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Abstract: 3′-methyl-2-oxo-1′,5′-diphenyl-1′,7′-dihydrospiro[indoline-3,4′-pyrazolo[3,4-b]pyridine]-
6′-carboxylic acid was synthesized using diverse conditions. The best reaction condition consisted of
using water as solvent under microwave irradiation, affording product in 76% yield.
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1. Introduction

Spirooxindoles are important heterocycles due to their wide range of biological activi-
ties, such as antibacterial [1,2], antioxidant [3], antifungal [4], anticancer [5], among others.
Isatin is one of the most useful starting materials for the synthesis of spiro-compounds
exploiting the reactivity of C-3 carbon with different nucleophiles, which, depending on the
reagent used, opens up the possibility of a cyclization process. Diverse authors reported
some examples of spirooxindoles using water as a solvent: Khalafi-Nezhad and Moham-
madi [6] synthesized the products I and II using a tricomponent reaction with a supported
magnetic acid ionic liquid as a catalyst, Shi et al. [7] reported the product III synthesized
using ceric ammonium nitrate (CAN) as a catalyst, Liu et al. [8] reported the synthesis of
the product IV with dodecyl benzenesulfonic acid-functionalized silica-coated magnetic
nanoparticles, and Ghahremanzadeh et al. [9] reported the synthesis of the product V with
copper ferrite nanoparticles as the catalyst. In our group, we have broad expertise in the
synthesis of spirooxindoles by multicomponent reactions: the product VI was obtained by
cyclocondensation reaction and products VII to X by 1,3-dipolar cycloadditions [10–12]
(Figure 1).
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1. Introduction 
Spirooxindoles are important heterocycles due to their wide range of biological ac-

tivities, such as antibacterial [1,2], antioxidant [3], antifungal [4], anticancer [5], among 
others. Isatin is one of the most useful starting materials for the synthesis of spiro-com-
pounds exploiting the reactivity of C-3 carbon with different nucleophiles, which, de-
pending on the reagent used, opens up the possibility of a cyclization process. Diverse 
authors reported some examples of spirooxindoles using water as a solvent: Khalafi-
Nezhad and Mohammadi [6] synthesized the products I and II using a tricomponent re-
action with a supported magnetic acid ionic liquid as a catalyst, Shi et al. [7] reported the 
product III synthesized using ceric ammonium nitrate (CAN) as a catalyst, Liu et al. [8] 
reported the synthesis of the product IV with dodecyl benzenesulfonic acid-functional-
ized silica-coated magnetic nanoparticles, and Ghahremanzadeh et al. [9] reported the 
synthesis of the product V with copper ferrite nanoparticles as the catalyst. In our group, 
we have broad expertise in the synthesis of spirooxindoles by multicomponent reactions: 
the product VI was obtained by cyclocondensation reaction and products VII to X by 1,3-
dipolar cycloadditions [10–12] (Figure 1). 
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Figure 1. Outstanding examples of spirooxindoles obtained by multicomponent reactions. 
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/by/4.0/). Figure 1. Outstanding examples of spirooxindoles obtained by multicomponent reactions.

Due to the importance of the oxindole nucleus, the formation of Spirooxindole 4 is
proposed through the one-pot reaction between 3-methyl-1-phenyl-1H-pyrazol-5-amine
(1), isatin (2) and phenyl pyruvic acid (3).
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2. Results and Discussion

In our study, several conditions were tested, including a diverse array of solvents,
temperatures and heating sources, to find the best reaction conditions for the synthesis
of 4 (Scheme 1 and Table 1). In all assays, sodium dodecyl sulfate (SDS) was used as a
catalyst with a load of 0.1 g SDS/1 mmol of substrate [13]. All reactions were analyzed
by thin-layer chromatography (TLC). Initially, the three-component reaction between 5-
amino-3-methyl-1-phenylpyrazole (1), isatin (2) and phenyl pyruvic acid (3) was carried
out using water at reflux, achieving the target compound 4 in 21% yield (Entry 1, Table 1).
On the other hand, in Entry 2, the use of water as solvent and microwave irradiation
(MWI) allowed us to obtain compound 4 with a notably increased yield (i.e., 76%), while
switching water for ethanol at reflux or under MWI led to a lower yield of compound 4
(i.e., 47% and 29% for Entries 3 and 4, respectively). Thus, Entry 2 showed to be the best-
yielding reaction condition for the synthesis of the target 3′-methyl-2-oxo-1′,5′-diphenyl-
1′,7′-dihydrospiro[indoline-3,4′-pyrazolo[3,4-b]pyridine]-6′-carboxylic acid (4).
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Scheme 1. Synthetic approach for the synthesis of Spirooxindole 4.

Table 1. Optimization of the reaction for the synthesis of 4.

Entry Stoichiometry Conditions Yield (%)

1 H2O, reflux, 4 h 21

2
1 (0.6 mmol), 2 (0.6 mmol)

3 (0.6 mmol),
SDS (0.1 g/mmol substrate)

H2O, MW, T: 90 ◦C, 100 W, 5 min 76

3 EtOH, reflux, 4 h 47
4 EtOH, MW, T: 80 ◦C, 100 W, 5 min 29

Spirooxindole 4 was characterized by spectroscopic methods such as nuclear magnetic
resonance (NMR, Supplementary Materials S2–S4), infrared spectroscopy (FT-IR, Supple-
mentary Materials S5), and mass spectrometry (MS, Supplementary Materials S4). In the
1H-NMR spectrum, all the corresponding signals for the proposed product 4 were observed
(Figure 2 shows the complete numbering of the atoms for compound 4). At the higher
field, the signal of the 3′-CH3 group at 1.47 ppm as a singlet was observed. Moreover, all
14 aromatic protons appear in a range between 6 and 8 ppm. NH-1 signal was observed
as a singlet at 10.28 ppm, and NH-7′ signal was observed at 8.48 ppm, indicating that the
cyclization process was successful.
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Using the 13C NMR spectrum, DEPT-135, HSQC, and HMBC experiments, it was
possible to determine several representative carbon atoms in the structure of product 4.
In 13C NMR, the signal of 3′-CH3 group was observed at 11.8 ppm and the C-3 (spiro
carbon) signal was observed at 55.4 ppm. The C-6” (CO2H group) signal was observed at
165.6 ppm, and the C-2 signal (C=O group) was observed at 178.8 ppm. HSQC and HMBC
experiments helped to identify the signals of the carbons C-3”, C-3a, C-3a′, C-3′, C-5, C-5′

C-7, C-7a, C-6”, C-2. In Table 2, the correlation C-H observed in the HMBC experiment for
NH-1 and NH-7 is summarized, highlighting the correlation at 3J for NH-1 to C-3 and C-3a.
Another important correlation was the NH-1 with C-2 and C-7a at 2J, while the NH-7′

signal correlates with C-3a′, C-6” and C-5′ at 3J. In the FT-IR spectrum, the stretching bands
for N-H at 3406 cm−1, C-H at 3059 cm−1, and C=O groups at 1691 cm−1 were observed. In
the MS spectrum, the molecular ion peak was observed at 448 m/z with 4% intensity and
a characteristic peak associated with the elimination of carbon monoxide at 420 m/z with
7% intensity.

Table 2. C-H correlation with NH-1 and NH-7′ protons observed in the HMBC experiment.

δ (ppm) Carbon Atom NH-1 NH-7′

55.4 C-3 (spiro) 3J
135.3 C-3a 3J
141.4 C-7a 2J
178.8 C-2 (CO) 2J
99.0 C-3a′ 3J
116.7 C-5′ 3J
165.6 C-6” (-CO2H) 3J

3. Materials and Methods
3.1. General Information

The reagents and solvents used were obtained from commercial sources. The progress
of the reaction was monitored by TLC with 0.2 µm precoated plates of silica gel 60GF254
(Merck, Kenilworth, NJ, USA). Melting point was measured using a Stuart SMP3 melting
point apparatus (Cole-Parmer, Staffordshire, UK). The IR spectrum was run in a Shimadzu
IRAffinity−1 (Shimadzu, Kyoto, Japan) with ATR probe. The 1H and 13C-NMR spectra
were recorded in a BRUKER DPX 400 spectrophotometer (Bruker, Bruker BioSpin GmbH,
Rheinstetten, Germany) operating at 400 and 100 MHz, respectively, using DMSO-d6 as the
solvent. Chemical shifts (δ) are given in ppm and coupling constants (J) are given in Hz.
The following abbreviations are used for multiplicities: s = singlet, d = doublet, t = triplet,
and m = multiplet. The mass spectrum was measured on a SHIMADZU GCMS-QP2010
spectrometer (Shimadzu, Kyoto, Japan) operating at 40 eV. Microanalysis was performed
on an Agilent CHNS elemental analyzer (Thermo Fischer Scientific Inc., Madison, WI,
USA). Microwave experiments were carried out in a CEM Discover SystemTM 300 W (CEM
corporation, Matthews, NC, USA) focused microwave reactor.
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3.2. Synthesis of (±)-3′-Methyl-2-oxo-1′,5′-diphenyl-1′,7′-dihydrospiro[indoline-3,4′-pyrazolo[3,4-
b]pyridine]-6′-carboxylic Acid

An equimolecular mixture of 3-methyl-1-phenyl-1H-pyrazol-5-amine (1) (0.6 mmol)
isatin (2) (0.6 mmol) and phenyl pyruvic acid (3) (0.6 mmol) was added in 4 mL of distilled
water to a microwave tube with a magnet, and the tube was sealed with the corresponding
cap. The catalyst sodium dodecyl sulfate (SDS) was added in a ratio of 0.1 g/mmol of the
substrate. By using the dynamic method for microwave irradiation, the above mixture was
subjected to 100 W of power for 5 min at 90 ◦C, and 120 psi as a safe pressure. After that, a
brown solid was observed inside the tube. The solid was washed with distilled water to
remove the excess SDS until no more bubbles were observed, then it was washed with cold
ethanol. The purity of the product was confirmed by TLC checking.

Pale brown solid. Yield: 205 mg, 76%. M.p. >300 ◦C. FT-IR (ATR) (cm−1): 3406 (NH),
3059 (CH), 1691 (C=O) 1H NMR (400 MHz, DMSO-d6) δ (ppm) 1.47 (s, 3H, 3′-CH3), 6.64 (d,
J = 7.7 Hz, 1H, H-7), 6.74 (d, J = 6.7 Hz, 2H), 6.96–7.09 (m, 4H), 7.12 (t, J = 7.6 Hz, 1H), 7.19
(d, J = 7.3 Hz, 1H, H-4), 7.37 (t, J = 7.3 Hz, 1H), 7.54 (t, J = 7.9 Hz, 2H), 7.60 (d, J = 7.7 Hz,
2H), 8.48 (s, 1H, NH-7′), 10.28 (s, 1H, NH-1). 13C NMR (100 MHz, DMSO-d6) δ (ppm)
11.8 (3′-CH3), 55.4 (C-3 (spiro)), 99.0 (C-3a’), 109.6 (C-7), 116.7 (C-5′), 122.5 (CH), 122.6
(C-5), 126.0 (C-4), 126.9 (CH), 127.2 (CH), 127.4 (CH), 129.0 (CH), 130.0 (CH), 130.4 (CH),
130.6 (C), 135.3 (C-3a), 137.1 (C), 139.1 (C), 139.3 (C), 141.4 (C-7a), 145.3 (C-3′), 165.6 (C-6”,
CO2H), 178.8 (C-2, C=O). MS (EI) m/z: 448 (M+•, 4%), 420 (M+•-CO, 7%), 313 (8%), 236 (8%).
Anal. calcd. for C27H20N4O3 (448.15): C, 72.31; H, 4.50; N, 12.49. Found: C, 72.46; H, 4.33;
N, 12.63.

Supplementary Materials: The following are available online. All spectroscopic material is available:
NMR (S2-S4), MS (S4), and FT-IR (S5).
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