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Abstract: A reaction of biomass-derived aldehyde synringaldehyde and half an equivalent of 1,4-
dichlorobut-2-yne was attempted in order to obtain a bis-aldehyde with an alkyne spacer. The
reaction was carried out in a basic media to effect bis O-alkylation, as described in literature for the
preparation of structurally similar compounds. Nevertheless, only mono alkylation was observed.
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1. Introduction

Alkyne derivatives are important in organic chemistry. For instance, the alkyne
function is found in various chemicals (synthetic or natural ones) with applications in
medicinal chemistry or material chemistry, just to name a few (Figure 1) [1–4].

Figure 1. Selected examples of alkyne-containing molecules used as drugs or in material chemistry.

Additionally, alkyne derivatives are valuable intermediates for the preparation of other
compounds, through the transformation of the carbon-carbon triple bond (Figure 2) [5–9],
A typical example being the Huisgen reaction [10–12].

Figure 2. Selected examples of chemicals that were prepared through transformation of a carbon-
carbon triple bond.
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Finally, alkyne-containing molecules can be used for the preparation of a broad range
of coordination compounds through a reaction with metallic centers (Figure 3).

Figure 3. Selected examples [13–16] of coordination compounds obtained from alkyne-containing
molecules.

Consequently, the preparation of new alkyne-containing chemicals is still of interest.
This paper describes how 1-(4-formyl-2,6-dimethoxyphenoxy)-4-chlorobut-2-yne (1) was
obtained as the only product in an attempt to prepare bis-aldehyde (2) with the reaction of
biomass-derived syringaldehyde with 1,4-dichlorobut-2-yne (Figure 4).

Figure 4. Synthetic scheme for the preparation of 1-(4-formyl-2,6-dimethoxyphenoxy)-4-chlorobut-2-
yne.

2. Results

The biomass-derived syringaldehyde [17] was reacted with 0.5 equivalent of 1,4-
dicholorobut-2-yne, using potassium carbonate as a base in dimethylformamide at room
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temperature for 72 h. While monitoring the reaction with TLC (silica gel; cyclohexane/ethyl
acetate 7:3 by volume), only a single compound was noticed, and after 72 h, no further
evolution of the reaction was observed. With no reference in hand, it was first believed that
the observed TLC spot was for the desired compound 2. Nevertheless, after treatment, pu-
rification, and characterization, it appeared that the isolated compound was monoaldehyde
1 instead of the desired bis-aldehyde 2.

Compound 1 was identified by 1H and 13C-NMR spectroscopy. Specifically, two
triplets were observed in 1H-NMR spectrum that accounted for the two -CH2- that were
coupled together (5J = 2.0 Hz) through the triple bond. Multiplicities, coupling constants,
and chemical shifts for the -O-CH2- and the -CH2-Cl parts of the molecule were consistent
to those previously reported for similar 1-aryloxy-4-chlorobut-2-yne derivatives [18–21].
This further confirms the structure of 1. All other signals appear as singlet due to the
symmetry of the aromatic part of the molecule (Figure 5 and Supplementary Materials).

Figure 5. 1H-NMR spectrum of compound 1.

The 13C-NMR spectrum exhibited 10 signals which agreed with the structure of
compound 1. Finally, the recorded mass spectra of compound 1 fully agreed with the
proposed structure since the molecular peak [M + Na]+ (m/z = 291.03818) as well as the
isotopic distribution fit with the calculated spectrum (Supplementary Materials).

3. Discussion

The obtention of only 1 was quite unexpected, as several reports [22–37] describe the
synthesis of diversely substituted 1,4-bisaryloxybut-2-ynes from the reaction of various
phenols with 1,4-dichlorobut-2-yne in different basic media.

The problem is clearly not linked to the force of the base that is used (potassium
carbonate). In fact, one equivalent of syringaldehyde was able to react, indicating that
deprotonation was effective.

Since nucleophilic substitutions onto chloro- derivatives are generally slow, one exper-
iment was carried out in refluxing DMF with the aim to increase reaction kinetics. After an
hour of reaction, TLC indicated the complete consumption of syringaldehyde. However, in
this case, an intractable mixture of compounds was obtained, and it was not possible to
recover any product. Additionally, reacting syringaldehyde and 1,4-dichlorobut-2-yne in
a one-to-one ratio (instead of 1:0.5) under the same conditions (room temperature, 72 h)
afforded 1 at 21%. This further confirms the low reactivity under these conditions. Con-
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sequently, it is necessary to investigate other reaction conditions in order to obtain the
desired compound 2.

4. Materials and Methods

All reagents were purchased from ACROS Organics (Geel, Belgium) and used as
received. Anhydrous dimethylformamide (DMF) was obtained by drying HPLC grade
DMF onto a solvent purification system PS-MD-5 (Innovative Technologies, Amesbury,
MA, USA). Flash chromatography was carried out on a Combiflash Rf+ Lumen (Teledyne
ISCO, Lincoln, NE, USA) using Redisep Rf silica column (Teledyne ISCO, Lincoln, NE,
USA).1H and 13C-NMR spectra were recorded on a Bruker AC 400 (Bruker, Wissembourg,
France) at 400 and 100 MHz, respectively, using CDCl3 as a solvent. The melting point was
recorded with a Stuart SMP 10 melting point apparatus (Bibby Sterilin, Stone, UK) and
was uncorrected. The infrared spectrum was recorded on a Bruker ALPHA II spectrometer
(Bruker, Wissembourg, France) as KBr disc. HR-MS was recorded at Sayens SATT, Dijon,
France.

1-(4-formyl-2,6-dimethoxyphenoxy)-4-chlorobut-2-yne (1): to a solution of syringalde-
hyde (1.458 g; 8.0 mmol) in anhydrous DMF (20 mL), potassium carbonate (1.216 g;
8.8 mmol) and 1,4-dichlorobut-2-yne (0.492 g; 4.0 mmol) were successively added. The reac-
tion mixture was stirred at room temperature for 72 h and then poured onto water (200 mL).
The pH of the solution was adjusted to 3 by the dropwise addition of 2M hydrochloric acid,
and the aqueous layer was extracted with ethyl acetate (3 × 50 mL). Organic layers were
combined, washed with brine (100 mL), dried over sodium sulphate, filtered, and concen-
trated under vacuo. The crude yellow product was purified by flash chromatography to
obtain pure 1 as a white solid (0.280–0.340 g; 26%–32%). Mp = 103 ◦C. 1H-NMR (CDCl3,
400 MHz), δ (ppm): 9.90 (s, 1H), 7.15 (s, 2H), 7.87 (t, 2H, J = 2.0 Hz), 4.14 (t, 2H, J = 2.0 Hz),
3.96 (s, 6H). 13C-NMR (CDCl3, 100 MHz), δ (ppm): 191.0, 153.9, 140.7, 132.4, 106.4, 82.0,
81.7, 60.2, 56.3, 30.3. HR-MS: calc. for [C13H13ClO4 + Na]+ 291.03818, found 291.03946. IR
(KBr disc): 2999, 2960, 1697, 1589 cm−1.

5. Conclusions

The reaction between 1,4-dichlorobut-2-yne and syringaldehyde only led to monoalky-
lation of the latter even though the reaction conditions were expected to produce a dialky-
lation product. Experiments are currently in progress to obtain the dialkylated compound.
Results will be reported in due course.

Supplementary Materials: The following are available online: 1H and 13C-NMR (and raw data files)
spectra, HR-MS analysis report, IR spectrum, purification chromatogram, and copies of laboratory
notebook.
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