

Short Note **Bis(pyrazol-1-yl)methane-4,4'-dicarboxylic Acid**

Elizaveta A. Pershina^{1,2}, Dmitry I. Pavlov¹, Nikita P. Burlutskiy³ and Andrei S. Potapov^{1,*}

- ¹ Laboratory of Metal-Organic Coordination Polymers, Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090 Novosibirsk, Russia; e.pershina@g.nsu.ru (E.A.P.); pavlov@niic.nsc.ru (D.I.P.)
- ² Department of Natural Sciences, Novosibirsk State University, 1 Pirogov Str., 630090 Novosibirsk, Russia
- ³ Kizhner Research Center, National Research Tomsk Polytechnic University, 30 Lenin Ave., 634050 Tomsk, Russia; npb1@tpu.ru
- * Correspondence: potapov@niic.nsc.ru; Tel.: +7-(383)-330-94-90

Abstract: The molecular structure of bis(pyrazol-1-yl)methane-4,4'-dicarboxylic acid (H₂bpmdc) was determined by single crystal X-Ray diffraction analysis. The compound crystallizes in a monoclinic crystal system; the unit cell contains four formula units. The molecules of H₂bpmdc are linked into zig-zag chains by intermolecular carboxyl–carboxyl hydrogen bonds. Other types of supramolecular interactions, namely, CH…N and CH…O short contacts, CH– π interactions and carbonyl–carbonyl interactions were detected in the crystal structure.

Keywords: bis(pyrazol-1-yl)methane-4,4'-dicarboxylic acid; dicarboxylic acid; crystal structure; hydrogen bond; intermolecular interactions

Citation: Pershina, E.A.; Pavlov, D.I.; Burlutskiy, N.P.; Potapov, A.S. Bis(pyrazol-1-yl)methane-4,4'dicarboxylic Acid. *Molbank* 2021, 2021, M1298. https://doi.org/ 10.3390/M1298

Academic Editor: Kristof Van Hecke

Received: 29 October 2021 Accepted: 18 November 2021 Published: 22 November 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

1. Introduction

Dicarboxylic acids are important supramolecular synthons for metal–organic frameworks [1,2], hydrogen-bonded networks [3], organogels [4], deep eutectic solvents [5] and other applications [6]. Pyrazole-4-carboxylic acid and its derivatives have demonstrated potent biological activity [7,8]; they were also used for construction of highly porous metal– organic frameworks [9]. Dicarboxylic acids derived from bis(pyrazol-1-yl)methane have been less explored, but were successfully employed as building blocks for metal–organic frameworks with luminescent properties [10,11], gas separation capability [12], and single metal site catalysts [13,14].

Recently, we have developed a universal approach for the synthesis of a new series of bis(pyrazol-1-yl)alkane-4,4'-dicarboxylic acids starting from the commercially available pyrazole-4-carboxylic acid [15]. Taking into account the potential of these compounds as supramolecular building block, biologically active substances, monomers for polyesters and polyamides, we have studied the crystal structure and supramolecular analysis of N-heterocyclic compound titled bis(pyrazol-1-yl)methane-4,4'-dicarboxylic acid (H₂bpmdc). This dicarboxylic acid was synthesized recently in our group and was characterized by NMR and IR spectroscopy, thermal and elemental analyses [15]; however, its crystal structure determination has not been performed yet.

2. Results and Discussion

The molecular structure of H₂bpmdc is shown in Figure 1. The compound crystallizes in a monoclinic crystal system, space group C2/c. The asymmetric unit consists of a half of the molecule and the unit cell contains four formula units. The angle between the planes of two pyrazole rings is 81.24(8)°, while the angle N1-C5-N1 is closer to tetrahedral (111.3(8)°). The neighboring molecules are involved in intermolecular hydrogen bonding via the carboxylic groups (Figure 2), the D-H distance, d(O2-H2) = 0.87(1) Å, A-H distance d(O1-H2) = 1.79(1) Å and D-H-A angle (O2-H2-O1) is 177(1)°. The interatomic distance d(O1-O2) = 2.655(1) Å is in the range typical for a carboxyl-carboxyl cyclic dimer motif [16].

Figure 1. Molecular structure of H₂bpmdc; thermal ellipsoids are drawn at the 50% probability level.

Figure 2. Hydrogen-bonded carboxyl-carboxyl cyclic dimers between H₂bpmdc molecules.

Other types of intermolecular interactions include CH···N and CH···O short contacts (Figure 3a) with the distances of 2.62(1) and 2.88(1) Å, correspondingly, CH– π interactions between CH₂ groups and pyrazole rings (d(N2-H5A) = 2.716(7) Å, Figure 3b) and carbonyl-carbonyl interactions, d(C1-O2) = 3.170(1) A (Figure 3c). Hydrogen bonds link the H₂bpmdc molecules into zig-zag chains oriented along the crystallographic axis *c*, while the above-mentioned interactions join the chains into supramolecular stacks along the axis *b* (Figure 4). Selected geometric parameters of H₂bpmdc are listed in Table 1.

Table 1. Selected geometric parameters of the molecular structure of H₂bpmdc.

Bond	d, Å	Angle	θ, °
O1-C1	1.2280 (12)	C4—N1—N2	112.94 (8)
O2—C1	1.3187 (11)	C4—N1—C5	127.88 (7)
N1-C4	1.3500 (12)	N2—N1—C5	118.65 (7)
N1—N2	1.3683 (11)	C3—N2—N1	104.25 (8)
N1—C5	1.4497 (10)	O1—C1—O2	124.15 (9)
N2-C3	1.3267 (12)	O1—C1—C2	123.49 (9)
C1—C2	1.4627 (13)	O2—C1—C2	112.36 (8)
C2—C4	1.3830 (12)	C4—C2—C3	105.11 (8)
C2—C3	1.4150 (13)	C4—C2—C1	128.28 (9)
		C3—C2—C1	126.59 (9)
		N2-C3-C2	111.58 (8)
		N1—C4—C2	106.10 (8)
		N1 ⁱ —C5—N1	111.34 (11)

Figure 3. Intermolecular interactions in the crystal structure of H₂bpmdc: (**a**) short contacts CH…N and CH…O; (**b**) CH– π interactions; (**c**) carbonyl–carbonyl interactions.

Figure 4. Hydrogen-bonded chains of H₂bpmdc molecules.

3. Materials and Methods

Bis(pyrazol-1-yl)methane-4,4'-dicarboxylic acid (H₂bpmdc) was synthesized as described previously [15] and recrystallized from water to give single crystals suitable for X-ray crystal structure determination.

Single crystal XRD data for H₂bpmdc were collected with a Bruker D8 Venture diffractometer with a CMOS PHOTON III detector and IµS 3.0 source (mirror optics, λ (MoK α) = 0.71073Å). The φ - and ω -scan techniques were employed to measure intensities. The crystal structure was solved using the SHELXT [17] and was refined using SHELXL [18] programs with OLEX2 GUI [19]. Atomic displacement parameters for non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed geometrically and treated as a mixture of independent and constrained refinement.

Crystal Data for C₉H₈N₄O₄ (*M* = 236.19 g/mol): monoclinic, space group *C2/c*, *a* = 5.7619(7), *b* = 8.0578(11), *c* = 20.806(2) Å, β = 90.370(4)°, *V* = 966.0(2) Å³, *Z* = 4, *T* = 150(2) K, μ (MoK α) = 0.12 mm⁻¹, *D_{calc}* = 1.624 g/cm³, 9866 reflections measured $(3.92^{\circ} \le 2\Theta \le 33.16^{\circ})$, 1406 unique ($R_{int} = 0.045$, $R_{sigma} = 0.039$). The final R_1 was 0.0393 (I > 2 σ (I)) and wR_2 was 0.110 (all data).

Full crystallographic information (as CIF file) along with CheckCIF report are given in the supplementary materials.

Supplementary Materials: The following are available online. Crystallographic information file (CIF) and CheckCIF report for compound H₂bpmdc.

Author Contributions: Conceptualization, A.S.P.; methodology, A.S.P.; investigation, E.A.P., D.I.P., N.P.B.; writing—original draft preparation, D.I.P., E.A.P.; writing—review and editing, A.S.P.; supervision, A.S.P. All authors have read and agreed to the published version of the manuscript.

Funding: The research was supported by the Ministry of Science and Higher Education of the Russian Federation, project number 121031700321-3.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: CCDC 2118484 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center at http://www.ccdc.cam.ac.uk/data_request/cif (last accessed 18 November 2021).

Acknowledgments: The authors thank D.A. Piryazev for providing the data collected in XRD Facility of NIIC SB RAS.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References

- 1. Hawes, C.S. Coordination sphere hydrogen bonding as a structural element in metal–organic Frameworks. *Dalton Trans.* **2021**, *50*, 6034–6049. [CrossRef] [PubMed]
- 2. Butova, V.V.; Soldatov, M.A.; Guda, A.A.; Lomachenko, K.A.; Lamberti, C. Metal-organic frameworks: Structure, properties, synthesis and characterization. *Russ. Chem. Rev.* 2016, *85*, 280–307. [CrossRef]
- 3. Shi, Z.-Q.; Ji, N.-N.; Guo, K.-M.; Li, G. Crystalline hydrogen-bonded supramolecular frameworks (HSFs) as new class of proton conductive materials. *Appl. Surf. Sci.* 2020, 504, 144484. [CrossRef]
- Liao, L.; Zhong, X.; Jia, X.; Liao, C.; Zhong, J.; Ding, S.; Chen, C.; Hong, S.; Luo, X. Supramolecular organogels fabricated with dicarboxylic acids and primary alkyl amines: Controllable self-assembled structures. *RSC Adv.* 2020, 10, 29129–29138. [CrossRef]
- Hansen, B.B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J.M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B.W.; et al. Deep Eutectic Solvents: A Review of Fundamentals and Applications. *Chem. Rev.* 2021, 121, 1232–1285. [CrossRef] [PubMed]
- Antipin, I.S.; Alfimov, M.V.; Arslanov, V.V.; Burilov, V.A.; Vatsadze, S.Z.; Voloshin, Y.Z.; Volcho, K.P.; Gorbatchuk, V.V.; Gorbunova, Y.G.; Gromov, S.P.; et al. Functional supramolecular systems: Design and applications. *Russ. Chem. Rev.* 2021, 90, 895–1107. [CrossRef]
- Röhm, S.; Schröder, M.; Dwyer, J.E.; Widdowson, C.S.; Chaikuad, A.; Berger, B.-T.; Joerger, A.C.; Krämer, A.; Harbig, J.; Dauch, D.; et al. Selective targeting of the αC and DFG-out pocket in p38 MAPK. *Eur. J. Med. Chem.* 2020, 208, 112721. [CrossRef] [PubMed]
- 8. Dias, I.M.; Junior, H.C.S.; Costa, S.C.; Cardoso, C.M.; Cruz, A.G.B.; Santos, C.E.R.; Candela, D.R.S.; Soriano, S.; Marques, M.M.; Ferreira, G.B.; et al. Mononuclear coordination compounds containing a pyrazole-based ligand: Syntheses, magnetism and acetylcholinesterase inhibition assays. *J. Mol. Struct.* **2020**, *1205*, 127564. [CrossRef]
- Liu, Q.; Song, Y.; Ma, Y.; Zhou, Y.; Cong, H.; Wang, C.; Wu, J.; Hu, G.; O'Keeffe, M.; Deng, H. Mesoporous Cages in Chemically Robust MOFs Created by a Large Number of Vertices with Reduced Connectivity. *J. Am. Chem. Soc.* 2019, 141, 488–496. [CrossRef] [PubMed]
- 10. Cheng, M.; Wang, Q.; Bao, J.; Wu, Y.; Sun, L.; Yang, B.; Liu, Q. Synthesis and structural diversity of d¹⁰ metal coordination polymers constructed from new semi-rigid bis(3-methyl-1H-pyrazole-4-carboxylic acid)alkane ligands. *New J. Chem.* **2017**, *41*, 5151–5160. [CrossRef]
- Radi, S.; El-Massaoudi, M.; Benaissa, H.; Adarsh, N.N.; Ferbinteanu, M.; Devlin, E.; Sanakis, Y.; Garcia, Y. Crystal engineering of a series of complexes and coordination polymers based on pyrazole-carboxylic acid ligands. *New J. Chem.* 2017, 41, 8232–8241. [CrossRef]
- Kivi, C.E.; Gelfand, B.S.; Dureckova, H.; Ho, H.T.K.; Ma, C.; Shimizu, G.K.H.; Woo, T.K.; Song, D. 3D porous metal–organic framework for selective adsorption of methane over dinitrogen under ambient pressure. *Chem. Commun.* 2018, 54, 14104–14107. [CrossRef] [PubMed]

- 13. Bloch, W.M.; Burgun, A.; Coghlan, C.J.; Lee, R.; Coote, M.L.; Doonan, C.J.; Sumby, C.J. Capturing snapshots of post-synthetic metallation chemistry in metal–organic frameworks. *Nat. Chem.* **2014**, *6*, 906. [CrossRef] [PubMed]
- Burgun, A.; Coghlan, C.J.; Huang, D.M.; Chen, W.; Horike, S.; Kitagawa, S.; Alvino, J.F.; Metha, G.F.; Sumby, C.J.; Doonan, C.J. Mapping-Out Catalytic Processes in a Metal-Organic Framework with Single-Crystal X-ray Crystallography. *Angew. Chemie Int. Ed.* 2017, *56*, 8412–8416. [CrossRef] [PubMed]
- 15. Burlutskiy, N.P.; Potapov, A.S. Approaches to the Synthesis of Dicarboxylic Derivatives of Bis(pyrazol-1-yl)alkanes. *Molecules* **2021**, *26*, 413. [CrossRef] [PubMed]
- 16. D'Ascenzo, L.; Auffinger, P. A comprehensive classification and nomenclature of carboxyl-carboxyl(ate) supramolecular motifs and related catemers: Implications for biomolecular systems. *Acta Crystallogr. Sect. B* 2015, *71*, 164–175. [CrossRef] [PubMed]
- 17. Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. *Acta Crystallogr. Sect. A* 2015, *71*, 3–8. [CrossRef] [PubMed]
- 18. Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C 2015, 71, 3–8. [CrossRef] [PubMed]
- 19. Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. *OLEX2*: A complete structure solution, refinement and analysis program. *J. Appl. Crystallogr.* **2009**, *42*, 339–341. [CrossRef]