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Abstract: As part of our ongoing scaffold-hopping work on an antiplasmodial 2-trichloromethylquinazoline
scaffold, we aimed to explore the 1-trichloromethylphthalazine scaffold as a potential new antimalar-
ial series. Using previously chlorination conditions described by our lab to obtain a trichloromethyl
group from a methyl group, we did not obtain the target compound; instead, we obtained a dichloro
methylphosphonic dichloride side product 3. The nature of this compound was then characterized
by NMR, HRMS and X-ray crystallography. The same issue was previously reported by Kato et al.,
starting from the 2-methyl-3-nitropyridine. Finally, compound 3, although not cytotoxic, was not
active against P. falciparum, the parasite responsible for human malaria.
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1. Introduction

Malaria is still the leading cause of mortality in comparison to other parasitic dis-
eases. In 2020, malaria deaths dramatically increased by 12% from 2019 to an estimated
627,000, among which 77% were children under 5 years old: this was mainly due to service
disruptions during the COVID-19 pandemic. [1] To overcome the resistance of the causal
agent Plasmodium to most of the marketed therapies, including the most recent ones such
as artemisinin-combination therapies (ACTs), a huge effort has been made to highlight
new derivatives active against Plasmodium and display original mechanisms of action [2].
With the aim of developing new antiplasmodial compounds, our laboratory explored
different aza-heterocyclic scaffolds bearing a trichloromethyl group, which was mandatory
for providing the antiparasitic activity [3–5]. We previously obtained a hit molecule in the
2-trichloromethylquinazoline series bearing a 4′-chlorophenoxy substituent at position 4,
showing micromolar activity against P. falciparum and a low cytotoxicity against the human
HepG2 cell line [6] (Figure 1).
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1. Introduction 
Malaria is still the leading cause of mortality in comparison to other parasitic dis-

eases. In 2020, malaria deaths dramatically increased by 12% from 2019 to an estimated 
627,000, among which 77% were children under 5 years old: this was mainly due to service 
disruptions during the COVID-19 pandemic. [1] To overcome the resistance of the causal 
agent Plasmodium to most of the marketed therapies, including the most recent ones such 
as artemisinin-combination therapies (ACTs), a huge effort has been made to highlight 
new derivatives active against Plasmodium and display original mechanisms of action [2]. 
With the aim of developing new antiplasmodial compounds, our laboratory explored dif-
ferent aza-heterocyclic scaffolds bearing a trichloromethyl group, which was mandatory 
for providing the antiparasitic activity [3–5]. We previously obtained a hit molecule in the 
2-trichloromethylquinazoline series bearing a 4′-chlorophenoxy substituent at position 4, 
showing micromolar activity against P. falciparum and a low cytotoxicity against the hu-
man HepG2 cell line [6] (Figure 1). 
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Figure 1. Previously described antiplasmodial Hit A. 
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In order to continue the pharmacomodulation work around this aza-heterocyclic
scaffold, we performed a scaffold-hopping strategy using ring variation, among which
we explored the phthalazine moiety. Indeed, phthalazines have recently gained some
importance as privileged scaffolds in bioactive compounds, such as anticancer drugs,
namely Olaparib [7] and Vatalanib [8], as well as the antihistaminic H1 drug Azelastine [9]
(Figure 2). Numerous other bioactive molecules are currently in development in various
therapeutic areas [10].
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2. Results

To obtain the target compound B, we followed our previously described reaction
condition applied to the phthalazine scaffold (Scheme 1). Starting from the readily ac-
cessible 1-chloro-4-methylphthalazine 1 [11], we first introduced an SNAr reaction to the
4-chlorophenoxy substituent at position 1, using the appropriate phenol and cesium car-
bonate as a base to yield 2 (71%). Then, we performed the chlorination reaction in order to
obtain the 4-trichloromethyl group from the 4-methyl group, using a mixture of PCl5 in
POCl3. This reaction is usually performed under microwave heating, which allows for the
best yields in a short reaction time [12].
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Scheme 1. Reaction conditions for the synthesis of compound B and structure of compound 3.

A mixture of two compounds was obtained. Usually, the reaction leads to a mix-
ture of the target compound -CCl3 and the dichlorinated intermediate -CHCl2. However,
in our study, we noticed the formation of a new unexpected compound following the
purification step. After complementary unambiguous analyses, we confirmed by NMR,
HRMS and X-ray crystallography (Figure 3) [13] that this compound was dichloro{4-(4-
chlorophenoxy)phthalazin-1-yl}methylphosphonic dichloride 3 (Scheme 1) (see Supple-
mentary data).
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3. Discussion

After conducting bibliographical research, we noticed that Kato et al. previously
reported the formation of a similar unwanted compound upon the chlorination of 2-
methyl-3-nitropyridine using a mixture of PCl5 in POCl3, leading to dichloro-(3-nitro-2-
pyridyl)methylphosphonic dichloride [14] (Scheme 2).

Finally, we wanted to explore the biological potential of 3: this compound was not
active against P. falciparum (EC50 = 28.9 µM), nor was it cytotoxic on the HepG2 cell line
(CC50 = 62.5 µM).
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Scheme 2. Similar issue observed by Kato et al. [14] in pyridine series.

Several factors could explain the direct phosphonylation of methylphthalazine 2,
although the mechanism of the reaction is not clearly established:

(1) The substituent effect of the 4-chlorophenoxy group to the nucleophilic behavior of
the 1-methyl group;

(2) The ability of the phthalazine to form a complex with the strongest available
electrophile, i.e., PCl5, if sterically possible.

The chlorination by PCl5 is usually favored, thanks to a lower enthalpy of activation;
however, it is sterically more constrained than phosphonylation by POCl3, because oxygen
atoms are much smaller than chlorine atoms [14]. Thus, PCl5 cannot react due to its size, but
POCl3 can come close enough to react with the nucleophilic carbon, giving the intermediate
phosphonic dichloride. The next step could involve intramolecular chlorination to give
the monochlorophosphonic dichloride. Repeating the chlorination step finally gave the
product 3 (Scheme 3).
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4. Materials and Methods

Melting points were determined on a Köfler melting point apparatus (Wagner & Munz
GmbH, München, Germany) and were uncorrected. Elemental analyses were carried out at
the Spectropole, Faculté des Sciences de Saint-Jêrome (Marseille) with a Thermo Finnigan
EA1112 analyzer (Thermo Finnigan, San Jose, CA, USA). NMR spectra were recorded
on a Bruker Avance NEO 400MHz NanoBay spectrometer at the Faculté de Pharmacie
of Marseille (1H NMR: reference CDCl3 δ = 7.26 ppm and 13C NMR: reference CHCl3
δ = 76.9 ppm). The following adsorbent was used for column chromatography: silica
gel 60 (Merck KGaA, Darmstadt, Germany, particle size 0.063–0.200 mm, 70–230 mesh
ASTM). TLC was performed on 5 cm × 10 cm aluminum plates coated with silica gel
60F-254 (Merck) in an appropriate eluent. Visualization was performed with ultraviolet
light (234 nm). The purity of synthesized compounds was checked by LC/MS analyses,
which were performed at the Faculté de Pharmacie of Marseille with a Thermo Scientific
Accela High Speed LC System® (Waltham, MA, USA), coupled to a single quadrupole mass
spectrometer Thermo MSQ Plus®. The RP-HPLC column was a Thermo Hypersil Gold®

50 × 2.1 mm (C18 bounded), with particles of a diameter of 1.9 mm. The volume of sample
injected on the column was 1 µL. The chromatographic analysis with a total duration of
8 min, was performed on the following solvents’ gradients: t = 0 min, methanol/water
50:50; 0 < t < 4 min, linear increase in the proportion of methanol to a methanol/water ratio
of 95:5; 4 < t < 6 min, methanol/water 95:5; 6 < t < 7 min, linear decrease in the proportion of
methanol to return to a methanol/water ratio of 50:50; 6 < t< 7 min, methanol/water 50:50.
The water used was buffered with ammonium acetate 5 mM. The flow rate of the mobile
phase was 0.3 mL/min. The retention times (tR) of the molecules analyzed were indicated
in min. The microwave reactions were performed using multimode reactor ETHOS Synth
Lab station (Ethos start, MLS GmbH, Leutkirch, Germany) in an open vessel with a power
output of 0 to 800 W. Reagents were purchased and used without further purifications from
Sigma-Aldrich or Fluorochem.

1-(4-Chlorophenoxy)-4-methylphthalazine (2). To a solution of 1-chloro-4-methylphthalazine
(1) [11], (500 mg, 2.8 mmol) and 4-chlorophenol (360 mg, 2.8 mmol, 1.0 equiv) in anhydrous
DMF (5 mL), Cs2CO3 (912 mg, 2.8 mmol, 1.0 equiv) was added under an inert atmosphere.
The mixture was stirred at 70 ◦C for 24 h. After completion of the reaction, water was
added, leading to a precipitate which was separated by filtration. The resulting yellow
precipitate was then thoroughly washed with water. The precipitate was dissolved in
CH2Cl2 and dried with Na2SO4. After filtration and evaporation, the resulting solid was
purified by silica-gel column chromatography (Petroleum ether/CH2Cl2, 1:1 v/v) to afford
the desired compound 2.
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Yield 71% (540 mg). Yellow solid. Mp 132–133 ◦C. 1H NMR (400 MHz, CDCl3) δ 8.46–
8.34 (m, 1H), 8.08–8.02 (m, 1H), 8.00–7.93 (m, 2H), 7.39 (d, J = 8.9 Hz, 2H), 7.27 (d, J = 8.9 Hz,
2H), 2.93 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 160.7, 155.1, 152.1, 132.9, 132.5, 130.6, 129.7,
129.1, 124.9, 123.6, 123.2, 119.9, 19.5. LC-MS (ESI+) tR 5.42 min; m/z [M+H]+ 271.11/273.12.
HRMS (ESI): m/z calcd. for C15H12ClN2O [M + H]+ 271.0633. Found: 271.0632.

Dichloro(4-(4-chlorophenoxy)phthalazin-1-yl)methyl)phosphonic dichloride (3). To a solution
of 1-(4-Chlorophenoxy)-4-methylphthalazine (2) (500 mg, 1.85 mmol) in POCl3 (10 mL)
PCl5 was added (2.31 g, 11.1 mmol). The reaction mixture was heated by a microwave
reactor at a reflux of POCl3 for 20 min at 800 W. After cooling down, the reaction mixture
was poured into ice, and then the pH was adjusted to neutrality with Na2CO3. The
resulting solution was extracted three times with CH2Cl2. The organic phase was then
washed with brine, dried over anhydrous MgSO4, filtered and concentrated in a vacuum to
afford the crude product, which was purified by silica-gel flash chromatography (using
dichloromethane/petroleum ether from 5/5 to 7/3 v/v) to afford compound 3.

Yield 30% (250 mg). Yellow solid. Mp 250 ◦C (degradation). 1H NMR (400 MHz,
CDCl3) δ 8.75 (d, J = 7.9 Hz, 1H), 8.55 (d, J = 7.9 Hz, 1H), 8.10–8.06 (m, 2H), 7.42 (d, J = 8.5 Hz,
2H), 7.27 (d, J = 8.5 Hz, 2H). 13C NMR (101 MHz, CDCl3) δ 162.3, 151.6, 151.2, 133.4, 133.3,
131.6, 130.0, 126.1, 126.0, 125.2, 124.6, 123.3, 121.5. 31P NMR (162 MHz, CDCl3) δ 35.73.
HRMS (ESI): m/z calcd. for C15H9Cl5N2O2P [M + H]+ 456.8810. Found: 456.8806.

Crystal Data for C15H8Cl5N2O2P (M = 456.45 g/mol): monoclinic, space group P21/n
(no. 14), a = 7.9208(3) Å, b = 23.1270(9) Å, c = 9.9621(5) Å, β = 96.368(4)◦, V = 1813.64(13) Å3,
Z = 4, T = 295 K, µ(MoKα) = 0.900 mm−1, Dcalc = 1.672 g/cm3, 15,418 reflections measured
(6.244◦ ≤ 2Θ ≤ 56.808◦), 3992 unique (Rint = 0.0343, Rsigma = 0.0295), which were used in
all calculations. The final R1 was 0.0400 (I > 2σ(I)) and wR2 was 0.1021 (all data).

Supplementary Materials: The following are available online: Figure S1, 1H NMR spectra of 1-
(4-Chlorophenoxy)-4-methylphthalazine; Figure S2, 13C NMR spectra of 1-(4-Chlorophenoxy)-4-
methylphthalazine; Figure S3, HRMS (ESI) spectra of 1-(4-Chlorophenoxy)-4-methylphthalazine; Fig-
ure S4, 1H NMR spectra of Dichloro(4-(4-chlorophenoxy)phthalazin-1-yl)methyl)phosphonic dichlo-
ride; Figure S5, 13C NMR spectra of Dichloro(4-(4-chlorophenoxy)phthalazin-1-yl)methyl)phosphonic
dichloride; Figure S6, 31P NMR spectra of Dichloro(4-(4-chlorophenoxy)phthalazin-1-yl)methyl)phosphonic
dichloride; Figure S7, HRMS (ESI) spectra of Dichloro(4-(4-chlorophenoxy)phthalazin-1-yl)methyl)phosphonic
dichloride.
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