The mixture was eluted off a Dionex Polar Advantage-2 C18 reverse phase column (4.6×150 mm) with a linear gradient of water–acetonitrile (100:0 to 60:40, v/v over 10 min) at 0.7 ml/min.

Figure S29. Mass spectra of products from the treatment of compound **4** with concentrated aqueous ammonium hydroxide at 55°C overnight. After the reaction mixture was cooled, it was lyophilized and purified by preparative C18-reverse phase column chromatography. a). Electrospray detected for positive ions (1.9-2.1min, background Subtracted); b). zoomed-in portion, electrospray detected for positive ions. (1.9-2.1min, background Subtracted); c). electrospray detected for negative ions (2.6-2.8 min, background Subtracted); d). high-res analysis on m/z 265.

Figure S30. ¹H NMR of products from the treatment of compound **4** with concentrated aqueous ammonium hydroxide at 55°C overnight. After the reaction mixture was cooled, it was lyophilized and purified by preparative C18-reverse phase column chromatography. The spectrum was recorded in DMSO-d₆ at 400.2 MHz.

Figure S31. COSY NMR of products from the treatment of compound 4 with concentrated aqueous ammonium hydroxide at 55°C overnight. After the reaction mixture was cooled, it was lyophilized and purified by preparative C18-reverse phase column chromatography. The spectrum was recorded in DMSO-d₆ at 400.2 MHz.