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Abstract: (PyH)2[MoOCl5] was obtained in the form of emerald green crystals unintentionally from
(PyH)5[MoOCl4(H2O)]3Cl2 in acetonitrile. (PyH)2[MoOCl5] has been used as a starting material in
molybdenum(V) coordination chemistry for decades, yet its true identity has not been known until
now. The X-ray structure analysis has undoubtedly confirmed the existence of this compound. The
[MoOCl5]2− ion displays the usual structural characteristics of the mononuclear MoO3+-containing
compounds.
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1. Introduction

The main motivation for pursuing research on the coordination chemistry of molybde-
num has been its biological importance. As of today, molybdenum has been found in over
50 enzymes [1]. Two groups may be recognised: nitrogenases with an iron–molybdenum
cluster as a cofactor and a larger group of enzymes with a pterin-based cofactor [1]. These
enzymes catalyse oxidation-reduction reactions that form part of nitrogen, sulphur, and
carbon metabolism [2]. Versatile redox behaviour and oxophilic nature make molybdenum
suitable for this role. Molybdenum has a strong tendency to bind oxygen and, at the same
time, the capacity to lose it. In the course of catalysis, molybdenum shuttles between
oxidation states +6, +5, and +4 with some reactions involving oxygen atom transfer (OAT)
processes.

We have been interested in the coordination chemistry of the intermediate oxidation
state, +5 [3,4]. The MoO3+ structural entity pervades this oxidation state. Owing to its multi-
ple bond character, it lies at the origin of the geometric distortions of molybdenum(V) com-
plex species which are eventually manifested also in their reactivity. Herein, a crystal struc-
ture of (PyH)2[MoOCl5], another MoO3+-containing species, will be presented. The com-
pounds containing [MoOCl5]2− ions were prepared as early as 1927 [5]. (PyH)2[MoOCl5]
formed upon the molybdate(VI) reduction with hydrazine in 11 M hydrochloric acid. After
the addition of pyridine, needle-shaped crystals of emerald green colour formed [6]. The
compound was of interest as it provided, in spite of its inherent air sensitivity, a suitable en-
try into the molybdenum(V) coordination chemistry. A drawback of using this compound
was that its true identity was not known until 2005 [7]. Its composition was proposed on
the basis of the elemental analyses on Cl and Mo. On the other hand, a comparison of
the reflectance spectrum of the solid ammonium pentachloridooxomolybdate(V) with the
spectrum of its HCl solution has suggested the presence of either the [MoOCl5]2− or the
[MoOCl4(H2O)]− ions [8]. The X-ray structure analysis of crystals obtained by a modified
procedure, a reduction of MoO3 with hydroiodic acid in concentrated HCl(aq), followed
by the addition of pyridine, has disclosed the [MoOCl4(H2O)]− ions as the only molybde-
num(V) species in the product. The correct composition of the emerald green crystals, un-
equivocally established by the X-ray structure analysis, turned out to be more complex than
initially assumed. The [MoOCl4(H2O)]− ions co-crystallised with chloride and pyridinium
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cations resulting in the (PyH)5[MoOCl4(H2O)]3Cl2 formula [7]. It is of interest to note that
(PyH)5[MoOCl4(H2O)]3Cl2 and the at-first-proposed (PyH)2[MoOCl5] share similar Cl and
Mo contents. The chlorine and the molybdenum contents in (PyH)5[MoOCl4(H2O)]3Cl2 are
38.57% and 22.37%, whereas for (PyH)2[MoOCl5], the values amount to 39.44% and 21.35%,
respectively. The “missing” compound, (PyH)2[MoOCl5], has been obtained just recently
in our laboratory. It was isolated in the course of the (PyH)5[MoOCl4(H2O)]3Cl2 reactions
with pyrazinecarboxylic acid in acetonitrile. With this reaction aiming towards the coordi-
nation of pyrazinecarboxylic acid to molybdenum(V), the formation of (PyH)2[MoOCl5]
was surprising. Although the reaction was found to be reproducible, no rational explana-
tion can be provided for the transformation of [MoOCl4(H2O)]− into [MoOCl5]2−. The
starting material, (PyH)5[MoOCl4(H2O)]3Cl2, which is the source of chloride, provides only
two-thirds of the amount necessary for a quantitative transformation. Even more puzzling
is the role of pyrazinecarboxylic acid. In its absence, no (PyH)2[MoOCl5] could be isolated.
Although the synthetic conditions necessary for the formation of (PyH)2[MoOCl5] remain
as elusive as ever, our study undoubtedly confirms its existence. We may also conclude
that with the available literature data, it remains unclear whether the early reports were on
(PyH)5[MoOCl4(H2O)]3Cl2 or (PyH)2[MoOCl5].

2. Results

The solid-state structure of pyridinium pentachloridooxomolybdate(V) consists of the
mononuclear [MoOCl5]2− anions and protonated pyridine molecules as countercations.
Although part of the [MoOCl5]2− ion resides on the twofold rotation axis, its symmetry
is that of the C4v point group. The drawing of the formula unit is shown in Figure 1, and
relevant geometric parameters of the [MoOCl5]2− ion are listed in Table 1.

Figure 1. Displacement ellipsoids plot of formula unit in (PyH)2[MoOCl5]. The ellipsoids are drawn
at a 50% probability level, whereas hydrogen atoms are drawn as spheres of arbitrary radii. Dotted
lines are the N–H···Cl interactions.
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Table 1. Relevant geometric parameters [Å,◦] for the [MoOCl5]2− ion of (PyH)2[MoOCl5].

Parameter

Mo(1)–O(1) 1.665(3)
Mo(1)–Cl(1) 2.4072(8)
Mo(1)–Cl(2) 2.3845(8)
Mo(1)–Cl(3) 2.6038(10)

O(1)–Mo(1)–Cl(1) 95.88(2)
O(1)–Mo(1)–Cl(2) 95.295(19)
O(1)–Mo(1)–Cl(3) 180.0
Cl(1)–Mo(1)–Cl(2) 90.44(3)

Cl(2)–Mo(1)–Cl(1) 1 88.47(3)
Cl(3)–Mo(1)–Cl(1) 84.12(2)
Cl(3)–Mo(1)–Cl(2) 84.705(19)

1 Related through symmetry: 5/2–x, y, 2–z.

The most prominent feature of the complex ion is the Mo=O structural fragment with
the Mo–O length of 1.665(3) Å. The six-coordinate metal environment consists of the oxide
and five chlorides. The equatorial chlorides, Cl(1), Cl(2), and their symmetry counterparts,
are at 2.3845(8)–2.4072(8) Å, whilst Cl(3), which occupies the position trans to the multiply
bonded oxide, is at a significantly longer distance, 2.6038(10) Å. The highly distorted
octahedral environment of molybdenum(V) is a result of an operating trans influence of
the multiply bonded oxide [9]. With the metal ion being located 0.2333(7) Å above the best
plane of four equatorial chlorides, the shape of the [MoOCl5]2− ion may be described as
umbrella-like.

It should be noted that the lengthening of the Mo(1)–Cl(3) bond is a joint result of
the operating trans influence of the molybdenyl moiety and the engagement of the Cl(3)
chloride in hydrogen bonding with pyridinium cations. Cl(3) forms two hydrogen bonds
with two pyridinium cations, with the N(1)···Cl(3) contacts being 3.092(3) Å, a significantly
shorter distance than the sum of the N and Cl van der Waals radii, 3.3 Å [10]. Such
connectivity is known as a bifurcated hydrogen bond. The pattern, the [MoOCl5]2− ion with
two hydrogen-bonded pyridinium cations, is shown in Figure 1. These hydrogen-bonded
clusters interact with adjacent ones via π···π stacking interactions occurring between pairs
of pyridinium cations (Table 2, Figures 2 and 3).

Table 2. Intermolecular interactions [Å, ◦] in (PyH)2[MoOCl5].

Hydrogen Bond

Type Parameters
N–H···Cl N(1)···Cl(3)[2–x, –1–y, 2–z] = 3.092(3)

N(1)–H(1) = 0.83(3)
H(1)···Cl(3)[2–x, –1–y, 2–z] = 2.51(3)

N(1)–H(1)···Cl(3)[2–x, –1–y, 2–z] = 129(2)

π···π Stacking

Type Parameters 1

PyH+···PyH+ Cg···Cg = 3.5058(2)
α = 0.0

slippage = 0.944
1 Parameters, as defined in [11].
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Figure 2. π···π stacking of pyridinium cations in (PyH)2[MoOCl5]. Dotted lines are the N–H···Cl
hydrogen bonds.

Figure 3. Packing of ions in (PyH)2[MoOCl5]: a view along b-axis.

There are only six structurally characterised compounds with pentachloridooxomolyb-
date(V) ions: {HP(Ph)3}2[MoOCl5] [12], (Me4N)2[MoOCl5]·CH3CN [13], (C5H10NO)2[MoOCl5]
(C5H10NO+ = O-protonated valerolactam) [14], (PyH)10[(Mo2O4Cl4)2(µ4-hda)][MoOCl5]Cl2
(where hda2− stands for a dianion of heptanedioic acid) [15], (PyH)2[MoOCl5]·CH2Cl2 [16],
and {P(Ph)4}2[MoOCl5]·2CH2Cl2 [17]. The listed compounds were products of very diverse re-
actions, and therefore, no synthetic guidelines concerning the formation of the [MoOCl5]2− ion
can be elucidated. The geometry of the [MoOCl5]2− ion in the title compound is very similar
to those in the cited examples. A solvate with dichloromethane, (PyH)2[MoOCl5]·CH2Cl2 [16],
features a slightly longer bond between molybdenum and chloride that is trans to the terminal
oxide, 2.6910(6) Å. An even larger discrepancy in the molybdenum-to-the-chloride bonding
pattern was observed for (C5H10NO)2[MoOCl5] in which the bonds to equatorial chlorides
are in the 2.3741(7)–2.3820(7) Å range, whereas the bond to the apical chloride is as long
as 2.7582(7) Å [14]. The elongation of this bond was explained with the engagement of the
trans-positioned chloride in hydrogen-bonding interactions with the countercations.

3. Materials and Methods
3.1. General

All reagents but (PyH)5[MoOCl4(H2O)]3Cl2 were purchased from commercial sources
and used without further purification. Molybdenum(V) starting material was prepared
following the published procedure [7]. IR spectrum of the Nujol suspension was recorded
in the 4000–600 cm−1 spectral region using an FTIR instrument PerkinElmer Spectrum 100
(PerkinElmer, Shelton, CT, USA). Owing to the decomposition of crystalline (PyH)2[MoOCl5]
when exposed to the air atmosphere, no elemental CHN analysis was performed. Single
crystal X-ray diffraction data were collected on an Agilent SuperNova diffractometer (Agilent
Technologies XRD Products, Oxfordshire, UK) with copper (Cu-Kα, λ = 1.54184 Å) X-ray
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source at 150 K. CrysAlis PRO [18] was used for data processing and Olex2 software [19] for
data analysis. The structure was solved by ShelXT [20] and refined by the least-squares method
in ShelXL [21]. Anisotropic displacement parameters were determined for all nonhydrogen
atoms. Platon [22] and Mercury [23] were used for the analysis of the crystal structure and
the preparation of figures. The crystal structure was deposited to the CCDC and assigned the
deposition number 2088930. These data can be obtained free of charge via http://www.ccdc.
cam.ac.uk/conts/retrieving.html (or from the CCDC, 12 Union Road, Cambridge CB2 1EZ,
UK; Fax: +44 1223 336033; E-mail: deposit@ccdc.cam.ac.uk). The crystallographic data are
summarised in Table 3.

Table 3. Crystallographic data for (PyH)2[MoOCl5].

Data (PyH)2[MoOCl5]

Empirical formula C10H12Cl5MoN2O
Formula weight 449.41
Crystal system monoclinic

Space group I 2/a
T [K] 150.00(10)
λ [Å] 1.54184
a [Å] 12.4835(5)
b [Å] 8.0098(3)
c [Å] 15.7823(8)
α [◦] 90
β [◦] 97.459(4)
γ [◦] 90

V [Å3] 1564.72(12)
Z 4

Dcalc [g/cm3] 1.908
µ [mm−1] 14.662
Size [mm] 0.08 × 0.09 × 0.10

Collected reflections 3368
Unique reflections 1518

Observed reflections 1367
Rint 0.0369

R1 (I > 2σ(I)) 0.0330
wR2 (all data) 0.0847

Goodness of fit 1.09
Largest diff. peak/hole [e−/Å3] 1.2/−1.0

3.2. Synthesis

(PyH)5[MoOCl4(H2O)]3Cl2 (428 mg, 1.00 mmol of molybdenum(V) complex) was
dissolved in acetonitrile (20 mL). To thus obtained emerald green solution, pyrazinecar-
boxylic acid (80 mg, 0.65 mmol) was added. No colour change ensued. The solution was
left to stand at ambient conditions in a closed Erlenmeyer flask for an hour. Afterwards,
diethyl ether (25 mL) was added dropwise. On the following day, a copious amount of
emerald green crystals of (PyH)2[MoOCl5] was obtained. Notes. The crystals decompose
almost instantaneously when taken out from the mother liquor. On exposure to the air, the
solution acquires a deep violet colour. IR (Nujol, cm−1): 1632, 1601, 1527, 1321, 1236, 1189,
1161, 1080, 1049, 1030, 979, 960 [ν(Mo=O)], 851, 729, 672, 607. The Nujol signature bands
are not listed. The IR spectrum may be found in Supplementary Materials.

Supplementary Materials: The following are available online, Figure S1: IR spectrum of (PyH)2[MoOCl5].
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