Bis(pyrazol-1-yl)methane-4,4'-dicarboxylic Acid

Elizaveta A. Pershina ${ }^{1,2}$, Dmitry I. Pavlov ${ }^{1}{ }^{(D)}$, Nikita P. Burlutskiy ${ }^{3}$ and Andrei S. Potapov ${ }^{1, *}{ }^{\text {(D) }}$

1 Laboratory of Metal-Organic Coordination Polymers, Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090 Novosibirsk, Russia; e.pershina@g.nsu.ru (E.A.P.); pavlov@niic.nsc.ru (D.I.P.)

2 Department of Natural Sciences, Novosibirsk State University, 1 Pirogov Str., 630090 Novosibirsk, Russia
3 Kizhner Research Center, National Research Tomsk Polytechnic University, 30 Lenin Ave., 634050 Tomsk, Russia; npb1@tpu.ru

* Correspondence: potapov@niic.nsc.ru; Tel.: +7-(383)-330-94-90

Citation: Pershina, E.A.; Pavlov, D.I.; Burlutskiy, N.P.; Potapov, A.S. Bis(pyrazol-1-yl)methane-4, 4^{\prime} dicarboxylic Acid. Molbank 2021, 2021, M1298. https://doi.org/ 10.3390/M1298

Academic Editor: Kristof Van Hecke

Received: 29 October 2021
Accepted: 18 November 2021
Published: 22 November 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Abstract

The molecular structure of bis(pyrazol-1-yl)methane-4,4'-dicarboxylic acid (H_{2} bpmdc) was determined by single crystal X-Ray diffraction analysis. The compound crystallizes in a monoclinic crystal system; the unit cell contains four formula units. The molecules of $\mathrm{H}_{2} \mathrm{bpmdc}$ are linked into zig-zag chains by intermolecular carboxyl-carboxyl hydrogen bonds. Other types of supramolecular interactions, namely, $\mathrm{CH} \cdots \mathrm{N}$ and $\mathrm{CH} \cdots \mathrm{O}$ short contacts, $\mathrm{CH}-\pi$ interactions and carbonyl-carbonyl interactions were detected in the crystal structure.

Keywords: bis(pyrazol-1-yl)methane-4,4'-dicarboxylic acid; dicarboxylic acid; crystal structure; hydrogen bond; intermolecular interactions

1. Introduction

Dicarboxylic acids are important supramolecular synthons for metal-organic frameworks [1,2], hydrogen-bonded networks [3], organogels [4], deep eutectic solvents [5] and other applications [6]. Pyrazole-4-carboxylic acid and its derivatives have demonstrated potent biological activity [7,8]; they were also used for construction of highly porous metalorganic frameworks [9]. Dicarboxylic acids derived from bis(pyrazol-1-yl)methane have been less explored, but were successfully employed as building blocks for metal-organic frameworks with luminescent properties [10,11], gas separation capability [12], and single metal site catalysts [13,14].

Recently, we have developed a universal approach for the synthesis of a new series of bis(pyrazol-1-yl)alkane-4, 4^{\prime}-dicarboxylic acids starting from the commercially available pyrazole-4-carboxylic acid [15]. Taking into account the potential of these compounds as supramolecular building block, biologically active substances, monomers for polyesters and polyamides, we have studied the crystal structure and supramolecular analysis of N heterocyclic compound titled bis(pyrazol-1-yl)methane-4,4'-dicarboxylic acid ($\mathrm{H}_{2} \mathrm{bpmdc}$). This dicarboxylic acid was synthesized recently in our group and was characterized by NMR and IR spectroscopy, thermal and elemental analyses [15]; however, its crystal structure determination has not been performed yet.

2. Results and Discussion

The molecular structure of $\mathrm{H}_{2} \mathrm{bpmdc}$ is shown in Figure 1. The compound crystallizes in a monoclinic crystal system, space group $\mathrm{C} 2 / \mathrm{c}$. The asymmetric unit consists of a half of the molecule and the unit cell contains four formula units. The angle between the planes of two pyrazole rings is $81.24(8)^{\circ}$, while the angle N1-C5-N1 is closer to tetrahedral $\left(111.3(8)^{\circ}\right)$. The neighboring molecules are involved in intermolecular hydrogen bonding via the carboxylic groups (Figure 2), the D-H distance, $\mathrm{d}(\mathrm{O} 2-\mathrm{H} 2)=0.87(1) \AA$, A-H distance $\mathrm{d}(\mathrm{O} 1-\mathrm{H} 2)=1.79(1) \AA$ and $\mathrm{D}-\mathrm{H}-\mathrm{A}$ angle $(\mathrm{O} 2-\mathrm{H} 2-\mathrm{O} 1)$ is $177(1)^{\circ}$. The interatomic distance $\mathrm{d}(\mathrm{O} 1-\mathrm{O} 2)=2.655(1) \AA$ is in the range typical for a carboxyl-carboxyl cyclic dimer motif [16].

Figure 1. Molecular structure of H_{2} bpmdc; thermal ellipsoids are drawn at the 50% probability level.

Figure 2. Hydrogen-bonded carboxyl-carboxyl cyclic dimers between H_{2} bpmdc molecules.
Other types of intermolecular interactions include $\mathrm{CH} \cdots \mathrm{N}$ and $\mathrm{CH} \cdots \mathrm{O}$ short contacts (Figure 3a) with the distances of 2.62(1) and 2.88(1) \AA, correspondingly, $\mathrm{CH}-\pi$ interactions between CH_{2} groups and pyrazole rings $(\mathrm{d}(\mathrm{N} 2-\mathrm{H} 5 \mathrm{~A})=2.716(7) \AA$, Figure 3 b) and carbonylcarbonyl interactions, $\mathrm{d}(\mathrm{C} 1-\mathrm{O} 2)=3.170(1) \mathrm{A}$ (Figure 3c). Hydrogen bonds link the H_{2} bpmdc molecules into zig-zag chains oriented along the crystallographic axis c, while the abovementioned interactions join the chains into supramolecular stacks along the axis b (Figure 4). Selected geometric parameters of $\mathrm{H}_{2} \mathrm{bpmdc}$ are listed in Table 1.

Table 1. Selected geometric parameters of the molecular structure of H_{2} bpmdc.

Bond	\mathbf{d}, \AA	Angle	$\boldsymbol{\theta}^{\circ}{ }^{\circ}$
O1-C1	$1.2280(12)$	$\mathrm{C} 4-\mathrm{N} 1-\mathrm{N} 2$	$112.94(8)$
$\mathrm{O} 2-\mathrm{C} 1$	$1.3187(11)$	$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 5$	$127.88(7)$
$\mathrm{N} 1-\mathrm{C} 4$	$1.3500(12)$	$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 5$	$118.65(7)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.3683(11)$	$\mathrm{C} 3-\mathrm{N} 2-\mathrm{N} 1$	$104.25(8)$
$\mathrm{N} 1-\mathrm{C} 5$	$1.4497(10)$	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	$124.15(9)$
$\mathrm{N} 2-\mathrm{C} 3$	$1.3267(12)$	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$123.49(9)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.4627(13)$	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	$112.36(8)$
$\mathrm{C} 2-\mathrm{C} 4$	$1.3830(12)$	$\mathrm{C} 4-\mathrm{C} 2-\mathrm{C} 3$	$105.11(8)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.4150(13)$	$\mathrm{C} 4-\mathrm{C} 2-\mathrm{C} 1$	$128.28(9)$
		$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$126.59(9)$
		$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 2$	$111.58(8)$
		$\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 2$	$106.10(8)$
		$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{C} 5-\mathrm{N} 1$	$111.34(11)$

(a)

(b)

(c)

Figure 3. Intermolecular interactions in the crystal structure of H_{2} bpmdc: (a) short contacts $\mathrm{CH} \cdots \mathrm{N}$ and $\mathrm{CH} \cdots \mathrm{O} ;(\mathbf{b}) \mathrm{CH}-\pi$ interactions; (c) carbonyl-carbonyl interactions.

Figure 4. Hydrogen-bonded chains of H_{2} bpmdc molecules.

3. Materials and Methods

Bis(pyrazol-1-yl)methane-4,4'-dicarboxylic acid $\left(\mathrm{H}_{2}\right.$ bpmdc) was synthesized as described previously [15] and recrystallized from water to give single crystals suitable for X-ray crystal structure determination.

Single crystal XRD data for H_{2} bpmdc were collected with a Bruker D8 Venture diffractometer with a CMOS PHOTON III detector and I μ S 3.0 source (mirror optics, $\lambda(\operatorname{MoK} \alpha)=0.71073 \AA)$. The φ - and ω-scan techniques were employed to measure intensities. The crystal structure was solved using the SHELXT [17] and was refined using SHELXL [18] programs with OLEX2 GUI [19]. Atomic displacement parameters for nonhydrogen atoms were refined anisotropically. Hydrogen atoms were placed geometrically and treated as a mixture of independent and constrained refinement.

Crystal Data for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}_{4}(M=236.19 \mathrm{~g} / \mathrm{mol})$: monoclinic, space group $\mathrm{C} 2 / \mathrm{c}$, $a=5.7619(7), b=8.0578(11), c=20.806(2) \AA, \beta=90.370(4)^{\circ}, V=966.0(2) \AA^{3}, Z=4$, $T=150(2) \mathrm{K}, \mu(\mathrm{MoK} \alpha)=0.12 \mathrm{~mm}^{-1}, D_{\text {calc }}=1.624 \mathrm{~g} / \mathrm{cm}^{3}, 9866$ reflections measured
$\left(3.92^{\circ} \leq 2 \Theta \leq 33.16^{\circ}\right), 1406$ unique $\left(R_{\text {int }}=0.045, R_{\text {sigma }}=0.039\right)$. The final R_{1} was 0.0393 ($\mathrm{I}>2 \sigma(\mathrm{I})$) and $w R_{2}$ was 0.110 (all data).

Full crystallographic information (as CIF file) along with CheckCIF report are given in the supplementary materials.

Supplementary Materials: The following are available online. Crystallographic information file (CIF) and CheckCIF report for compound H_{2} bpmdc.
Author Contributions: Conceptualization, A.S.P.; methodology, A.S.P.; investigation, E.A.P., D.I.P., N.P.B.; writing-original draft preparation, D.I.P., E.A.P.; writing-review and editing, A.S.P.; supervision, A.S.P. All authors have read and agreed to the published version of the manuscript.

Funding: The research was supported by the Ministry of Science and Higher Education of the Russian Federation, project number 121031700321-3.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: CCDC 2118484 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center at http:/ / www.ccdc.cam.ac.uk/data_request/ cif (last accessed 18 November 2021).
Acknowledgments: The authors thank D.A. Piryazev for providing the data collected in XRD Facility of NIIC SB RAS.
Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References

1. Hawes, C.S. Coordination sphere hydrogen bonding as a structural element in metal-organic Frameworks. Dalton Trans. 2021, 50, 6034-6049. [CrossRef] [PubMed]
2. Butova, V.V.; Soldatov, M.A.; Guda, A.A.; Lomachenko, K.A.; Lamberti, C. Metal-organic frameworks: Structure, properties, synthesis and characterization. Russ. Chem. Rev. 2016, 85, 280-307. [CrossRef]
3. Shi, Z.-Q.; Ji, N.-N.; Guo, K.-M.; Li, G. Crystalline hydrogen-bonded supramolecular frameworks (HSFs) as new class of proton conductive materials. Appl. Surf. Sci. 2020, 504, 144484. [CrossRef]
4. Liao, L.; Zhong, X.; Jia, X.; Liao, C.; Zhong, J.; Ding, S.; Chen, C.; Hong, S.; Luo, X. Supramolecular organogels fabricated with dicarboxylic acids and primary alkyl amines: Controllable self-assembled structures. RSC Adv. 2020, 10, 29129-29138. [CrossRef]
5. Hansen, B.B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J.M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B.W.; et al. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem. Rev. 2021, 121, 1232-1285. [CrossRef] [PubMed]
6. Antipin, I.S.; Alfimov, M.V.; Arslanov, V.V.; Burilov, V.A.; Vatsadze, S.Z.; Voloshin, Y.Z.; Volcho, K.P.; Gorbatchuk, V.V.; Gorbunova, Y.G.; Gromov, S.P.; et al. Functional supramolecular systems: Design and applications. Russ. Chem. Rev. 2021, 90, 895-1107. [CrossRef]
7. Röhm, S.; Schröder, M.; Dwyer, J.E.; Widdowson, C.S.; Chaikuad, A.; Berger, B.-T.; Joerger, A.C.; Krämer, A.; Harbig, J.; Dauch, D.; et al. Selective targeting of the α C and DFG-out pocket in p38 MAPK. Eur. J. Med. Chem. 2020, 208, 112721. [CrossRef] [PubMed]
8. Dias, I.M.; Junior, H.C.S.; Costa, S.C.; Cardoso, C.M.; Cruz, A.G.B.; Santos, C.E.R.; Candela, D.R.S.; Soriano, S.; Marques, M.M.; Ferreira, G.B.; et al. Mononuclear coordination compounds containing a pyrazole-based ligand: Syntheses, magnetism and acetylcholinesterase inhibition assays. J. Mol. Struct. 2020, 1205, 127564. [CrossRef]
9. Liu, Q.; Song, Y.; Ma, Y.; Zhou, Y.; Cong, H.; Wang, C.; Wu, J.; Hu, G.; O’Keeffe, M.; Deng, H. Mesoporous Cages in Chemically Robust MOFs Created by a Large Number of Vertices with Reduced Connectivity. J. Am. Chem. Soc. 2019, 141, 488-496. [CrossRef] [PubMed]
10. Cheng, M.; Wang, Q.; Bao, J.; Wu, Y.; Sun, L.; Yang, B.; Liu, Q. Synthesis and structural diversity of d ${ }^{10}$ metal coordination polymers constructed from new semi-rigid bis(3-methyl-1H-pyrazole-4-carboxylic acid)alkane ligands. New J. Chem. 2017, 41, 5151-5160. [CrossRef]
11. Radi, S.; El-Massaoudi, M.; Benaissa, H.; Adarsh, N.N.; Ferbinteanu, M.; Devlin, E.; Sanakis, Y.; Garcia, Y. Crystal engineering of a series of complexes and coordination polymers based on pyrazole-carboxylic acid ligands. New J. Chem. 2017, 41, 8232-8241. [CrossRef]
12. Kivi, C.E.; Gelfand, B.S.; Dureckova, H.; Ho, H.T.K.; Ma, C.; Shimizu, G.K.H.; Woo, T.K.; Song, D. 3D porous metal-organic framework for selective adsorption of methane over dinitrogen under ambient pressure. Chem. Commun. 2018, 54, 14104-14107. [CrossRef] [PubMed]
13. Bloch, W.M.; Burgun, A.; Coghlan, C.J.; Lee, R.; Coote, M.L.; Doonan, C.J.; Sumby, C.J. Capturing snapshots of post-synthetic metallation chemistry in metal-organic frameworks. Nat. Chem. 2014, 6, 906. [CrossRef] [PubMed]
14. Burgun, A.; Coghlan, C.J.; Huang, D.M.; Chen, W.; Horike, S.; Kitagawa, S.; Alvino, J.F.; Metha, G.F.; Sumby, C.J.; Doonan, C.J. Mapping-Out Catalytic Processes in a Metal-Organic Framework with Single-Crystal X-ray Crystallography. Angew. Chemie Int. Ed. 2017, 56, 8412-8416. [CrossRef] [PubMed]
15. Burlutskiy, N.P.; Potapov, A.S. Approaches to the Synthesis of Dicarboxylic Derivatives of Bis(pyrazol-1-yl)alkanes. Molecules 2021, 26, 413. [CrossRef] [PubMed]
16. D'Ascenzo, L.; Auffinger, P. A comprehensive classification and nomenclature of carboxyl-carboxyl(ate) supramolecular motifs and related catemers: Implications for biomolecular systems. Acta Crystallogr. Sect. B 2015, 71, 164-175. [CrossRef] [PubMed]
17. Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A 2015, 71, 3-8. [CrossRef] [PubMed]
18. Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C 2015, 71, 3-8. [CrossRef] [PubMed]
19. Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339-341. [CrossRef]
