
molbank

Short Note

2-Hydroxy-3-(4-oxy(2,2,6,6-tetramethylpiperidin-1-
oxyl)butoxy)benzaldehyde

Anatoliy A. Vereshchagin , Julia V. Novoselova, Arseniy Y. Kalnin and Daniil A. Lukyanov *

����������
�������

Citation: Vereshchagin, A.A.;

Novoselova, J.V.; Kalnin, A.Y.;

Lukyanov, D.A. 2-Hydroxy-3-(4-

oxy(2,2,6,6-tetramethylpiperidin-1-

oxyl)butoxy)benzaldehyde. Molbank

2021, 2021, M1245.

https://doi.org/10.3390/M1245

Academic Editor: Hidenori Tanaka

Received: 8 June 2021

Accepted: 16 June 2021

Published: 3 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Institute of Chemistry, St. Petersburg State University, 199034 St. Petersburg, Russia;
anatoliy_ve@mail.ru (A.A.V.); missis.julya.novoselova@yandex.ru (J.V.N.); arseniykalnin@gmail.com (A.Y.K.)
* Correspondence: Lda93@yandex.ru; Tel.: +7-812-4286900

Abstract: Salen-type complexes with transition metals and corresponding polymers attract great
scientific interest due to their high electrochemical properties and potential for use as part of next
generation organic energy storage devices. Because of their good conductivity but relatively low
capacity, energy-intensive additives such as quinones or TEMPO fragments can significantly en-
hance the capacitive characteristics of the electrode materials. Herein, we report a preparation of
precursor for a modified Salen-type complex, the substituted 2,3-Dihydroxybenzaldehyde by butoxy
linkers with TEMPO fragment using alkylation reaction. The resulting product was characterized
by the 1H and 13C, COSY, HMBC, HSQC nuclear magnetic resonance (NMR), ESI–high resolution
mass spectrometry (ESI–HRMS), and Fourier-transform infrared spectroscopy (FTIR). The reported
approach opens the way for easy modification of Salen-type complexes in order to increase their
specific characteristics.
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1. Introduction

Polymeric metal complexes with Salen-type Schiff base ligands, poly[M(Schiff)] might
be promising candidates for the creation of highly conducting polymer-based electrodes for
energy storage devices [1–6]. The availability of modification for poly[M(Schiff)] precursors
by changing the chemical structure of substitutes opens the path to the targeting adjust-
ment of material performance. Usage of different substitutes significantly changes the
properties of obtained polymers [7–9], even if the differences in the substituent structures
are minimal [10]. Considering the relatively low capacity of poly[M(Schiff)] material, they
can be combined with an energy bearing group such as TEMPO or quinone compound
and used as a conductive polymer framework [11]. Evidence of the synergistic action
of polymeric Ni-Salen with the nitroxyl polymer PTMA in a composite has been demon-
strated [11]; however, such modification complicates the production material process due
to the need for the exact ratio of the components. To avoid this, the direct modification
of Salen complex precursors allow the monocomponent product to be obtained, which
combines the advantages of several classes [12]. Usage of different linkers also allows the
properties of the materials to be regulated [13,14].

Herein, we report the synthesis of a Ni-Salen precursor with butoxy TEMPO-containing
fragment, namely 2-hydroxy-3-(4-oxy(2,2,6,6-tetramethylpiperidin-1-oxyl)butoxy)benzaldehyde,
by the alkylation of 2,3-dihydroxybenzaldehyde with TEMPO-containing butyl bromide. The
obtained product was characterized with nuclear magnetic resonance (NMR), high resolution
mass spectrometry (HRMS) and Fourier-transform infrared spectroscopy (FTIR) spectra.

2. Results

The desired product was obtained by alkylation of 2,3-dihydroxybenzaldehyde with
4-(4-bromobutoxy)2,2,6,6-tetramethylpiperidine-1-oxyl (Scheme 1) using the typical alkyla-
tion conditions [15].
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Scheme 1. Reaction conditions for the alkylation of 2,3-dihydroxybenzaldehyde with 4-(4-bromobutoxy) 2,2,6,6-
tetramethylpiperidine-1-oxyl.

It is noteworthy that the product was purified by simple crystallization from a hexane–
Et2O (3:1) mixture. Due to the paramagnetic nitroxyl fragment, NMR spectra could only
be obtained after the reductive quenching of the radical center with ascorbic acid. The
1H-NMR spectrum of the product (Figure S1) shows a set of TEMPO-related signals: a
multiplet around 3.53, two doublets at 1.84 and 1.25 and a pair of singlets at 1.06 and 1.04
ppm, along with the butoxy triplets at 4.04, 3.43, 1.77 and 1.63 ppm, aromatic signals at 7.25
and 6.9 ppm, accompanied by an aldehyde singlet at 10.24 ppm. The 13C-NMR spectrum
(Figure S2) contains a complete set of signals attributed to the proposed structure of the
product: linker signals at 25.6, 26.2, 66.9 and 68.6 ppm, TEMPOL peaks at 20.6, 32.3, 44.7,
58.0 and 68.5 ppm, aryl signals at 118.8, 119.3, 120.6, 122.4, 147.6, and 150.9 ppm, and a
carbonyl carbon peak at 192.6 ppm. An unambiguous attribution of the signals was made
on the basis of the COSY, HSQC and HMBC correlation spectra (Figure 1, Figures S3–S6).

Figure 1. Attribution of the chemical shifts for 2-hydroxy-3-(4-oxy(2,2,6,6-tetramethylpiperidin-1-
oxyl)butoxy)benzaldehyde.

The exact mass of [M+Na]+ ion, determined by ESI–HRMS (Figure S7), was found
to be 387.2016 (387.2016 as calcd. for C20H30NO5Na+). The FTIR spectrum recorded in
KBr (Figure S8) contains a strong peak at 1652 cm−1 (C=O). Vibration of the phenolic O-H,
which typically occurs about 3400 cm−1, is shifted to ca. 3000 cm−1 due to the strong
hydrogen bonding.
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3. Materials and Methods
3.1. General Consideration

Reagents of “reagent grade” purity were purchased from Sigma–Aldrich (Darmstadt,
Germany). 4-(4-bromobutoxy)-2,2,6,6-tetramethylpiperidine-1-oxyl was obtained using a
known method [16] with minor modifications. The Fourier transform infrared spectra were
recorded on a Shimadzu IRaffinity-1 FTIR spectrophotometer (Shimadzu Europa GmbH,
Kyoto, Japan) in KBr pellets. 1H and 13C-NMR spectra were acquired on a Bruker Avance
400 spectrometer (Bruker Analytische Messtechnik GmbH, Rheinstetten, Germany) at 400
and 101 MHz, respectively, in DMSO-d6, as well as COSY, HMBC and HSQC 2D NMR
spectra. Before NMR analysis, the paramagnetic center of nitroxyl radical residues was
reduced in situ by ascorbic acid. The HRMS spectrum was recorded using electrospray
ionization on a Bruker microTOF apparatus (Bruker Analytische Messtechnik GmbH,
Rheinstetten, Germany) in positive mode.

3.2. Synthesis of 2-Hydroxy-3-(4-oxy(2,2,6,6-tetramethylpiperidin-1-oxyl)butoxy)benzaldehyde

To a stirred suspension of NaH (60% susp. in oil, 1 g, 25 mmol) in 25 mL of dry
DMSO, 2,3-dihydroxybenzaldehyde (1.381 g, 10 mmol) was added (in one portion under
Ar) dissolved in 5 mL of dry DMSO, and then, the mixture was stirred at RT for 1 h. At this
point, 4-(4-bromobutoxy) 2,2,6,6-tetramethylpiperidine-1-oxyl (2.94 g, 9.5 mmol) dissolved
in 2 mL dry DMSO was added in one portion and the mixture was stirred overnight
at RT. Then, the mixture was poured into ice water (100 mL), acidified with 1M HCl
solution (pH~3) and extracted with Et2O. The organic layer was washed with 1% NaOH,
the aqueous layer was acidified with 1M HCl solution and again, extracted with DEE, dried
over anhydrous Na2SO4 and evaporated by rotary evaporation in vacuum. Residue was
purified by using crystallization from hexane-Et2O (3:1 v/v) solution in a fridge (+4 ◦C).
The crystalline precipitate was separated by decantation and dried in a vacuum using an
oil pump. The desired product is a pink-orange crystalline solid (0.8 g, 2.2 mol, 23%).

1H-NMR (400 MHz, DMSO-d6) δ, ppm: 10.24 (s, H, -CH=O), 7.22–7.25 (m, 2H, Ar),
6.87–6.91 (t, 1H, Ar), 4.04 (t, 2H, -CH2-), 3.5 (m, 1H, -CH-), 3.43 (t, 2H, -CH2-), 1.84 (d, 2H,
-CH2-), 1.77 (t, 2H, -CH2-), 1.63 (t, 2H, -CH2-), 1.25 (d, 2H, -CH2-), 1.06 (s, 6H, -CH3), 1.04
(s, 6H, -CH3), 13C-NMR (101 MHz, DMSO-d6) δ, ppm: 192.6 (C=O), 150.9 (Ar), 147.6 (Ar),
122.4 (Ar), 120.6 (Ar), 119.3 (Ar), 118.8 (Ar), 68.6 (alkyl linker), 68.5 (alkyl TEMPO), 66.9
(alkyl linker), 58.0 (alkyl TEMPO), 44.7 (alkyl TEMPO), 32.3 (alkyl TEMPO), 26.2 (alkyl
linker), 25.6 (alkyl linker), 20.6 (alkyl TEMPO). FTIR (KBr)
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