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Abstract: Glycosyl monomers for the assembly of multivalent ligands are typically synthesized using
carbohydrates with biological functions and polymerizable functional groups such as acrylamide
or styrene introduced into the carbohydrate aglycon, and monomers polymerized using a radical
initiator. Herein, we report the acryloylation of 6-aminohexyl α-D-mannoside and its conversion into
the glycosyl monomer bearing an acrylamide group. The general acryloylation procedure afforded
the desired N-hexyl α-D-acetylmannosyl acrylamide monomer as well as an unexpected compound
with a close Rf value. The compounds were separated and analyzed by nuclear magnetic resonance
spectroscopy and mass spectrometry, which revealed the unknown compound to be the bivalent
N,N-bis(hexyl α-D-acetylmannosyl) acrylamide monomer, which contains two hexyl mannose units
and one acrylamide group. To the best of our knowledge, this side reaction has not previously been
disclosed, and may be useful for the construction of multivalent sugar ligands.
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1. Introduction

Many biological events in organisms are associated with carbohydrates on cell sur-
faces [1–4]. Carbohydrates assemble into clusters in raft domains and on polysaccharides
and proteins to acquire high affinities for carbohydrate-binding proteins (CBMs). The
clusters, as multivalent ligands, interact with CBMs to induce biological events [5–7].
Multivalency, which is important for carbohydrate–protein interactions, has also been
imitated by synthetic polymers that contain carbohydrates; this affinity-enhancing effect
of a multivalent ligand is known as the “cluster effect”. The polymer generally contains
carbohydrates with pendants on the polymer back bones, which are generally chosen to
be acrylamide [8,9], styrene [10,11], or norbornene [12,13]. A polymerizable carbohydrate
monomer consists of a carbohydrate, a linker, and a polymerizable functional group. Car-
bohydrates include monosaccharides as well as oligosaccharides as ligands. The linker
controls the flexibility and the binding space in the carbohydrate—protein interaction,
while polymerizable functional groups modulate solubility and polymer structure, and
these units are chosen to suit the research purpose. Studies into the preparation of gly-
comonomers and glycopolymers has continued to date with the aim of clarifying the
biological mechanism and applying them to devices and biomaterials [14–17].

In this study, a mannosyl monomer was prepared using a general method in which 6-
aminohexyl α-D-acetylmannoside was acryloylated to afford N-hexyl α-D-acetylmannosyl
acrylamide. Surprisingly, a previously undocumented side-reaction was observed during
acryloylation, the product of which was separated by silica-gel column chromatography
and identified by nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry
(MS) to be N,N-bis(hexyl α-D-acetylmannosyl) acrylamide, which is a bivalent monomer
containing two mannose residues. The discovery of this unusual bivalent monomer is
described herein.
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2. Results and Discussion

6-Aminohexyl α-D-mannoside (1) was prepared from D-mannose in five steps, which
included acetylation, 1-deactylation, introduction of the trichloroacetimidate, glycosylation
with 6-aminohexan-1-ol, and deacetylation. Mannoside (1) was converted into a mannosyl
monomer bearing an acrylamide group by treatment with acryloyl chloride and sodium
carbonate in methanol at 0 ◦C for 13 h, followed by acetylation (Scheme 1). The reaction
mixture was evaporated and separated by silica-gel chromatography to provide two
compounds that were subjected to NMR spectroscopy (Figures S1 and S2) and matrix
assisted laser desorption ionization-time of flight (MALDI-TOF) MS (Figure S3). Their 1H
NMR spectra showed similar peaks; however, integration of the sugar and alkyl peaks of
the compound of higher Rf revealed the presence of two 6-aminohexyl α-D-mannoside
units per acryloyl group. Furthermore, the amide peak was absent in the NMR spectrum
of this compound (Figure 1). In the IR spectrum, the N–H stretching vibration was also
not observed (Figure S4). The mass spectrum of this unknown compound is displayed in
Figure 2.
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The above-mentioned results suggest that the unexpected compound contains two
hexyl mannose units and one acryloyl group, from which we concluded that the acry-
loylation of 1 gave N-hexyl α-D-acetylmannosyl acrylamide (2) and N,N-bis(hexyl α-D-
acetylmannosyl) acrylamide (3), which were isolated as pure syrups in yields of 35%
and 26%, respectively, along with a considerable amount of a mixture of the two. It
is interesting to note that the analogous side reaction that forms the bisamide was not
observed in the case of 2-aminoethyl α-D-mannoside and the acryloylation for N-hexyl α-D-
acetylmannosyl acrylamide (2). Therefore, N,N-bis(hexyl α-D-acetylmannosyl) acrylamide
(3) was given only in the acryloylation for 6-aminohexyl α-D-mannoside (1). To the best of
our knowledge, this is the first report of such a side reaction using the general acryloylation
procedure. While the reaction mechanism is not clear, the bivalent monomer bearing the
two sugar units may be useful for the preparation of multivalent glycopolymers.

3. Materials and Methods
3.1. General

All reagents were purchased from FUJIFILM Wako Pure Chemical Corporation (Osaka,
Japan). Methanol was prepared by storage over molecular sieves (3Å) that were activated
under vacuum at 200 ◦C. Analytical thin-layer chromatography (TLC) was performed
using Merck silica gel 60 F254 plates (layer thickness: 0.25 mm, Darmstadt, Germany).
TLC plates were dipped in 85:10:5 (v/v/v) methanol/resorcinol/concentrated sulfuric acid
and/or 0.7% ninhydrin/ethanol, followed by heating for a few minutes for visualization
purposes. Column chromatography was performed using silica gel (Silica gel 60 N, spher-
ical neutral, particle size 63–210 µm, Kanto Chemical, Tokyo, Japan). 1H and 13C NMR
spectra were acquired on an AVANCE 400 Plus spectrometer (Bruker, Rheinstetten, Ger-
many) in chloroform-d and reported in δ relative to tetramethylsilane (0.00 ppm for 1H and
77.0 ppm for 13C). MALDI-TOF mass spectra were recorded on a Jeol JMS-S3000 spectrom-
eter (Tokyo, Japan) using 2,5-dihydroxybenzoic acid as the matrix. The Fourier transform
infrared (FTIR) spectra were measured on a Jasco FT-IR 4100 spectrometer (Tokyo, Japan)
and reported as wavenumber (cm–1). Pellet samples for FTIR were fabricated using KBr.

3.2. Acryloylation of 6-Aminohexyl α-D-Mannside (1)

6-Aminohexyl α-D-mannside 1 (976 mg, 3.13 mmol) was dissolved in methanol
(21.0 mL). Sodium carbonate was added to the solution and the mixture was stirred
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at 0 ◦C, after which acryloyl chloride (380 µL, 4.70 mmol) was slowly added dropwise
over 10 min and then stirred at 0 ◦C for 13 h. The mixture was evaporated and acetic
anhydride (11.0 mL, 117 mmol) and pyridine (11.0 mL, 136 mmol) were added at room
temperature, stirred for 20 h, and then evaporated. The residue was extracted with chlo-
roform and washed successively with aqueous 1 M hydrochloric acid, aqueous sodium
hydrogen carbonate, and brine, dried over anhydrous sodium sulfate, filtered, and then
evaporated. The residue was purified by silica gel chromatography three times using
5:1 (v/v) toluene/acetone as the eluent to give 2 (553 mg, 35%), 3 (391 mg, 26%), and a
mixture of 2 and 3 (231 mg; 2:3 = 2.7:1).

Analytical data for 2. Rf 0.54 (toluene/acetone, 1:1); 1H NMR (400 MHz, CDCl3) δ 6.28
(dd, J-CH=,Htrans = 16.4 Hz, JHtrans,Hcis = 1.6 Hz, 1 H, =CHtransH), 6.11 (dd, J-CH=,Hcis = 10.4 Hz,
1 H, =CH−), 5.90 (s, 1 H, NH), 5.62 (dd, 1 H, =CHHcis), 5.34 (dd, J2,3 = 3.6 Hz, J3,4 = 10.0 Hz,
1 H, H-3), 5.28 (dd, J4,5 = 19.8 Hz, 1 H, H-4), 5.22 (dt, J1,2 = 1.6 Hz, 1 H, H-2), 4.80 (d, 1 H, H-1),
4.28 (dd, J5,6a = 5.6 Hz, J6a,6b = 12.2 Hz, 1 H, H-6a), 4.11 (dd, J5,6b = 2.4 Hz, 1 H, H-6b), 3.98
(dt, 1 H, H-5), 3.69 (dt, JOCHa, 2CH2 = 9.6 Hz, JOCHa, OCHb = 6.4 Hz, 1 H, −OCHaHb−), 3.45
(dt, JOCHa, 2CH2 = 6.4 Hz, 1 H, −OCHaHb−), 3.33 (dq, JCHaNH, CHbNH = 3.2 Hz, JCH2NH, 5CH2
= 7.2 Hz, 2 H, −CH2NH−), 2.16 (s, 3 H, COCH3), 2.11 (s, 3 H, COCH3), 2.05 (s, 3 H, COCH3),
2.00 (s, 3 H, COCH3), 1.65–1.53 (m, 4 H, 2CH2, 5CH2), 1.43–1.38 (m, 4 H, 3CH2, 4CH2); 13C
NMR (101 MHz, CDCl3) δ 170.6, 170.1, 170.0, 169.7, 165.5, 130.9, 129.0 (toluene), 128.2
(toluene), 125.2 (toluene), 126.0, 97.5, 69.6, 69.1, 68.4, 66.2, 62.5, 39.4, 30.9 (toluene), 29.4,
29.0, 26.6, 25.9, 20.8, 20.7, 20.7.

Analytical data for 3. Rf 0.64 (toluene/acetone, 1:1); 1H NMR (400 MHz, CDCl3) δ 6.55
(dd, J-CH=,Htrans = 16.8 Hz, JHtrans,Hcis = 2.4 Hz, 1 H, =CHtransH), 6.35 (dd, J-CH=,Hcis = 10.4 Hz,
1 H, =CH−), 5.68 (dd, 1 H, =CHHcis), 5.36–5.22 (m, 6 H, H-2, H-3, H-4), 4.80 (s, 2 H, H-1),
4.30 (dd, J5,6a = 5.2 Hz, J6a,6b = 12.0 Hz, 2 H, H-6a), 4.11 (d, 2 H, H-6b), 3.97 (dt, 2 H, H-5),
3.68 (dt, JOCHa, 2CH2 = 9.6 Hz, JOCHa, OCHb = 6.8 Hz, 2 H, −OCHaHb−), 3.48–3.30 (m, 6 H,
−OCHaHb−, −CH2NH-), 2.16 (s, 6 H, COCH3), 2.11 (s, 6 H, COCH3), 2.05 (s, 6 H, COCH3),
2.00 (s, 6 H, COCH3), 1.63–1.60 (m, 8 H, 2CH2, 5CH2), 1.39–1.33 (m, 8 H, 3CH2, 4CH2);
13C NMR (101 MHz, CDCl3) δ 170.6, 170.6, 170.1, 169.9, 169.8, 169.7, 169.7, 165.9, 127.8,
129.0 (toluene), 128.2 (toluene), 127.6, 97.5, 69.7, 69.1, 68.4, 68.1, 66.2, 62.5, 48.0, 46.5, 29.6,
29.2, 27.7, 26.8, 26.7, 25.9, 25.9, 20.9, 20.7, 20.7, 20.7; IR (KBr, cm−1): 2937 (C−H), 2862
(C−H), 1751 (C=O), 1647 (C=C), 1611 (C=O), 1433 (C−H), 1373 (C−H); MALDI-TOF-MS
m/z: [M+Na]+ Calcd for C43H65N1Na1O21

+: 954.3941, found: 954.3948; [M+K]+ Calcd for
C43H65K1N1O21

+: 970.3681, found: 970.3675.

Supplementary Materials: The following are available online. 1H and 13C NMR spectra of 2 and 3
(Figures S1 and S2), and MALDI-TOF-mass and FTIR spectra of 3 (Figures S3 and S4).
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