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Abstract: The molecular structure of bis(pyrazol-1-yl)methane-4,4′-dicarboxylic acid (H2bpmdc) was
determined by single crystal X-Ray diffraction analysis. The compound crystallizes in a monoclinic
crystal system; the unit cell contains four formula units. The molecules of H2bpmdc are linked into
zig-zag chains by intermolecular carboxyl–carboxyl hydrogen bonds. Other types of supramolecular
interactions, namely, CH···N and CH···O short contacts, CH–π interactions and carbonyl–carbonyl
interactions were detected in the crystal structure.
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1. Introduction

Dicarboxylic acids are important supramolecular synthons for metal–organic frame-
works [1,2], hydrogen-bonded networks [3], organogels [4], deep eutectic solvents [5] and
other applications [6]. Pyrazole-4-carboxylic acid and its derivatives have demonstrated
potent biological activity [7,8]; they were also used for construction of highly porous metal–
organic frameworks [9]. Dicarboxylic acids derived from bis(pyrazol-1-yl)methane have
been less explored, but were successfully employed as building blocks for metal–organic
frameworks with luminescent properties [10,11], gas separation capability [12], and single
metal site catalysts [13,14].

Recently, we have developed a universal approach for the synthesis of a new series of
bis(pyrazol-1-yl)alkane-4,4′-dicarboxylic acids starting from the commercially available
pyrazole-4-carboxylic acid [15]. Taking into account the potential of these compounds as
supramolecular building block, biologically active substances, monomers for polyesters
and polyamides, we have studied the crystal structure and supramolecular analysis of N-
heterocyclic compound titled bis(pyrazol-1-yl)methane-4,4′-dicarboxylic acid (H2bpmdc).
This dicarboxylic acid was synthesized recently in our group and was characterized by
NMR and IR spectroscopy, thermal and elemental analyses [15]; however, its crystal
structure determination has not been performed yet.

2. Results and Discussion

The molecular structure of H2bpmdc is shown in Figure 1. The compound crystallizes
in a monoclinic crystal system, space group C2/c. The asymmetric unit consists of a half
of the molecule and the unit cell contains four formula units. The angle between the
planes of two pyrazole rings is 81.24(8)◦, while the angle N1-C5-N1 is closer to tetrahedral
(111.3(8)◦). The neighboring molecules are involved in intermolecular hydrogen bonding
via the carboxylic groups (Figure 2), the D-H distance, d(O2-H2) = 0.87(1) Å, A-H distance
d(O1-H2) = 1.79(1) Å and D-H-A angle (O2-H2-O1) is 177(1)◦. The interatomic distance
d(O1-O2) = 2.655(1) Å is in the range typical for a carboxyl–carboxyl cyclic dimer motif [16].
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Figure 1. Molecular structure of H2bpmdc; thermal ellipsoids are drawn at the 50% probability 
level. 

 
Figure 2. Hydrogen-bonded carboxyl–carboxyl cyclic dimers between H2bpmdc molecules. 

Other types of intermolecular interactions include CH···N and CH···O short contacts 
(Figure 3a) with the distances of 2.62(1) and 2.88(1) Å, correspondingly, CH–π interactions 
between CH2 groups and pyrazole rings (d(N2-H5A) = 2.716(7) Å, Figure 3b) and car-
bonyl–carbonyl interactions, d(C1-O2) = 3.170(1) A (Figure 3c). Hydrogen bonds link the 
H2bpmdc molecules into zig-zag chains oriented along the crystallographic axis c, while 
the above-mentioned interactions join the chains into supramolecular stacks along the axis 
b (Figure 4). Selected geometric parameters of H2bpmdc are listed in Table 1. 
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Figure 2. Hydrogen-bonded carboxyl–carboxyl cyclic dimers between H2bpmdc molecules.

Other types of intermolecular interactions include CH···N and CH···O short contacts
(Figure 3a) with the distances of 2.62(1) and 2.88(1) Å, correspondingly, CH–π interactions
between CH2 groups and pyrazole rings (d(N2-H5A) = 2.716(7) Å, Figure 3b) and carbonyl–
carbonyl interactions, d(C1-O2) = 3.170(1) A (Figure 3c). Hydrogen bonds link the H2bpmdc
molecules into zig-zag chains oriented along the crystallographic axis c, while the above-
mentioned interactions join the chains into supramolecular stacks along the axis b (Figure 4).
Selected geometric parameters of H2bpmdc are listed in Table 1.

Table 1. Selected geometric parameters of the molecular structure of H2bpmdc.

Bond d, Å Angle θ, ◦

O1—C1 1.2280 (12) C4—N1—N2 112.94 (8)
O2—C1 1.3187 (11) C4—N1—C5 127.88 (7)
N1—C4 1.3500 (12) N2—N1—C5 118.65 (7)
N1—N2 1.3683 (11) C3—N2—N1 104.25 (8)
N1—C5 1.4497 (10) O1—C1—O2 124.15 (9)
N2—C3 1.3267 (12) O1—C1—C2 123.49 (9)
C1—C2 1.4627 (13) O2—C1—C2 112.36 (8)
C2—C4 1.3830 (12) C4—C2—C3 105.11 (8)
C2—C3 1.4150 (13) C4—C2—C1 128.28 (9)

C3—C2—C1 126.59 (9)
N2—C3—C2 111.58 (8)
N1—C4—C2 106.10 (8)
N1i—C5—N1 111.34 (11)
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λ(MoKα) = 0.71073Å). The φ- and ω-scan techniques were employed to measure intensi-
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3. Materials and Methods

Bis(pyrazol-1-yl)methane-4,4′-dicarboxylic acid (H2bpmdc) was synthesized as de-
scribed previously [15] and recrystallized from water to give single crystals suitable for
X-ray crystal structure determination.

Single crystal XRD data for H2bpmdc were collected with a Bruker D8 Venture
diffractometer with a CMOS PHOTON III detector and IµS 3.0 source (mirror optics,
λ(MoKα) = 0.71073Å). The ϕ- and ω-scan techniques were employed to measure inten-
sities. The crystal structure was solved using the SHELXT [17] and was refined using
SHELXL [18] programs with OLEX2 GUI [19]. Atomic displacement parameters for non-
hydrogen atoms were refined anisotropically. Hydrogen atoms were placed geometrically
and treated as a mixture of independent and constrained refinement.

Crystal Data for C9H8N4O4 (M = 236.19 g/mol): monoclinic, space group C2/c,
a = 5.7619(7), b = 8.0578(11), c = 20.806(2) Å, β = 90.370(4)◦, V = 966.0(2) Å3, Z = 4,
T = 150(2) K, µ(MoKα) = 0.12 mm−1, Dcalc = 1.624 g/cm3, 9866 reflections measured
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(3.92◦ ≤ 2Θ ≤ 33.16◦), 1406 unique (Rint = 0.045, Rsigma = 0.039). The final R1 was 0.0393
(I > 2σ(I)) and wR2 was 0.110 (all data).

Full crystallographic information (as CIF file) along with CheckCIF report are given in
the supplementary materials.

Supplementary Materials: The following are available online. Crystallographic information file
(CIF) and CheckCIF report for compound H2bpmdc.
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