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Abstract: Polymeric nickel complexes of salen ligands meet a wide range of applications in catalysis
and electrochemistry. Because these polymers usually form very rigid films, the introduction of the
conformationally flexible fragments in the corresponding monomers favors the amorphization and,
thus, the mass transport. Herein we report a preparation of the hexyloxy-substituted monomeric
NiSalen complex by the direct alkylation of the hydroxy-substituted complex. The resulting product
was characterized by the 1H and 13C nuclear magnetic resonance (NMR), ESI-high resolution
mass spectrometry (ESI-HRMS, and Fourier-transform infrared spectroscopy (FTIR). The crystal
structure of the product was examined by an XRD, indicating the formation of the solvate with
dichloromethane. The obtained product was found to be highly soluble in non-polar solvents,
in contrast to typical NiSalens.
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1. Introduction

Nickel complexes of bis(salicylideniminato) ligands (NiSalens) have attracted significant attention
in the field of catalysis [1]. The most useful are the polymeric complexes of this type [2], which are
considered to be the materials for electrocatalytic [3,4] and photoelectrocatalytic [5] systems,
electrochemical sensors [6,7], electrochromic [8,9], and energy storage devices [10–13].

These polymeric complexes are known for unique properties, such as reversible electrochemical
oxidation in a wide range of potentials, thermal stability, high redox and electronic conductivity,
and high specific capacities [10,14,15]. Polymeric NiSalens met their application in Li-ion batteries as
cathode active materials [16] and binders [17].

Recently, the voltage-dependent electrical resistivity of these polymers were demonstrated [18].
In order to increase the potentioresistive response, introduction of the conformationally flexible groups
is highly required. Herein, we report the synthesis of NiSalen monomeric complex substituted with
hexyloxy fragments, namely 6,6′-{[ethane-1,2-diylbis(azaneylylidene)]bis(methaneylylidene)}bis[2-
(hexyloxy)phenolato] nickel(II) ([Ni(HexOSalEn)]), by the direct alkylation of the hydroxy-substituted
complex [Ni(HOSalEn)]. The obtained product was characterized with nuclear magnetic resonance
(NMR), high resolution mass spectrometry (HRMS), Fourier-transform infrared spectroscopy (FTIR)
spectra and crystal structure.
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2. Results

The [Ni(HOSalEn)] complex was subjected to an alkylation with 1-bromohexane while using
different reaction conditions (Scheme 1). Attempts of alkylation using the widely used system, NaH in
THF [19], failed due to the low solubility of the starting material. K2CO3 or Cs2CO3 in DMF or DMSO,
which are frequently exploited for the alkylation of phenols [20], afforded the desired product in low
yields (<10%). Addition of NaI had no effect on the reaction yield. Finally, NaH in DMF at 60 ◦C
afforded the [Ni(HexOSalEn)] complex in 79% yield after 2 days.
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protons at 7.87 ppm and a set of aromatic signals, 2H triplet at 6.49 ppm, and two 2H doublets at 6.66 
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(547.2077 as calcd. for C28H38N2NiO4Na+). Interestingly, no signal corresponding to an [M + H]+ ion 
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NiSalen, with the maxima at 349, 417, and 551 nm, and shoulders at 274 and 448 nm (Figure S5). 

A single crystal of [Ni(HexOSalEn)] was obtained by layer-by-layer technique from the solution 
of the pure compound in dichloromethane and the upside layer of hexane. According to the crystal 
structure (Figure 1), the product crystallizes with CH2Cl2 molecule per asymmetric unit. The Ni atom 
shows a nearly ideal square planar configuration, with the Ni···N distances comprise 1.8468(16) and 
1.8442(16) Å, Ni···O distances comprise 1.8425(13) and 1.8446(13) Å, and N-O-Ni angles comprises 
176.91 and 177.57 degrees. A notable Ni–Ni interaction was found, with the Ni···Ni distance of 
3.2811(5) Å. 

We demonstrate the possibility for the direct alkylation of [Ni(HOSalEn)] with hexyl bromide, 
which provides the facile one step route to the diversity of alkoxy substituted NiSalens and the 
polymers obtained thereof. The obtained complex may be used further in order to synthesize the 
polymeric materials for energy storage and electrocatalysis. 
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The product was purified by flash chromatography, followed by the crystallization from
hexane–dichloromethane mixture. The melting point of the product comprises 172–174 ◦C, which is
significantly lower as compared with typical NiSalen complexes, indicating an influence of the hexyloxy
groups. The 1H-NMR spectrum of the resulted complex (Figure S1) shows the typical set of hexyloxy
signals: 6H triplet at 0.74 ppm with 3JH-H = 6.8 Hz, 8H multiplet at 0.93–1.13 ppm, two 4H multiplets
in the ranges of 1.28–1.42 and 1.42–1.59 ppm, and smoothed triplet at 4.74 ppm, which is noticeably
shifted upfield when compared with the normal position of alkoxy methylene group. Additionally,
the ethylene bridge 4H singlet appears at 3.66 ppm, along with the 2H singlet of imine protons at
7.87 ppm and a set of aromatic signals, 2H triplet at 6.49 ppm, and two 2H doublets at 6.66 and
6.81 ppm, all with 3JH-H = 7.9 Hz. 13C-NMR spectrum (Figure S2) contains a set of hexyloxy peaks at
14.1, 22.6, 25.7, 27.9, 31.8, and 68.1 ppm, ethylene bridge signal at 59.0 ppm, six aryl peaks at 113.6,
115.2, 120.0, 123.5, 148.7, and 154.0 ppm, and the imine carbon signal at 163.0 ppm.

The exact mass of [M + Na]+ ion, determined by ESI-HRMS (Figure S3), was found to be 547.2072
(547.2077 as calcd. for C28H38N2NiO4Na+). Interestingly, no signal corresponding to an [M + H]+ ion
was detected, which indicates the strong binding of Na+ in the O,O,O,O cavity of the complex. The FTIR
spectrum recorded in KBr (Figure S4) contains the strong vibration at 1618 cm−1, which corresponds
to the C=N bond. UV-Vis spectrum in CHCl3 has a typical pattern for alkoxy-substitued NiSalen,
with the maxima at 349, 417, and 551 nm, and shoulders at 274 and 448 nm (Figure S5).

A single crystal of [Ni(HexOSalEn)] was obtained by layer-by-layer technique from the solution
of the pure compound in dichloromethane and the upside layer of hexane. According to the crystal
structure (Figure 1), the product crystallizes with CH2Cl2 molecule per asymmetric unit. The Ni atom
shows a nearly ideal square planar configuration, with the Ni···N distances comprise 1.8468(16) and
1.8442(16) Å, Ni···O distances comprise 1.8425(13) and 1.8446(13) Å, and N-O-Ni angles comprises
176.91 and 177.57 degrees. A notable Ni–Ni interaction was found, with the Ni···Ni distance of
3.2811(5) Å.

We demonstrate the possibility for the direct alkylation of [Ni(HOSalEn)] with hexyl bromide,
which provides the facile one step route to the diversity of alkoxy substituted NiSalens and the
polymers obtained thereof. The obtained complex may be used further in order to synthesize the
polymeric materials for energy storage and electrocatalysis.
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Figure 1. (a) ORTEP plot of the [Ni(HexOSalEn)]·CH2Cl2; (b) Ni-Ni dimer of the [Ni(HexOSalEn)]. 

3. Materials and Methods 

3.1. General Considerations 

Reagents of “reagent grade” purity were purchased from Sigma–Aldrich (Europe). 
[Ni(HOSalEn)] was obtained, as described in literature [21]. The Fourier transform infrared spectra 
were recorded on Shimadzu IRaffinity-1 FTIR spectrophotometer (Shimadzu Europa GmbH, Kyoto, 
Japan) in KBr pellets. UV-Vis spectra were recorded in CHCl3 solutions on Shimadzu UV-1800 
double-beam spectrophotometer (Shimadzu Europa GmbH, Kyoto, Japan) in 1 cm quartz cuvettes. 
1H and 13C-NMR spectra were acquired on a Bruker Avance 400 spectrometer (Bruker Analytische 
Messtechnik GmbH, Rheinstetten, Germany) at 400 and 101 MHz, respectively, in CDCl3 while using 
a residual solvent peak as internal standard. HRMS of the positive ions was recorded from the 
methanolic solution of the sample using electrospray ionization of on a Bruker micrOTOF apparatus 
(Bruker Analytische Messtechnik GmbH, Rheinstetten, Germany) in positive mode. 

X-ray single crystal analyses were performed on Agilent Technologies «Xcalibur» diffractometer 
(Agilent Technology, Santa Clara, CA, USA) with monochromated Mo Kα radiation. The temperature 
was kept at 100 K during data collection. The structure was solved while using Olex2 [22] and refined 
with the SHELXL [23] refinement package (G. Sheldrick, Gottingen, Germany) using Least Squares 
minimization. CCDC 2045743 contains the supplementary crystallographic data for this paper. These 
data can be obtained free of charge from The Cambridge Crystallographic Data Centre via 
http://www.ccdc.cam.ac.uk. 

3.2. Synthesis of 6,6′-{[Ethane-1,2-diylbis(azaneylylidene)]bis(methaneylylidene)}bis[2-(hexyloxy)phenolato] 
Nickel(II) 

To a stirred suspension of [Ni(HOSalEn)] (179 mg, 0.5 mmol) in 5 mL of dry DMF, NaH (60% 
susp. in oil, 44 mg, 1.1 mmol) was added in one portion under Ar, and then the mixture was stirred 
at 60 °C for 1 h. At this point, 1-bromohexane (155 µL, 182 mg, 1.1 mmol) was added in one portion, 
and the reaction mixture was stirred at 60 °C for 48 h under Ar. The reaction mixture was cooled to 
RT and then poured in 50 mL of H2O with 200 µL of AcOH. Sticky precipitate was collected by 

Figure 1. (a) ORTEP plot of the [Ni(HexOSalEn)]·CH2Cl2; (b) Ni-Ni dimer of the [Ni(HexOSalEn)].

3. Materials and Methods

3.1. General Considerations

Reagents of “reagent grade” purity were purchased from Sigma–Aldrich (Europe). [Ni(HOSalEn)]
was obtained, as described in literature [21]. The Fourier transform infrared spectra were recorded
on Shimadzu IRaffinity-1 FTIR spectrophotometer (Shimadzu Europa GmbH, Kyoto, Japan) in
KBr pellets. UV-Vis spectra were recorded in CHCl3 solutions on Shimadzu UV-1800 double-beam
spectrophotometer (Shimadzu Europa GmbH, Kyoto, Japan) in 1 cm quartz cuvettes. 1H and 13C-NMR
spectra were acquired on a Bruker Avance 400 spectrometer (Bruker Analytische Messtechnik GmbH,
Rheinstetten, Germany) at 400 and 101 MHz, respectively, in CDCl3 while using a residual solvent
peak as internal standard. HRMS of the positive ions was recorded from the methanolic solution of
the sample using electrospray ionization of on a Bruker micrOTOF apparatus (Bruker Analytische
Messtechnik GmbH, Rheinstetten, Germany) in positive mode.

X-ray single crystal analyses were performed on Agilent Technologies «Xcalibur» diffractometer
(Agilent Technology, Santa Clara, CA, USA) with monochromated Mo Kα radiation. The temperature
was kept at 100 K during data collection. The structure was solved while using Olex2 [22] and
refined with the SHELXL [23] refinement package (G. Sheldrick, Gottingen, Germany) using Least
Squares minimization. CCDC 2045743 contains the supplementary crystallographic data for this paper.
These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via
http://www.ccdc.cam.ac.uk.

3.2. Synthesis of 6,6′-{[Ethane-1,2-diylbis(azaneylylidene)]bis(methaneylylidene)}bis[2-(hexyloxy)phenolato] Nickel(II)

To a stirred suspension of [Ni(HOSalEn)] (179 mg, 0.5 mmol) in 5 mL of dry DMF, NaH (60% susp.
in oil, 44 mg, 1.1 mmol) was added in one portion under Ar, and then the mixture was stirred at 60 ◦C
for 1 h. At this point, 1-bromohexane (155 µL, 182 mg, 1.1 mmol) was added in one portion, and the
reaction mixture was stirred at 60 ◦C for 48 h under Ar. The reaction mixture was cooled to RT and
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then poured in 50 mL of H2O with 200 µL of AcOH. Sticky precipitate was collected by decantation,
washed with water, and dried at 50 ◦C on air. The dried residue was refluxed in hexane, cooled to RT,
filtered, and washed with hexane. The obtained precipitate was purified on a short chromatographic
column (SiO2, DCM→ DCM + 2% MeOH), evaporated, and crystallized while using layer-by-layer
crystallization technique from 5 mL of DCM layered with 25 mL of hexane to obtain a desired product
as brown crystalline solid (207 mg, 0.395 mmol, 79%).

M.p. 172–174 ◦C (hexane-DCM). 1H-NMR (400 MHz, CDCl3) δ, ppm: 7.87 (s, 2H, imine),
6.81 (d, J = 7.9 Hz, 2H, Ar), 6.66 (d, J = 7.9 Hz, 2H, Ar), 6.49 (t, J = 7.9 Hz, 2H, Ar), 4.83–4.63
(m, 4H, -OCH2-), 3.66 (s, 4H, bridge), 1.42–1.59 (m, 4H, alkyl), 1.28–1.42 (m, 4H, alkyl), 0.93–1.13
(m, 8H, alkyl), 0.74 (t, J = 6.8 Hz, 6H, -CH3). 13C-NMR (101 MHz, CDCl3) δ, ppm: 163.0 (imine),
154.0 (Ar), 148.7 (Ar), 123.5 (Ar), 120.0 (Ar), 115.2 (Ar), 113.6 (Ar), 68.1 (-OCH2-), 59.0 (bridge),
31.8 (alkyl), 27.9 (alkyl), 25.7 (alkyl), 22.6 (alkyl), 14.1 (-CH3). FTIR (KBr)
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