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Abstract: 5H-Chromeno[2,3-b]pyridines are important compounds with industrial, biological, and
medicinal properties. In this short note, the multicomponent reaction of salicylaldehyde, malononi-
trile dimer, and 2-phenyl-5-(trifluoromethyl)-2,4-dihydro-3H-pyrazol-3-one in dimethyl sulfoxide at
ambient temperature was investigated to give 2,4-diamino-5-(5-hydroxy-1-phenyl-3-(trifluoromethyl)-
1H-pyrazol-4-yl)-5H-chromeno[2,3-b]pyridine-3-carbonitrile with good yield. The structure of the
previously unknown chromeno[2,3-b]pyridine derivative was confirmed by elemental analysis, mass,
nuclear magnetic resonance, and infrared spectroscopy data. The ADME (absorption, distribution,
metabolism, and excretion) properties were also assessed.

Keywords: multicomponent reaction; salicylaldehyde; malononitrile dimer; 2-phenyl-5-(trifluoromethyl)-
2,4-dihydro-3H-pyrazol-3-one; chromeno[2,3-b]pyridines; ADME properties

1. Introduction

The assessment of absorption, distribution, metabolism, and excretion (ADME) prop-
erties is a necessary and responsible approach to drug discovery and design that aids in
optimizing the safety of the hit compound [1]. Early estimation of ADME in the discov-
ery phase drastically reduces the fraction of pharmacokinetics-related failures in clinical
phases [2]. The high-throughput and low-cost nature of ADME prediction models allow
for a more streamlined drug development process [3].

Chromeno[2,3-b]pyridine fragment is known as a privileged medicinal scaffold [4]. Its
derivatives are important compounds with industrial, biological, and medicinal proper-
ties [5]. Chromeno[2,3-b]pyridines have a wide spectrum of pharmacological activity, and
this moiety was found in two commercial anti-inflammatory drugs: Amlexanox [6] and
Pranoprofen [7] (Figure 1).
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1. Introduction 
The assessment of absorption, distribution, metabolism, and excretion (ADME) prop-

erties is a necessary and responsible approach to drug discovery and design that aids in 
optimizing the safety of the hit compound [1]. Early estimation of ADME in the discovery 
phase drastically reduces the fraction of pharmacokinetics-related failures in clinical 
phases [2]. The high-throughput and low-cost nature of ADME prediction models allow 
for a more streamlined drug development process [3]. 

Chromeno[2,3-b]pyridine fragment is known as a privileged medicinal scaffold [4]. 
Its derivatives are important compounds with industrial, biological, and medicinal prop-
erties [5]. Chromeno[2,3-b]pyridines have a wide spectrum of pharmacological activity, 
and this moiety was found in two commercial anti-inflammatory drugs: Amlexanox [6] 
and Pranoprofen [7] (Figure 1). 
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Figure 1. Bioactive chromeno[2,3-b]pyridines. 

The trifluoromethyl pyrazole fragment is a privileged medicinal scaffold as well. 
Many examples of bioactive fluorinated pyrazoles have emerged in recent years, includ-
ing the non-steroidal anti-inflammatory drug celecoxib (Celebrex) [8] and the herbicide 
fluazolate [9] (Figure 2). 
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Figure 1. Bioactive chromeno[2,3-b]pyridines.

The trifluoromethyl pyrazole fragment is a privileged medicinal scaffold as well.
Many examples of bioactive fluorinated pyrazoles have emerged in recent years, includ-
ing the non-steroidal anti-inflammatory drug celecoxib (Celebrex) [8] and the herbicide
fluazolate [9] (Figure 2).
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We previously carried out a multicomponent transformation of salicylaldehydes, 2-
aminoprop-1-ene-1,1,3-tricarbonitrile (malononitrile dimer), and 5-(trifluoromethyl)-2,4-
dihydro-3H-pyrazol-3-one into 2,4-diamino-5-(5-hydroxy-3-(trifluoromethyl)-1H-pyra-
zol-4-yl)-5H-chromeno[2,3-b]pyridine-3-carbonitriles by two different methods [10] 
(Scheme 1). However, the use of these reaction systems did not allow for the introduction 
of the N-phenyl-substituted C-H acid derivative into the reaction. 
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We developed the multicomponent synthesis of chromeno[2,3-b]pyridines in dime-
thyl sulfoxide (DMSO) [11–13]. This method produced chromeno[2,3-b]pyridines, which 
were previously unknown and unavailable via other methods (methods A and B [10]). 
Salicylaldehydes, malononitrile dimer, and malonic acid or dimethyl malonate were then 
transformed into 2-(2,4-diamino-3-cyano-5H-chromeno[2,3-b]-pyridin-5-yl)malonic acids 
or dimethyl 2-(2,4-diamino-3-cyano-5H-chromeno[2,3-b]-pyridin-5-yl)malonate [11,12]. 
Then, similarly, 2,4-Diamino-5-(nitromethyl)5H-chromeno[2,3-b]pyridine3-carbonitrile 
was also synthesized [13]. 
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The incorporation of both of these fragments may lead to new properties. Thus, the
synthesis of a compound containing both of these fragments is of prominent interest.

2. Results and Discussion
2.1. Multicomponent Synthesis of 2,4-Diamino-5-(5-hydroxy-1-phenyl-3-(trifluoromethyl)-1H-
pyrazol-4-yl)-5H-chromeno[2,3-b]pyridine-3-carbonitrile 4

We previously carried out a multicomponent transformation of salicylaldehydes,
2-aminoprop-1-ene-1,1,3-tricarbonitrile (malononitrile dimer), and 5-(trifluoromethyl)-2,4-
dihydro-3H-pyrazol-3-one into 2,4-diamino-5-(5-hydroxy-3-(trifluoromethyl)-1H-pyrazol-
4-yl)-5H-chromeno[2,3-b]pyridine-3-carbonitriles by two different methods [10] (Scheme 1).
However, the use of these reaction systems did not allow for the introduction of the
N-phenyl-substituted C-H acid derivative into the reaction.
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Scheme 1. Multicomponent reaction of salicylaldehydes, malononitrile dimer, and 5-(trifluoromethyl)-
2,4-dihydro-3H-pyrazol-3-one.

We developed the multicomponent synthesis of chromeno[2,3-b]pyridines in dimethyl
sulfoxide (DMSO) [11–13]. This method produced chromeno[2,3-b]pyridines, which were
previously unknown and unavailable via other methods (methods A and B [10]). Sal-
icylaldehydes, malononitrile dimer, and malonic acid or dimethyl malonate were then
transformed into 2-(2,4-diamino-3-cyano-5H-chromeno[2,3-b]-pyridin-5-yl)malonic acids or
dimethyl 2-(2,4-diamino-3-cyano-5H-chromeno[2,3-b]-pyridin-5-yl)malonate [11,12]. Then,
similarly, 2,4-Diamino-5-(nitromethyl)5H-chromeno[2,3-b]pyridine3-carbonitrile was also
synthesized [13].

Now, we wish to report our results in the facile multicomponent transformation of sali-
cylaldehyde (1), 2-aminoprop-1-ene-1,1,3-tricarbonitrile (2), and 2-phenyl-5-(trifluoromethyl)-
2,4-dihydro-3H-pyrazol-3-one (3) into the previously unknown 2,4-diamino-5-(5-hydroxy-1-
phenyl-3-(trifluoromethyl)-1H-pyrazol-4-yl)-5H-chromeno[2,3-b]pyridine-3-carbonitrile (4)
in DMSO at ambient temperature (23 ◦C, 24 h), as shown in Scheme 2.
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After the reaction was completed, water was poured into the DMSO solution, and the
pure chromeno[2,3-b]pyridine (4) was precipitated. The yield of compound 4 was 84%.

The BFI (bond-forming index) [14] of the process is as high as four, as four new non-
hydrogen bonds were formed in one synthetic transformation, namely two C-C bonds, one
C-N bond, and one C-O bond.

The structure of the new chromeno[2,3-b]pyridine (4) was confirmed by spectral
methods such as 1H and 13C NMR, IR spectroscopy and mass spectrometry data, and
elemental analysis data (see Supplementary Materials). The NMR spectrum corresponds
to similar known structures [10]. There is also a 2D NMR assignment for chromeno[2,3-
b]pyridine aromatics [15].

Taking into consideration our previous results on the determination of intermedi-
ates [16] and 1H NMR monitoring data of similar multicomponent processes [11,17], the
following mechanism for the transformation of salicylaldehyde (1), malononitrile dimer
(2), and 2-phenyl-5-(trifluoromethyl)-2,4-dihydro-3H-pyrazol-3-one (3) was proposed, as
shown in Scheme 3.

The first stage of the multicomponent transformation was a Knoevenagel condensation
with the formation of unsaturated adduct 5 and the release of a hydroxide anion [18]. This
hydroxide anion catalyzed a Pinner cyclization of adduct 5 into intermediate 6. The
Michael addition of 2-phenyl-5-(trifluoromethyl)-2,4-dihydro-3H-pyrazol-3-one (3) then
led to the formation of anion A. In the last stage, tautomerization, Pinner-type cyclization,
and another tautomerization with protonation led to the final 2,4-diamino-5-(5-hydroxy-1-
phenyl-3-(trifluoromethyl)-1H-pyrazol-4-yl)-5H-chromeno[2,3-b]pyridine-3-carbonitrile (4).

2.2. ADME Prediction

The ADME of the synthesized chromeno[2,3-b]pyridine (4) was predicted using an
online resource [19,20].

The bioavailability radar of chromeno[2,3-b]pyridine (4) is shown in Figure 3. Bioavail-
ability radar allows for rapid assessment of drug similarity parameters [21]. Six physico-
chemical properties are taken into account: lipophilicity, size, polarity, solubility, flexibility,
and saturation [22]. The pink area is the optimal range for each property. The synthesized
compound (4) has a low boundary value of polarity but within the normal range of flexibil-
ity, as well as low saturation (Figure 3). Thus, compound 4 corresponds to Lipinski’s rule
(Table 1) but has limited oral bioavailability.
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The BOILED-Egg is a graphical display of two important parameters, i.e., passive gas-
trointestinal absorption (HIA) and brain access (BBB) [23]. The yolk is the physicochemical
space for highly probable BBB permeation, and the white is the physicochemical space for
highly probable HIA absorption. The two spaces are not mutually exclusive; the outside
gray region stands for low absorption and limited brain penetration of the molecule. The
point is supposed to be blue if the molecule is actively effluxed by P-glycoprotein (PGP+)
and red (in this case) if it is a non-substrate of P-glycoprotein (PGP−) [24]. Figure 4 shows
that the synthesized compound (4) is predicted not to be absorbed and not brain penetrant
(outside the Egg), as well as not subject to active efflux (red dot).
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Some of the calculated ADME parameters are presented in Table 1. It also follows from
the calculations that compound 4 complies with the Lipinski [25], Ghose [26], Veber [27],
and Muegge [28] rules.

Table 1. Calculated ADME parameters of synthesized chromeno[2,3-b]pyridine (4).

Parameter Value

Fraction Csp3 0.09
Num. rotatable bonds 3

Topological polar surface area 136.00 Å2

Consensus Log Po/w (Lipophilicity) 3.55
Log S (ESOL)

[29] −5.72

Water solubility 8.88 × 10−4 mg/mL; 1.91 × 10−6 mol/L
Class Moderately soluble

Gastrointestinal absorption Low
BBB permeant No
P-gp substrate No

Log Kp (skin permeation) −6.09 cm/s
Bioavailability score 0.55

Based on the above data, it can be concluded that pyridine may be a potential drug.
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3. Materials and Methods
3.1. General Methods

All solvents and reagents were used as received from commercial sources without
further purification (except the reagents described below). 2-Aminoprop-1-ene-1,1,3-
tricarbonitrile (2) (malononitrile dimer) was synthesized by dimerization of malononitrile
in an alkaline medium [30]. 2-Phenyl-5-(trifluoromethyl)-2,4-dihydro-3H-pyrazol-3-one (3)
was obtained from phenylhydrazine and ethyl 4,4,4-trifluoroacetoacetate according to the
literature [31].

The melting point was measured with a Gallenkamp melting-point apparatus (Gal-
lenkamp & Co., Ltd., London, UK). 1H and 13C NMR spectra were registered in DMSO-d6
with a Bruker AM300 spectrometer (Bruker Corporation, Billerica, MA, USA) at ambient
temperature. The IR spectrum was recorded with a Bruker ALPHA-T FT-IR spectrometer
(Bruker Corporation, Billerica, MA, USA) in KBr pellets. The MS spectrum (EI = 70 eV)
was recorded with a Kratos MS-30 spectrometer (Kratos Analytical Ltd., Manchester, UK).
For elemental analysis, a 2400 elemental analyzer (Perkin Elmer Inc., Waltham, MA, USA)
was applied.

The ADME prediction of the synthesized molecule (4) was carried out using online
resources [19,20].

3.2. Multicomponent Synthesis of 2,4-Diamino-5-(5-hydroxy-1-phenyl-3-(trifluoromethyl)-1H-
pyrazol-4-yl)-5H-chromeno[2,3-b]pyridine-3-carbonitrile 4

Salicylic aldehyde (1) (0.122 g, 1 mmol), 2-aminoprop-1-ene-1,1,3-tricarbonitrile (2)
(0.132 g, 1 mmol), and 2-phenyl-5-(trifluoromethyl)-2,4-dihydro-3H-pyrazol-3-one (3) (0.228
g, 1 mmol) were stirred in 5 mL of DMSO for 24 h at ambient temperature (23 ◦C). Af-
ter the process was finished, 10 mL of water was added to the reaction mixture. The
precipitate was filtered, washed with well-chilled ethanol (3 mL × 2), and dried to iso-
late pure 2,4-diamino-5-(5-hydroxy-1-phenyl-3-(trifluoromethyl)-1H-pyrazol-4-yl)-5H-chro-
meno[2,3-b]pyridine-3-carbonitrile (4).

2,4-Diamino-5-(5-hydroxy-1-phenyl-3-(trifluoromethyl)-1H-pyrazol-4-yl)-5H-chromeno[2,3-
b]pyridine-3-carbonitrile (4). Yellowish powder; yield 84% (0.390 g); mp = 202–203 ◦C (de-
comp.) (from DMSO-H2O); FTIR (KBr) cm−1: 3557 (NH2), 3437 (NH2), 3342 (NH2), 3207
(NH2), 3069 (O-H), 2219 (C≡N), 1691 (C=N), 1647 (C=C Ar), 1600 (C-C Ar), 1536 (C=C Ar),
1494 (C=C Ar), 1473 (C=C Ar), 1454 (C=C Ar), 1280 (C-F), 1146 (C-F), 1120 (C-F). 1H NMR
(300 MHz, DMSO-d6): δ 5.36 (s, 1H, CH), 6.02 (br s, 2H, NH2), 6.51 (br s, 2H, NH2), 7.07 (t,
3J = 8.1 Hz, 2H, 2 CH Ar s.ald.), 7.19-7.30 (m, 2H, 2 CH Ph), 7.43 (t, 3J = 7.2 Hz, 1H, CH Ph),
7.55 (t, 3J = 7.2 Hz, 2H, 2 CH Ph), 7.74 (d, 3J = 8.1 Hz, 2H, 2 CH Ar s.ald.), 11.52-12.78 (br s,
1H, OH) ppm; 13C NMR (75 MHz, DMSO-d6): δ 27.8 (C(5)H), 71.2 (C(3)-CN), 88.0 (C(4a)),
106.8 (C(4’)), 116.7 (C(9)H Ar), 116.8 (CN), 121.2 (q, 1J = 269.5 Hz, 1C, CF3), 122.9 (C(7)H Ar),
123.1 (2C, o-CH from Ph), 124.3 (p-CH from Ph), 128.0 (C(6)H Ar), 128.8 (C(8)H Ar), 129.7
(2C, m-CH from Ph), 137.2 (q, 2J = 37.1 Hz, 1C, C(3’)-CF3), 138.0 (2C, C(5a) and N(1’)-C),
149.8 (C(9a)), 150.9 (C(4)-NH2), 157.4 (C(2)-NH2), 158.9 (C(5’)-OH), 159.9 (C(1a)) ppm; MS
(m/z, relative intensity %): 464 [M]+ (3), 444 [M − HF]+ (43), 277 [M − C8H6F3N2]+ (5),
237 [M − C10H6F3N2O]+ (100), 228 [C10H7F3N2O]+ (47), 77 [C6H5]+ (31); Anal. calcd. for
C23H15F3N6O2: C, 59.48; H, 3.26; N, 18.10%; found: C, 59.40; H, 3.36; N, 18.05%.

1H and 13C NMR, IR and MS spectra for compound 4 are presented in the Supplemen-
tary Materials.

4. Conclusions

In conclusion, the title compound, 2,4-diamino-5-(5-hydroxy-1-phenyl-3-(trifluo-romethyl)-
1H-pyrazol-4-yl)-5H-chromeno[2,3-b]pyridine-3-carbonitrile, was synthesized in good yield
using a facile and efficient multicomponent reaction. During the study, we used sim-
ple equipment and available starting materials. The newly synthesized compound was
characterized by spectroscopic techniques (NMR, IR, and MS-EI) and elemental analy-
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sis. According to ADME parameters, the resulting chromo[2,3-b]pyridine contains two
pharmacologically promising fragments and has a chance of being useful as a drug.

Supplementary Materials: The following are available online: compound 4 spectra: 1H NMR
(Figure S1), 13C NMR (Figure S2), IR (Figure S3), and MS (EI) (Figure S4).
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