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Abstract: In the present Short Note, we report a synthesis for the title compound, N-(9,10-
dioxo-9,10-dihydroanthracen-1-yl)-2-methylbenzamide by reacting 2-methylbenzoyl chloride (or
2-methylbenzoic acid) with 1-aminoanthraquinone. The synthesized target compound was fully
characterized by various spectroscopic methods (1H-NMR, 13C-NMR, IR, GC-MS). The importance
of this compound lies its possession of an N,O-bidentate directing group, potentially suitable for
metal-catalyzed C-H bond functionalization reactions.

Keywords: organic synthesis; bidentate directing groups; benzamides; chelation-assistance; bis-chelates;
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1. Introduction

Functionalization of inert nonreactive C-H Bonds [1,2] has emerged as a powerful strategy for
expedient chemical bonds. The chemical science avoids prefunctionalized reagents or materials and
thus provides rapid access to desired products and synthetic targets. The functionalization of C-H
bonds could result in a reduction in waste and saving of materials/chemicals as well as shortening the
number of steps in chemical synthesis or step-economy. Therefore, functionalization of C-H bonds
could be environmentally benign approach and thus a green science.

The main challenge in functionalization of C-H bonds is controlling which C-H bond would
undergo activation or cleavage or site-selectivity [3,4]. One approach to help provide regiocontrol is the
use of groups that can direct the reaction to occur at a specific C-H bond. Thus, directing groups have
been developed as demonstrated by monondentate [5,6] and bidentate directing groups [7]. The key
role of directing groups is chelation-assistance which could promote formation of cyclometallated
complexes. The Lewis-basic directing group coordinates the Lewis-acidic metal bringing it in
proximity to C-H bonds to be functionalized. The thermodynamic stability of cyclometallated
complexes determines which C-H bonds are to be cleaved and thus functionalized. Specifically,
relative thermodynamic stability favors formation of five-membered chelates, allowing the formation
of mono five-membered-chelate (1, Figure 1) and double-five-membered chelates (2, Figure 1) by using
monodentate and bidentate directing groups, respectively (Figure 1) [8].

Figure 1. Mono five-membered and double five-membered chelates.
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Directing-group-assisted C-H bond functionalization usually occurs at the γ–carbon with respect
to the C bearing Z, the first Lewis basic atom. Thus, there is a two-carbon distance between Z and
C-H to be cleaved and functionalized. Such structural requirements have triggered design of novel
bidentate directing groups represented by modular triazole-based directing. [9,10]

In continuation of our program [11,12] in the design of novel directing groups potentially applicable
in metal-catalyzed C-H bond functionalization, we report herein a design-based benzamide bearing
1-aminoanthraquinone (3, Figure 2), a potential N,O-bidentate directing groups for metal-catalyzed
C-H bond functionalization. The aminodiketone is commercially available from the Aldrich chemical
company at a cheap price rate of 0.092 EUR/mmol (0.412 EUR/g).

Figure 2. 1-Aminoanthraquinone.

It was envisaged that amides bearing 1-aminoanthraquinone (4, Scheme 1) could undergo
metal-catalyzed C-H bond functionalization, to possibly provide functionalized amides (6) via
postulated intermediate bis-chelate (5) (Scheme 1). The possession of the 1-aminoanthraquinone
amides of N and O separated by three carbons could promote the functionalization of C-H bonds after
C-H bond cleavage at the γ–position, through the bis-chelate shown (5, Scheme 1).

Scheme 1. Potential use of 1-aminoanthrtaquionone amides in the metal catalyzed C-H bond
functionalization reactions.

Toward the end of investigating the use of 1-aminoanthrtaquinone amides as potential bidentate
directing groups in C-H bond functionalization reactions, we have embarked on their synthesis. Thus,
herein we describe the synthesis of 1-methylbenzamide bearing 1-aminoanthraquinone, a potential
N,O-bidentate directing group in metal-catalyzed C-H bond functionalization. Toward that end, the
title compound, N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)-2-methylbenzamide (7, Figure 3), was
synthesized and is reported herein.
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Figure 3. The presented title compound, N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)-2-methylbenzamide.

It is noteworthy that the target benzamide does appear on SciFinder search database. However,
to the best of our knowledge, its preparation has not been reported or referenced on the database.
Accordingly, the present Short Note provides a detailed synthesis of the benzamide and its complete
spectral characterization by various spectroscopic methods.

2. Results and Discussion

In order to synthesize amides bearing 1-aminoanthraquinone, the corresponding acid chloride
were treated with the amine. The synthesis of the title compound, N-(9,10-dioxo-9,10-dihydroanthracen-
1-yl)-2-methylbenzamide (7), was achieved by reacting o-toluoyl chloride (2-methylbenzoyl chloride)
(8, Scheme 2) with 1-aminoanthraquinone (3, Scheme 2) under standard amide formation reaction
conditions to afford the corresponding target benzamide (7) in 94% yield.

Scheme 2. Synthesis of N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)-2-methylbenzamide from
2-methylbenzoyl chloride.

For comparison purposes, the synthesis of the target compound (7) was carried out by coupling
the corresponding, relatively cheaper carboxylic acid with 1-aminoanthraquinone. Thus a mixture
of 2-methylbenzoic acid (9, Scheme 3) and 1-aminoanthraquinone (3) was treated with the coupling
agent; DCC (dicyclohexylcarbodiimide) in the presence of DMAP (4-N,N-dimethylaminopyridine) to
give the desired title compound, N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)-2-methylbenzamide (7), in
24% yield.

Scheme 3. Synthesis of N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)-2-methylbenzamide (7) from
2-methylbenzoic acid.

Consequently, the synthesis of the target amide is better achieved using the acid chloride method
illustrated above (Scheme 2). The amide product was characterized by various spectroscopic methods;
1H-NMR, 13C-NMR, IR and GC-MS analysis.
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3. Materials and Methods

3.1. General Methods

All chemicals, reagents and solvents were purchased from chemical companies (Sigma-Aldrich
Chemie GmbH, Taufkirchen, Germany) and were used as received without prior purification. Reactions
that required dry conditions were performed in an inert atmosphere with Ar gas. Syringes and needles
for the transfer of reagents were oven dried and cooled in a desiccator over silica gel before use.
The reaction’s progress was monitored by thin-layer chromatography (TLC) on glass plates pre-coated
with Merck silica gel. TLC plates were examined under UV lamplight (UVGL-58 Handheld 254/365 nm,
UVP, Upland, CA, USA). Büchi-USA rotary evaporators (Büchi, Flawil, Switzerland) were used to
evaporate solvents using appropriate temperatures. Flash column chromatography was performed
using silica gel (Kieselgel) (70–230) (Merck KGaA, Darmstadt, Germany) mesh as an adsorbent.
The purified products were characterized using analyses NMR (1H-NMR, 13C-NMR), IR, mass spectra
and melting points. Melting points were recorded on the GallenKamp-MPd350.bm2.5 melting point
apparatus (Gallenkamp, Kent, UK). Attenuated total-reflectance IR spectra were recorded on pure
samples on Agilent Technologies Cary 630 FTIR (Agilent, Santa Clara, CA, USA). 1H-NMR spectra
were recorded in CDCl3 on JEOL ECX-400 spectrometers (JEOL Ltd., Tokyo, Japan). 1H-NMR chemical
shifts (δ) were assigned in part per million (ppm) downfield using an internal standard trimethylsilane
(TMS) and were referenced to CDCl3, δ = 7.24. Abbreviations s, d, t, q, quin, sept and m refer to singlet,
doublet, triplet, quartet, quintet, septet and multiplet, respectively. Chemical shifts in 13C spectra (175
MHz) (JEOL Ltd., Tokyo, Japan). were quoted in ppm and referenced to the central line of the CDCl3
triplet, δ C 77.0. Coupling constants (J) were recorded in hertz (Hz). GC-MS spectra were obtained
using an Agilent mass spectrometer (Agilent, Santa Clara, CA, USA) (Supplementary Materials).

3.2. Synthesis of N-(9,10-Dioxo-9,10-dihydroanthracen-1-yl)-2-methylbenzamide (7)

2-Methylbenzoyl chloride (8) (1.30 mL, 9.86 mmol) was added dropwise under an atmosphere
of N2 into a cold (0 ◦C ice-water bath) solution of 1-aminoanthraquinone (3) (1.10 g, 5.00 mmol), in
CH2Cl2 (20 mL). Et3N (1.40 mL, 10.0 mmol) was then added to the 0 ◦C mixture under N2. The mixture
was stirred for 1 h at 0 ◦C, allowed to warm up to room temperature and then stirred for an additional
23 h. To the reaction mixture, water (30 mL) was added, followed by aqueous saturated NaHCO3

solution (30 mL). The mixture was extracted with CH2Cl2 (3 × 30 mL). The combined organic extracts
were washed with water (50 mL) and brine (50 mL) and then dried over anhydrous MgSO4 and filtered.
Recrystallization of the crude product from CH2Cl2:hexane, gave the title compound (7) as a yellow
solid (1.60 g, 94%); Rf = 0.37 (hexane/EtOAc, 1:2). Mp = 187.5–188.7 ◦C. 1H-NMR (400 MHz, CDCl3)
δ 9.29 (d, J = 8.7 Hz, 1H), 8.30–8.22 (m, 2H), 8.04 (d, J = 7.3 Hz, 1H), 7.92 (d, J = 6.4 Hz, 2H), 7.77
(t, J = 7.1 Hz, 4H), 7.46–7.39 (m, 2H), 2.48 (s, 3H); 13C-NMR (101 MHz, CDCl3) δ 187.6, 182.7, 166.8,
142.5, 138.9, 136.0, 134.5, 134.4, 134.1, 133.2, 132.8, 131.8, 130.9, 128.9, 128.6, 127.5, 127.1, 126.3, 124.6,
122.7, 117.9, 21.6; IR (film): ν max/cm−1: 3424, 3198, 1690, 1662, 1576. MS (EI) m/z (relative intensity):
341 (18), 281 (45), 262 (24), 207 (95), 191 (18), 147 (18), 119 (100), 91 (64). Elemental analysis, calculated:
C (77.41), H (4.43), N (4.10), found: C (77.39), H (4.40), N (4.06).

4. Conclusions

In our continuing program of the design of directing groups suitable for metal-catalyzed
C-H bond functionalization reactions, a synthesis of a design-based amide, bearing N,O-directing
group bearing the commercially cheap 1-aminoanthraquinone is reported. Thus, the target title
compound, N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)-2-methylbenzamide, was synthesized in 94%
yield from 2-methylbenzoyl chloride and 1-aminoanthraquinone. The compound was characterized
by various spectroscopic methods (1H-NMR, 13C-NMR, IR, and GC-MS analysis. With bearing
1-aminoanthraquinone in hand, work is currently underway to investigate their N,O-bidentate
directing group-potential in metal-catalyzed C-H bond functionalization reactions.
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Supplementary Materials: The following are available online. Figure S1: 1H-NMR of N-(9,10-Dioxo-9,10-
dihydroanthracen-1-yl)-2-methylbenzamide. Figure S2. 13C-NMR of N-(9,10-Dioxo-9,10-dihydroanthracen-1-yl)-
2-methylbenzamide. Figure S3. IR NMR of N-(9,10-Dioxo-9,10-dihydroanthracen-1-yl)-2-methylbenzamide.
Figure S4. GC-MS of N-(9,10-Dioxo-9,10-dihydroanthracen-1-yl)-2-methylbenzamide.
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