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Abstract: The reaction of tetracyanoethylene (TCNE) with HCl (g) in the presence of Sn (1 equiv) and
AcOH resulted in 2-amino-5-chloro-1H-pyrrole-3,4-dicarbonitrile in a 74% yield. The compound was
fully characterized.
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1. Introduction

Pyrroles are important aromatic N-heterocycles that exist in nature, for example, as
components of the well-known ligand heme (Figure 1). Pyrroles also have wide pharma-
ceutical applications with examples of pyrrole containing drugs being the nonsteroidal
anti-inflammatory drug tolmetin and the lipid-lowering agent atorvastatin (Figure 1).
Other uses of pyrroles include insecticides [1], dyes [2] and polymers [3]. The chemistry of
pyrroles has been reviewed [4].
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1. Introduction 
Pyrroles are important aromatic N-heterocycles that exist in nature, for example, as 

components of the well-known ligand heme (Figure 1). Pyrroles also have wide pharma-
ceutical applications with examples of pyrrole containing drugs being the nonsteroidal 
anti-inflammatory drug tolmetin and the lipid-lowering agent atorvastatin (Figure 1). 
Other uses of pyrroles include insecticides [1], dyes [2] and polymers [3]. The chemistry 
of pyrroles has been reviewed [4]. 
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Figure 1. Pyrroles in nature and in drugs. 

2. Results and Discussion 
Our interest in pyrroles began with 4,8-dichloropyrrolo [2’,1’:2,3]imidazo [4,5-c]-

[1,2,6]thiadiazine-6,7-dicarbonitrile (1), a compound that was isolated in low yield from 
the chloride-catalyzed degradation of tetrachlorothiadiazine (2) [5] (Scheme 1). We be-
lieved that the formation of tricycle 1 in this reaction involved the in situ generation of 2-
amino-5-chloro-1H-pyrrole-3,4-dicarbonitrile (3) under the reaction conditions. 
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Figure 1. Pyrroles in nature and in drugs.

2. Results and Discussion

Our interest in pyrroles began with 4,8-dichloropyrrolo [2′,1′:2,3]imidazo [4,5-c]-
[1,2,6]thiadiazine-6,7-dicarbonitrile (1), a compound that was isolated in low yield from
the chloride-catalyzed degradation of tetrachlorothiadiazine (2) [5] (Scheme 1). We be-
lieved that the formation of tricycle 1 in this reaction involved the in situ generation of
2-amino-5-chloro-1H-pyrrole-3,4-dicarbonitrile (3) under the reaction conditions.

The chloropyrrole 3 appears in the patent literature where it is claimed to be synthe-
sized in a three-step synthesis starting from 1H-pyrrole-3,4-dicarbonitrile (4) (Scheme 2),
but no experimental details or characterization data are reported [6–14]. Interestingly,
the chloropyrrole 3 was used as a scaffold for the synthesis of dyes, such as ylidene 5
(Scheme 2), used in color photography [6–14], while it is also commercially available (CAS:
152586-70-4).
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Scheme 1. Isolation of dicyanopyrrole 1 from tetrachlorothiadiazine 2. 

The chloropyrrole 3 appears in the patent literature where it is claimed to be synthe-
sized in a three-step synthesis starting from 1H-pyrrole-3,4-dicarbonitrile (4) (Scheme 2), 
but no experimental details or characterization data are reported [6–14]. Interestingly, the 
chloropyrrole 3 was used as a scaffold for the synthesis of dyes, such as ylidene 5 (Scheme 
2), used in color photography [6–14], while it is also commercially available (CAS: 152586-
70-4). 

 
Scheme 2. The claimed patented synthesis of chloropyrrole 3 and its use to prepare ylidene 5. 

To attempt a higher yielding semi-independent synthesis of tricycle 1, we decided to 
develop a simpler synthesis of chloropyrrole 3. Since the full synthesis and experimental 
data of analogous 2-amino-5-bromo-1H-pyrrole-3,4-dicarbonitrile (6) (Scheme 1) from tet-
racyanoethylene (TCNE) and HBr (g) are known [15], we chose to attempt this route for 
the analogous chloropyrrole 3. 

The reaction involved bubbling HCl (g) through a solution of TCNE in Me2CO, 
EtOAc and AcOH, followed by the addition of powdered Sn (1 equiv) (Scheme 3). The 
choice of this solvent mixture was inspired by a reported preparation of the bromopyrrole 
6 [16], as it dissolves the reagents effectively but does not dissolve the HCl salt of the 
product 3, thereby allowing for a facile purification of the product after the end of the 
reaction by filtration and subsequent treatment with base and acid (see materials and 
methods below). The addition of the reductant Sn (in the presence of AcOH) was required 
to bring the product to the correct oxidation state. In contrast, no reductant was required 
in the reported synthesis of bromopyrrole 6 [15], tentatively, due to a redox reaction in-
volving loss of Br2. Subsequent stirring for 2 h resulted in a yellow precipitate, presumably 
the HCl salt of aminopyrrole 3. An acid/base treatment involving first 2 M NaOH and 
then AcOH resulted in the desired compound 3 in a 74% yield (see supplementary mate-
rials for the complete spectra). 

Scheme 1. Isolation of dicyanopyrrole 1 from tetrachlorothiadiazine 2.
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Scheme 2. The claimed patented synthesis of chloropyrrole 3 and its use to prepare ylidene 5.

To attempt a higher yielding semi-independent synthesis of tricycle 1, we decided to
develop a simpler synthesis of chloropyrrole 3. Since the full synthesis and experimental
data of analogous 2-amino-5-bromo-1H-pyrrole-3,4-dicarbonitrile (6) (Scheme 1) from
tetracyanoethylene (TCNE) and HBr (g) are known [15], we chose to attempt this route for
the analogous chloropyrrole 3.

The reaction involved bubbling HCl (g) through a solution of TCNE in Me2CO, EtOAc
and AcOH, followed by the addition of powdered Sn (1 equiv) (Scheme 3). The choice of
this solvent mixture was inspired by a reported preparation of the bromopyrrole 6 [16],
as it dissolves the reagents effectively but does not dissolve the HCl salt of the product
3, thereby allowing for a facile purification of the product after the end of the reaction
by filtration and subsequent treatment with base and acid (see materials and methods
below). The addition of the reductant Sn (in the presence of AcOH) was required to bring
the product to the correct oxidation state. In contrast, no reductant was required in the
reported synthesis of bromopyrrole 6 [15], tentatively, due to a redox reaction involving
loss of Br2. Subsequent stirring for 2 h resulted in a yellow precipitate, presumably the HCl
salt of aminopyrrole 3. An acid/base treatment involving first 2 M NaOH and then AcOH
resulted in the desired compound 3 in a 74% yield (see Supplementary Materials for the
complete spectra).
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Chloropyrrole 3 was subsequently reacted with tetrachlorothiadiazine 2 in attempts 
to synthesize tricycle 1. However, while the respective reaction of bromopyrrole 6 with 
tetrachlorothiadiazine 2 was clean and resulted in thiadiazinimine 7 in excellent yield, 
which was subsequently converted to tricycle 8 [5], the reaction of chloropyrrole 3 in a 
number of different conditions [MeCN at 20–82 °C; MeCN, 2,6-lutidine (1 eq) at 20 °C; 
DCE at 83 °C; THF at 20–66 °C; PhCl at 132 °C] only resulted in a complex mixture of 
products that could not be resolved (Scheme 4). 
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3. Materials and Methods 
The reaction mixture was monitored by thin layer chromatography (TLC) using com-

mercial glass backed TLC plates (Merck Kieselgel 60 F254). The plates were observed under 
UV light at 254 and 365 nm. The melting point was determined using a PolyTherm-A, 
Wagner and Munz, Kofler Hotstage Microscope apparatus (Wagner and Munz, Munich, 
Germany). The solvent used for recrystallization is indicated after the melting point. The 
UV-vis spectrum was obtained using a Perkin-Elmer Lambda-25 UV-vis spectrophotom-
eter (Perkin-Elmer, Waltham, MA, USA); inflections are identified by the abbreviation 
“inf”. The IR spectrum was recorded on a Shimadzu FTIR-NIR Prestige-21 spectrometer 
(Shimadzu, Kyoto, Japan) with a Pike Miracle Ge ATR accessory (Pike Miracle, Madison, 
WI, USA); strong, medium and weak peaks are represented by s, m and w, respectively. 
A Bruker Avance 500 machine (Bruker, Billerica, MA, USA) was used at 500 and 125 MHz 
to record the 1H and 13C NMR spectra, respectively. Deuterated solvents were used for the 
homonuclear lock; the signals are referenced to the deuterated solvent peaks. Attached 
proton test (APT) NMR studies were used for the assignment of the 13C peaks as CH3, CH2, 
CH and Cq (quaternary). The ES-API- mass spectrum was recorded on a Model 1260 In-
finity II Quadrupole MSD (Agilent Technologies). The elemental analysis was run by the 
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Chloropyrrole 3 was subsequently reacted with tetrachlorothiadiazine 2 in attempts
to synthesize tricycle 1. However, while the respective reaction of bromopyrrole 6 with
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tetrachlorothiadiazine 2 was clean and resulted in thiadiazinimine 7 in excellent yield,
which was subsequently converted to tricycle 8 [5], the reaction of chloropyrrole 3 in a
number of different conditions [MeCN at 20–82 ◦C; MeCN, 2,6-lutidine (1 eq) at 20 ◦C; DCE
at 83 ◦C; THF at 20–66 ◦C; PhCl at 132 ◦C] only resulted in a complex mixture of products
that could not be resolved (Scheme 4).
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3. Materials and Methods

The reaction mixture was monitored by thin layer chromatography (TLC) using
commercial glass backed TLC plates (Merck Kieselgel 60 F254). The plates were observed
under UV light at 254 and 365 nm. The melting point was determined using a PolyTherm-A,
Wagner and Munz, Kofler Hotstage Microscope apparatus (Wagner and Munz, Munich,
Germany). The solvent used for recrystallization is indicated after the melting point. The
UV-vis spectrum was obtained using a Perkin-Elmer Lambda-25 UV-vis spectrophotometer
(Perkin-Elmer, Waltham, MA, USA); inflections are identified by the abbreviation “inf”. The
IR spectrum was recorded on a Shimadzu FTIR-NIR Prestige-21 spectrometer (Shimadzu,
Kyoto, Japan) with a Pike Miracle Ge ATR accessory (Pike Miracle, Madison, WI, USA);
strong, medium and weak peaks are represented by s, m and w, respectively. A Bruker
Avance 500 machine (Bruker, Billerica, MA, USA) was used at 500 and 125 MHz to record the
1H and 13C NMR spectra, respectively. Deuterated solvents were used for the homonuclear
lock; the signals are referenced to the deuterated solvent peaks. Attached proton test
(APT) NMR studies were used for the assignment of the 13C peaks as CH3, CH2, CH and
Cq (quaternary). The ES-API- mass spectrum was recorded on a Model 1260 Infinity II
Quadrupole MSD (Agilent Technologies). The elemental analysis was run by the London
Metropolitan University Elemental Analysis Service. Tetracyanoethylene was prepared
according to the literature [17].

2-Amino-5-chloro-1H-pyrrole-3,4-dicarbonitrile (3)

A stirred mixture of TCNE (384 mg, 3.00 mmol) in Me2CO (2 mL), EtOAc (4 mL)
and AcOH (2 mL) at ca. −5 ◦C was purged with HCl (g) for 2 min. Then, powdered Sn
(356 mg, 3.00 mmol) was added, and the mixture was left to warm to ca. 20 ◦C. After
2 h, the yellow precipitate was filtered and washed with Et2O (5 mL). The solid was then
dissolved in H2O (5 mL) and the pH adjusted to 11 by addition of 2 M NaOH. AcOH was
then added dropwise until pH = 5, and a new colorless precipitate formed. The precipitate
was filtered and dried in vacuo to give the title compound 3 (371 mg, 74%) as colorless
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plates, mp > 300 ◦C (from PhH); Rf 0.37 (DCM/MeOH 90:10); (found: C, 43.45; H, 1.71; N,
33.56. C6H3ClN4 requires C, 43.27; H, 1.82; N, 33.64%); λmax(MeOH)/nm 215 (log ε 3.90),
259 (3.63), 283 (3.70); vmax/cm−1 3439m, 3339m, 3223m and 3169w (N–H), 2236s and 2234s
(C≡N), 1639s, 1632s, 1601s, 1557m, 1479m, 1408w, 1350w, 1242m, 1092w, 1067w, 932m,
903m, 702m; δH(500 MHz; DMSO-d6) 12.35 (1H, partially exchanged, br s, NH), 6.50 (2H,
br s, NH2); δC(125 MHz; DMSO-d6) 148.1 (Cq), 116.9 (Cq), 114.6 (Cq), 113.1 (Cq), 89.0 (Cq),
69.4 (Cq); m/z (ES-API−) 167 (M − H++2, 33%), 165 (M − H+, 100).

Supplementary Materials: The following are available online: mol file, 1H, 13C NMR, IR, UV-Vis
and mass spectra.
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