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Abstract: The reaction of 3-cyclohexyl-2-(cyclohexylimino)-6-(4-ethoxyphenyl)-5-(4-methyl-3-oxo-
3,4-dihydroquinoxalin-2-yl)-2,3-dihydro-4H-1,3-oxazin-4-one with ammonium acetate afforded 3-
(1-cyclohexyl-2-(cyclohexylamino)-4-(4-ethoxyphenyl)-6-oxo-1,6-dihydropyrimidin-5-yl)-1- methyl-
quinoxalin-2(1H)-one in a good yield. The compound was fully characterized.
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1. Introduction

2-(Pyrimidin-5-yl)quinoxalines are interesting nitrogen heterocycles for medical ap-
plications. For example, potential pharmaceutical substances, bearing a 2-(pyrimidin-5-
yl)quinoxaline core, were developed for treating pain [1], inflammatory conditions [2],
T-cell-mediated autoimmune disease [2], anemia [3], and cancer [2,4] (Figure 1).
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1. Introduction 
2-(Pyrimidin-5-yl)quinoxalines are interesting nitrogen heterocycles for medical ap-

plications. For example, potential pharmaceutical substances, bearing a 2-(pyrimidin-5-
yl)quinoxaline core, were developed for treating pain [1], inflammatory conditions [2], T-
cell-mediated autoimmune disease [2], anemia [3], and cancer [2,4] (Figure 1). 
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Figure 1. Potential pharmaceutical substances, bearing a 2-(pyrimidin-5-yl)quinoxaline core. 
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As a continuation of our study on the syntheses of quinoxaline-based heterocycles
A and B, via reactions of acyl(quinoxalin-2-yl)ketenes C, generated by the thermolysis of
[e]-fused 1H-pyrrole-2,3-diones D [5], we investigated the capacity of the conversion of
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heterocycles A to their aza-analogs E, e.g., pyrimidinylquinoxalines (X = NR′′; Y = CR′′′2)
(Scheme 1).

Molbank 2022, 2022, x FOR PEER REVIEW 2 of 5 
 

As a continuation of our study on the syntheses of quinoxaline-based heterocycles A 
and B, via reactions of acyl(quinoxalin-2-yl)ketenes C, generated by the thermolysis of [e]-
fused 1H-pyrrole-2,3-diones D [5], we investigated the capacity of the conversion of het-
erocycles A to their aza-analogs E, e.g., pyrimidinylquinoxalines (X = NR’’; Y = CR’’’2) 
(Scheme 1). 

 
Scheme 1. Syntheses of quinoxaline derivatives A and B via reactions of acyl(quinoxalin-2-yl)ke-
tenes C. 

2. Results and Discussion 
The starting quinoxaline derivative 1 was synthesized according to the previously 

reported procedure [6] using the solvent-free reaction of [e]-fused 1H-pyrrole-2,3-dione 2 
with dicyclohexylcarbodiimide (DCC) (Scheme 2). This transformation was completed in 
two steps through a one-pot procedure. First, pyrrole-2,3-dione 2 underwent thermal de-
composition to form a highly reactive acyl(quinoxalin-2-yl)ketene 3 in situ. Second, ketene 
3 was involved in a [4+2] cycloaddition reaction with DCC to afford the desired compound 
1. 

 
Scheme 2. Synthesis of the starting quinoxaline derivative 1 [6]. 

It should be mentioned that compound 1 was chosen for this study, since its closest 
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2. Results and Discussion

The starting quinoxaline derivative 1 was synthesized according to the previously
reported procedure [6] using the solvent-free reaction of [e]-fused 1H-pyrrole-2,3-dione
2 with dicyclohexylcarbodiimide (DCC) (Scheme 2). This transformation was completed
in two steps through a one-pot procedure. First, pyrrole-2,3-dione 2 underwent thermal
decomposition to form a highly reactive acyl(quinoxalin-2-yl)ketene 3 in situ. Second,
ketene 3 was involved in a [4+2] cycloaddition reaction with DCC to afford the desired
compound 1.
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It should be mentioned that compound 1 was chosen for this study, since its closest
analogs had shown significant antihypoxic effects in vivo [7] (Figure 2).
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The reaction of compound 1 with ammonium acetate afforded pyrimidinylquinoxaline
derivative 4 in a good yield (80%) (Scheme 3). No other products were observed through
the UPLC-UV-MS of the reaction mixture. The structure of compound 4 was unambigu-
ously confirmed through single crystal X-ray analysis (CCDC Refcode = ZUNYIT, CCDC
2010489 [8]).
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3. Materials and Methods
3.1. General Information

1H and 13C NMR spectra (Supplementary Materials) were acquired using a Bruker
Avance III 400 HD spectrometer (at 400 and 100 MHz, respectively) in CDCl3 (stab. with
Ag) using the HMDS signal (in 1H NMR) or solvent residual signal (in 13C NMR, 77.00 for
CDCl3) as internal standards. The IR spectrum was recorded using a Perkin–Elmer Spec-
trum Two spectrometer from a mull in mineral oil. The melting point was measured on a
Khimlabpribor PTP apparatus. Elemental analysis was carried out on a Vario MICRO Cube
analyzer. The reaction conditions were optimized using UPLC-UV-MS (Waters ACQUITY
UPLC I-Class system; Acquity UPLC BEH C18 column; grain size of 1.7 µm; acetonitrile–
water as eluents; flow rate of 0.6 mL/min; ACQUITY UPLC PDA eλ Detector (wavelength
range of 230–780 nm); Xevo TQD mass detector; electrospray ionization (ESI); positive and
negative ion detection; ion source temperature of 150 ◦C; capillary voltage of 3500–4000 V;
cone voltage of 20–70 V; vaporizer temperature of 200 ◦C). The single crystal X-ray analysis
of compound 4 was performed on an Xcalibur Ruby diffractometer (Agilent Technologies).
The empirical absorption correction was introduced by the multi-scan method using the
SCALE3 ABSPACK algorithm [9]. Using OLEX2 [10], the structure was solved using the
SUPERFLIP [11] program and refined by the full-matrix least-squares minimization in the
anisotropic approximation for all non-hydrogen atoms with the SHELXL [12] program.
Hydrogen atoms bound to carbon were positioned geometrically and refined using a riding
model. The hydrogen atom of the NH group was refined freely with isotropic displacement
parameters. Starting compound 1 was obtained according to the reported procedure [6]
from DCC (purchased from commercial vendors) and 1H-pyrrole-2,3-dione 2 (obtained
according to the reported procedure [6] from commercially available reagents). All other
solvents and reagents were purchased from commercial vendors and used as received.

3.2. 3-(1-Cyclohexyl-2-(cyclohexylamino)-4-(4-ethoxyphenyl)-6-oxo-1,6-dihydropyrimidin-5-yl)-
1-methylquinoxalin-2(1H)-one 4

A mixture of 50 mg (90 µmol) of compound 1, 21 mg (270 µmol) of ammonium acetate,
and 6 mg (100 µmol) of acetic acid in 1 mL of ethyl acetate were stirred in a screw-capped
vial at 85 ◦C for 24 h. Then, the reaction mixture was cooled to room temperature. The
formed precipitate was filtered off and recrystallized from ethyl acetate to yield the title
compound 4 (yield: 40 mg (80%); pale yellow solid; mp 289–291 ◦C). 1H NMR (CDCl3,
400 MHz): δ = 7.77 (m, 1 H), 7.50 (m, 3 H), 7.28 (m, 2 H), 6.73 (m, 2 H), 5.16 (br.s, 1 H),
4.92 (br.s, 1 H), 4.18 (m, 1 H), 3.97 (q, J 6.8 Hz, 2 H), 3.70 (s, 3 H), 2.16–1.12 (m, 25 H) ppm.
13C NMR (CDCl3, 100 MHz): δ = 162.8, 159.8, 156.9, 154.8, 152.0, 133.6, 133.1, 133.1, 130.4,
130.3, 130.0, 130.0, 123.2, 123.1, 113.9, 113.9, 113.4, 63.3, 50.4, 32.9, 29.8, 29.3, 26.5, 25.7, 24.6,
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14.7 ppm. IR (mineral oil): 3366, 1654 cm−1. Anal. Calcd. (%) for C33H39N5O3: C 71.58; H
7.10; N 12.65. Found: C 71.92; H 7.13; N 12.51. MS (ESI+): m/z calcd. for C33H39N5O3+H+:
554.31 [M+H+]; found: 554.30. The crystal structure of compound 4 was deposited at
the Cambridge Crystallographic Data Centre with the deposition number CCDC 2010489,
CCDC Refcode = ZUNYIT [8].

Supplementary Materials: The following are available online: copies of NMR spectra for
new compound.
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