
molbank

Communication

Unexpected Metal-Free Dehydrogenation of a β-Ketoester to a
Phenol Using a Recyclable Oxoammonium Salt

Fabrizio Politano , William P. Brydon, Jyoti Nandi and Nicholas E. Leadbeater *

����������
�������

Citation: Politano, F.; Brydon, W.P.;

Nandi, J.; Leadbeater, N.E.

Unexpected Metal-Free

Dehydrogenation of a β-Ketoester to

a Phenol Using a Recyclable

Oxoammonium Salt. Molbank 2021,

2021, M1180. https://doi.org/

10.3390/M1180

Academic Editors: Stefano D’Errico

and Annalisa Guaragna

Received: 23 December 2020

Accepted: 7 January 2021

Published: 13 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269-3060, USA;
fabrizio.politano@uconn.edu (F.P.); william.brydon@uconn.edu (W.P.B.); jyoti.nandi@uconn.edu (J.N.)
* Correspondence: nicholas.leadbeater@uconn.edu

Abstract: The conversion of ethyl 2-oxocyclohexanecarboxylate to ethyl salicylate using an oxoam-
monium salt is reported. The dehydrogenation reaction is operationally simple and compares
favorably with previous literature examples for the same transformation and expands the scope of
oxoammonium salts as reagents for oxidative functionalization processes.
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1. Introduction

Oxoammonium salts are stable, metal-free oxidants that are recyclable and can be
used under mild conditions. They and their nitroxide analogs have been employed ex-
tensively for the oxidation of alcohols to aldehydes, ketones, and carboxylic acids [1–7].
The most widely used oxoammonium salt is 4-acetamido-2,2,6,6-tetramethylpiperidine-1-
oxoammonium tetrafluoroborate, 1 (Figure 1) [7]. Moving beyond simple alcohol oxidation,
1 can also be used as a reagent for a range of oxidative functionalization reactions [8–11].
These include oxidative esterification [12], amidation [13], and the preparation of nitriles
from aldehydes [14]. It is also possible to couple 1 with visible-light photocatalysis in a dual
catalytic system [15–22]. When using 1 in a stoichiometric perspective, one transformation
of particular interest is the dehydrogenation of ketones (Scheme 1) [23,24].
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Figure 1. Oxoammonium salt 1 and its hydroxyammonium and nitroxide analogs 2, and 3. 
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Scheme 1. Dehydrogenation of ketones using oxoammonium salt 1. 
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Figure 1. Oxoammonium salt 1 and its hydroxyammonium and nitroxide analogs 2, and 3.
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Scheme 1. Dehydrogenation of ketones using oxoammonium salt 1. 
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Ene-triketones have been prepared by oxidation of diketones [25], and perfluoroalkyl
ketones can be converted to their α,β-unsaturated analogs [26]. Reactions are performed in
the presence of a nitrogenous base such as pyridine or 2,6-dimethylpyridine (2,6-lutidine).
A superstoichiometric quantity of the oxoammonium salt is required because, in the
presence of a base, the hydroxyammonium byproduct, 2, initially formed undergoes a
comproportionation reaction with a further aliquot of 1 to generate two equivalents of
nitroxide 3 [27,28]. Thus, a sacrificial equivalent of 1 is required in order to affect complete
dehydrogenation of the substrate. The spent oxidant can be easily removed by filtration at
the end of a reaction and converted back to 1 [29].

In an attempt to expand the scope of previous methodologies, we sought to use 1 for
the dehydrogenation of a range of cyclohexanones. This transformation is traditionally
performed using hypervalent iodine reagents [30] or by palladium catalysis [31]. We
wanted to see if 1 could be used as an environmentally benign alternative. As a sharpening
stone for probing this reaction, our attention focused on ethyl 2-oxocyclohexanecarboxylate,
4, as a substrate. However, rather than obtaining ethyl 2-oxo-3-cyclohexene-1-carboxylate,
5, as the product, we observed the formation of ethyl salicylate, 6, a well-known phenolic
compound (Scheme 2) [32–36]. We report this serendipitous discovery here.
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2. Results and Discussion

Our discovery arose when we performed the reaction of 4 with 3.6 eq. of 1, using 5 eq.
of 2,6-lutidine as a base. Heating an acetonitrile solution of the reagents at 50 ◦C for 96 h led
to an almost equimolar ratio of phenol 6 and unreacted starting material 4 (Table 1, entry
1). Increasing the loading of 1 to 7.5 eq. and reducing the reaction time to 24 h, resulted
in complete conversion to 6 (entry 2). Performing the reaction in absence of 2,6-lutidine
was not successful, indicating the importance of the base (entry 3). Reducing the reaction
temperature to 25 ◦C slowed the reaction considerably, it taking 72 h to reach completion
(entries 4 and 5). Operating at 50 ◦C but reducing the oxoammonium salt loading to 5 eq.
required extending the reaction time to 72 h (entry 6). Attempts to perform the reaction
catalytically in 1 using a number of secondary oxidants were not successful. In order to
improve the efficacy of the stoichiometric protocol, we wanted to reduce the reaction time.
To achieve this, we turned to using microwave heating under sealed-vessel conditions as
a tool. This way we were able to reach 100 ◦C simply and safely and could reduce the
reaction time from 24 h to 30 min and obtain a near-quantitative conversion (entry 7). These
became the optimal conditions for the protocol.

Our attention turned next to the isolation of the phenol from the product mixture.
With an organic base and byproducts from the oxoammonium salt in the mixture, isolation
of 6 involved a series of extractions. The product mixture was first diluted with water
and then dilute hydrochloric acid added. An extraction with petroleum ether removed
non-acidic byproducts. The organic layer was then washed with dilute sodium hydroxide
in order to extract the product as the phenoxide anion into the aqueous phase and leaving
organic byproducts, spent oxidant, and any unreacted starting material in the organic
phase. Acidification of the aqueous extract with dilute hydrochloric acid liberated the
phenol which was then extracted using petroleum ether. Removal of the solvent gave 6 in
40% isolated yield.
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Table 1. Optimization of reaction conditions for the conversion of β-ketoester 4 to phenol 6 a.

Entry 1 (eq.) 2,6-Lutidine (eq.) Temperature (◦C) Time (h) Conversion to 6 (%) b

1 3.6 5 50 96 51
2 7.5 5 50 24 100
3 7.5 0 50 24 0
4 7.5 5 25 72 53
5 7.5 5 25 72 95
6 5.0 5 50 72 92

7 c 7.5 5 100 0.5 100
a Reagents and conditions: ethyl 2-oxocyclohexanecarboxylate (4, 0.5 mmol, 1 eq.), acetonitrile (2 mL, 0.25 M in
4), requisite quantity of 1 and 2,6-lutidine, stirred at the desired temperature in an oil bath for the allotted time.
b Determined using GCMS. c Performed using microwave heating.

The fact that phenol 6 is formed in the reaction of 4 with 1 is noteworthy in light of the
two other literature reports of this transformation. One employs an o-iodoxybenzoic acid
derivative bearing a trimethylammonium group [30]. A comparable yield of 6 is obtained
in the oxidative dehydrogenation of 4. The other approach involves the use of 10 mol%
of palladium chloride in conjunction with 2 eq. of chloranil as a terminal oxidant [31].
The phenol product is obtained in 95% yield after 18 h. Compared to these reports, our
methodology has the advantage that it is metal-free and that the oxidant is cheaper, easier
to use, recyclable, and non-toxic.

3. Materials and Methods
3.1. General

All microwave-heating reactions were performed using a CEM Discover SP microwave
unit (CEM Corporation, Matthews, NC, USA), in closed-vessel configuration. Temperature
was measured by means of an IR temperature sensor located below the reaction vessel.
NMR spectra (1H, 13C) were obtained in deuterated chloroform at 300 K using a Brüker
DRX-400 400 MHz spectrometer (Brüker, Billerica, MA, USA). 1H-NMR spectra were
referenced to residual CHCl3 (7.26 ppm) in CDCl3. 13C-NMR spectra were referenced to
CDCl3 (77.16 ppm). Reactions were monitored by an Agilent Technologies (Santa Clara,
CA, USA) 7820A Gas Chromatograph attached to a 5975 Mass Spectrometer.

3.2. Chemicals

Ethyl 2-oxocyclohexanecarboxylate [CAS 1655-07-8] was purchased from Acros Organ-
ics (Geel, Belgium). 2,6-lutidine [CAS 108-48-5] was purchased from Oakwood Chemical
(Estill, SC, USA). Acetonitrile [CAS 75-05-8] was obtained from Sigma-Aldrich
(St. Louis, MO, USA). Petroleum ether [CAS 8032-32-4] was purchased from Fisher Scien-
tific (Hampton, NH, USA). Deuterated chloroform (CDCl3) [CAS 865-49-6] was purchased
from Cambridge Isotope Laboratories (Tewksbury, MA, USA). Oxoammonium salt, 1, [CAS
219543-09-6] was prepared using a literature procedure [29].

3.3. Synthesis of Ethyl Salicylate (6) [CAS 118-61-6]

Ethyl 2-oxocyclohexanecarboxylate [CAS 1655-07-8] (4, 1 mmol, 1 eq), 2,6-lutidine [CAS
108-48-5] (5 mmol, 5 eq), 4-acetylamino-2,2,6,6-tetramethylpiperidine-1-oxoammonium
tetrafluoroborate (1, 7.5 mmol, 7.5 eq), acetonitrile (3 mL) and deionized water (1 mL) were
added to a 40 mL-capacity glass tube equipped with a magnetic stir bar. The reaction
mixture was sealed with a cap and placed into a CEM Discover SP microwave unit. The
content of the vessel was heated to 100 ◦C and held at this temperature for 30 min, the
microwave power automatically fluctuating to hold the reaction mixture at the desired
temperature. The reaction mixture was stirred constantly. After the allotted time, the
reaction mixture was allowed to cool to below 50 ◦C before taking the vessel out of the
microwave unit. An intensely colored solution was obtained at this point. The product
mixture was transferred from the glass tube to a separatory funnel whereupon water
(2 mL) was added, followed by 1 M HCl (5 mL). An extraction with petroleum ether was



Molbank 2021, 2021, M1180 4 of 5

performed (5 × 10 mL) in order to remove non-acidic byproducts. The organic layer was
then washed with 0.5 M NaOH (2 × 25 mL) in order to extract the product in phenoxide
anion form. At this point the color of the solution changed from yellow to green. The two
basic aqueous fractions were collected and acidified with 2 M HCl until a pH of less than 3
was reached (~30 mL acid). At this point the solution turned a cloudy yellow color. This
solution was extracted with petroleum ether (3 × 30 mL). The combined organic extracts
were washed with brine (~30 mL) and dried over Na2SO4. The solvent was removed under
reduced pressure by rotary evaporation affording pure phenol 6 as a yellow oil (66 mg,
40%). 1H-NMR (400 MHz, CDCl3): δ ppm 10.84 (s, 1H), 7.85 (dd, J = 8.0, 1.8 Hz, 1H),
7.45 (ddd, J = 8.8, 7.2, 1.8 Hz, 1H), 6.98 (dd, J = 8.4, 1.1 Hz, 1H), 6.88 (ddd, J = 8.2, 7.2, 1.1
Hz, 1H), 4.41 (q, J = 7.1 Hz, 2H), 1.42 (t, J = 7.1 Hz, 3H).13C-NMR (101 MHz, CDCl3): δ
ppm 170.36, 161.83, 135.73, 130.05, 119.22, 117.70, 112.79, 77.48, 77.16, 76.84, 61.55, 14.33.
GC-MS: (EI), m/z (relative intensity, %), 166 ([M]+, 39), 121 (28), 120 (100), 92 (37), 65
(11). Spectral data for this compound are consistent with those previously reported [37,38]
(Supplementary Materials).

4. Conclusions

In summary, we report the conversion of β-ketoester 4 to a phenol 6 using oxoammo-
nium salt 1. The reaction is operationally simple and compares favorably with previous
literature examples for the same transformation. This serendipitous discovery opens the
door to further exploration of the dehydrogenation of ketones to generate phenol products
and work is currently underway in our laboratory to this end.

Supplementary Materials: The following are available online. 1H- and 13C-NMR, and GCMS spectra
of product 6.
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