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Abstract: The reactivity of 3,5-di-(pyridin-4-yl)-1,2,4-thiadiazole (L1) with 1,4-diiodotetrafluorobenzene
(1,4-DITFB) was explored and the halogen-bonded 1:1 co-crystal (1) was successfully isolated and
structurally characterized.
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1. Introduction

1,2,4-Thiadiazoles have been recognized as effective scaffolds in medicinal chem-
istry, since many derivatives are biologically active and very promising candidates in
drug design [1]. Inspired by Cefozopran [2], the first 1,2,4-thiadiazole derivative to enter
the market as an antibiotic, extensive synthetic efforts led to the isolation of numerous
1,2,4-thiadiazoles with potential biomedical applications, such as high cytotoxicity against
human myeloid leukemia cells [3], inhibitors of Factor XIIIa in the blood coagulation pro-
cess [4], neuroprotectors, [5] and in the treatment of Alzheimer’s disease [6]. The synthesis
of 1,2,4-thiadiazoles is typically achieved starting from thioamides, whose oxidation is
followed by cyclization, and several methods have been reported using a range of oxidants
and reaction solvents [7,8]. A valid protocol reported the use of alcoholic thioamide solu-
tions, which can be easily oxidized by molecular dihalogens, leading to the corresponding
thiadiazole in good yields [9].

1,2,4-Thiadiazoles featuring pyridyl substituents, such as 3,5-di-(pyridin-4-yl)-1,2,4-
thiadiazole (L1) and 3,5-di-(pyridin-3-yl)-1,2,4-thiadiazole (L2) (Scheme 1), have been
successfully used as building blocks in supramolecular chemistry by exploring their reac-
tivity towards metal ions in the preparation of coordination polymers and polygons [10,11].
The versatility of donors L1 and L2 as supramolecular synthons became evident when
their reactivity towards dihalogens, interhalogens, and other halogenated derivatives was
investigated [12,13]. In this regard, the reaction of L1 and L2 with dihalogens and interhalo-
gens was previously reported by our research group [12], and the self-assembly outcomes
are summarized in Scheme 1. The results showed that donors L1 and L2 can give either
Charge-Transfer (CT) adducts or salts with variable degrees of N-protonation (e.g., HL+,
H2L2+) depending on the solvent polarity and the experimental setup (Scheme 1). The
reaction of L2 with diiodine in CH2Cl2 resulted in the bis-adduct L2·2I2 with a short N· · · I
bond distance (2.505 Å) and a linear N· · · I–I fragment as typically observed in CT-adducts.
Notably, the reaction of L1 with diiodine under the same experimental conditions did not
produce a crystalline product and its nature as L1·2I2 was established by microanalytical
determinations and Raman spectroscopy [12].
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observed in CT-adducts. Notably, the reaction of L1 with diiodine under the same 
experimental conditions did not produce a crystalline product and its nature as L1·2I2 was 
established by microanalytical determinations and Raman spectroscopy [12]. 

The role of the solvent becomes crucial when considering the products obtained from 
the reactions between L1 or L2 and I2 or IBr in ethyl alcohol, where the following ionic 
compounds were obtained: (HL1+)(IBr2−), (HL1+)(I3−), (HL2+)(IBr2−), (HL2+)(I3−), 
(H2L22+)(I3−)2·L2, (HL2+)(I5−) (Scheme 1) [12,13]. These structures share cations HL1+ or HL2+ 
with only one of the two pyridyl nitrogen atoms being protonated, resulting in the 
formation of head-to-tail polymeric arrays held by NH+···N hydrogen bonds (dN···N 

distances up to 2.770 Å), whose motif is shaped by the geometrical features of the former 
donors: wavy chains for cations HL1+ and either helices or zig-zag chains in the case of 
cations HL2+ [12]. The only exception among these ionic compounds is represented by 
(H2L22+)(I3−)2·L2, where the donor L2 appears in both the neutral and the doubly charged 
HL22+ form. 

When acetonitrile was used as a solvent and the donors L1 and L2 were reacted with 
I2, (H2L12+)(I3−)2·2H2O and (HL2+)(I−)·4CH3CN were isolated [13]. Moreover, the reaction of 
L2 with I2 in an iodoform/acetone mixture produced compound (H2L22+)(I−)2·L2·2CHI3 
[13]. To further investigate the reactivity of L1 and L2 toward dihalogens, Pennington and 
coworkers introduced bismuth triiodide as a building block, producing self-assembled 
salts with formula (H2L12+)2(Bi8I284−)·4CH3CN, [(H2L12+)(HL1+)](Bi2I93−)·3H2O, 
(H2L22+)2(Bi4I164−)·2CH3CN·2I2, and (H2L22+)2(Bi6I224−)·2CH3OH, whose crystal structures 
show L1 and L2 in their mono- or diprotonated forms along with four unusual 
polyiodobismuthate counterions [13]. 

 

CT adducts 
 Ref.  Ref. 

L1·2I2 * [12] * L2·2I2 [12] (WEDHUK) 

Ionic 
compounds 

(HL1+)(IBr2−) [12] (WEDHOE) (HL2+)(IBr2−) [12] (WEDHEU) 
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compounds has not yet been reported. This interaction falls into the realm of halogen 
bonding because it involves a halogen atom acting as an electrophilic site and the lone 
pair of a pyridine nitrogen atom as a nucleophilic site [14–16]. Following our interest in 
the study of σ-hole interactions between halogen-rich compounds and pyridine tectons 
[17,18], we report here on the synthesis and characterization of the novel halogen-bonded 
1:1 co-crystal (1) formed between L1 and 1,4-diiodotetrafluorobenzene (1,4-DIFTB). In 
this halo-organic compound, the σ-hole effect for the iodide atoms is enhanced by the 
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The role of the solvent becomes crucial when considering the products obtained
from the reactions between L1 or L2 and I2 or IBr in ethyl alcohol, where the following
ionic compounds were obtained: (HL1+)(IBr2

−), (HL1+)(I3
−), (HL2+)(IBr2

−), (HL2+)(I3
−),

(H2L22+)(I3
−)2·L2, (HL2+)(I5

−) (Scheme 1) [12,13]. These structures share cations HL1+

or HL2+ with only one of the two pyridyl nitrogen atoms being protonated, resulting in
the formation of head-to-tail polymeric arrays held by NH+· · ·N hydrogen bonds (dN· · ·N
distances up to 2.770 Å), whose motif is shaped by the geometrical features of the former
donors: wavy chains for cations HL1+ and either helices or zig-zag chains in the case of
cations HL2+ [12]. The only exception among these ionic compounds is represented by
(H2L22+)(I3

−)2·L2, where the donor L2 appears in both the neutral and the doubly charged
HL22+ form.

When acetonitrile was used as a solvent and the donors L1 and L2 were reacted with I2,
(H2L12+)(I3

−)2·2H2O and (HL2+)(I−)·4CH3CN were isolated [13]. Moreover, the reaction of
L2 with I2 in an iodoform/acetone mixture produced compound (H2L22+)(I−)2·L2·2CHI3 [13].
To further investigate the reactivity of L1 and L2 toward dihalogens, Pennington and
coworkers introduced bismuth triiodide as a building block, producing self-assembled salts
with formula (H2L12+)2(Bi8I28

4−)·4CH3CN, [(H2L12+)(HL1+)](Bi2I9
3−)·3H2O,

(H2L22+)2(Bi4I16
4−)·2CH3CN·2I2, and (H2L22+)2(Bi6I22

4−)·2CH3OH, whose crystal struc-
tures show L1 and L2 in their mono- or diprotonated forms along with four unusual
polyiodobismuthate counterions [13].

On the contrary, the interaction of L1 and L2 with the halogen atoms of halo-organic
compounds has not yet been reported. This interaction falls into the realm of halogen
bonding because it involves a halogen atom acting as an electrophilic site and the lone pair
of a pyridine nitrogen atom as a nucleophilic site [14–16]. Following our interest in the
study of σ-hole interactions between halogen-rich compounds and pyridine tectons [17,18],
we report here on the synthesis and characterization of the novel halogen-bonded 1:1
co-crystal (1) formed between L1 and 1,4-diiodotetrafluorobenzene (1,4-DIFTB). In this
halo-organic compound, the σ-hole effect for the iodide atoms is enhanced by the presence
of the four electronegative fluorides, and numerous co-crystals formed by the halogen
bonding between 1,4-DIFTB and pyridine donors can be found in the literature [14,19–23].
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2. Results

The slow evaporation of a chloroform solution of L1 and 1,4-DITFB in 1:1 molar ratio
at room temperature afforded colorless crystals, established by means of X-ray diffraction
analysis as a 1:1 halogen-bonded co-crystal with formula L1·1,4-DITFB (compound 1;
Figure 1). Compound 1 crystallizes in the triclinic space group P−1 with two units in the
unit cell (see Table S1 for structural data and refinement parameters).
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Figure 1. X-ray crystal structure of compound 1 with the numbering scheme adopted. Displacement
ellipsoids were drawn at the 50% probability level.

Crystal data for compound 1: C18H8F4I2N4S, (Mr = 642.14 g mol−1) triclinic, P−1,
a = 5.6690(4) Å, b = 12.3300(9) Å, c = 14.1339(9) Å, α = 91.644(6), β = 96.314(6)◦, γ = 92.400(6)◦,
V = 980.54(12) Å3, T = 173(2) K, Z = 2, ρcalc = 2.175 g/cm3, µ(Mo Kα) = 3.363 mm−1. The
final R1 was 0.0333 [F2 ≥ 2 σ(F2)], wR2 was 0.0960 (all data), and the GooF = 1.043.

The 1,4-DITFB molecules interact with L1 to form neutral adducts at both N-pyridyl
atoms with dN· · · I distances of 2.801(5) and 2.947(4) Å and C–I· · ·N angles of 177.4(2) and
168.3(2)◦ for N1· · · I1 and N4· · · I2i, respectively (entries a and b in Figure 2; i = 2 + x, −1
+ y, −1 + z; Tables S2 and S3). These values are similar to the average N· · · I value of
2.9(2) Å retrieved from the CSD database (version 5.43, three updates) for the structurally
characterized compounds in which 1,4-DITFB interacts with pyridyl-based donors (the
search was constrained to N· · · I distances up to the sum of the atomic van der Waals radii:
3.53 Å).

The resulting (L1·1,4-DITFB)∞ 1D-chains propagate approximately along the [211]
direction and pack into 2D sheets via weak C–H· · · F interactions (entries c–e in Figure 2
and Table 1) [23]. The FT-IR spectrum (Figure S1) recorded for compound 1 showed a shift
towards lower frequency of the ν(C–I) stretching mode from 760 to 748 cm−1 on passing
from free 1,4-DITFB to the co-crystal, as a consequence of the halogen bonding between
the two species [14].

Table 1. Compound 1 intermolecular interactions.

C–I· · ·N dC–I (Å) dI· · ·N (Å) αC–I· · ·N (◦)
a C13–I1· · ·N1 2.101(5) 2.801(5) 177.4(2)
b C16i–I2i· · ·N4 2.092(5) 2.947(4) 168.3(2)

C–H· · · F dC–H (Å) dH· · · F (Å) dC· · · F (Å) αC–H· · · F (◦)
c C2–H2· · · F2ii 0.95 2.450 3.307(6) 150
d C4–H4· · · F3iii 0.95 2.607 3.142(6) 122
e C5–H5· · · F3iii 0.95 2.505 3.111(6) 116

Symmetry codes: i = 2 + x, −1 + y, −1 + z; ii = 1 − x, 2 − y, 1 − z; iii = −x, 1 − y, 1 − z.
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3. Materials and Methods
3.1. General

L1 was synthesized according to a method in the literature [9]. 1,4-DIFTB and chloro-
form were purchased from Merck and used without any further purification. Elemental
analysis determinations were performed with a Perkin Elmer EA CHN elemental analyzer.
The FT-IR spectra (4000–400 cm−1) were recorded on KBr pellets on a Thermo Nicolet
5700 spectrometer. Melting point determination was performed on a FALC mod. C appa-
ratus. Single crystal X-ray diffraction data were collected at 173 K on a Rigaku SCX mini
diffractometer using graphite monochromated Mo Kα radiation (0.71073 Å). Data collection
and processing were carried out using CrysAlisPro [24]. The structure was solved with the
ShelXT [25] solution program using dual methods and the model was refined using full
matrix least squares minimization on F2 with ShelXL [26] 2018/3. The crystal was found
to be a non-merohedral twin and the model was refined as a two-component twin. Olex2
1.5 [27] was used as the graphical interface.
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3.2. Preparation of L1·1,4-DITFB (1)

L1 (12.0 mg; 5.00 × 10−5 mol) and 1,4-DITFB (20.1 mg; 5.00 × 10−5 mol) were
dissolved in chloroform (5 mL) and the mixture was stirred at room temperature for
20 min. The resulting solution was filtered through a PTFE filter and the solvent allowed to
evaporate slowly to afford compound 1 as colorless crystals suitable for X-ray diffraction
analysis (10.8 mg; 1.68 × 10−5 mol; 34%). Elemental analysis calcd (%) for C18H8F4I2N4S:
C 32.67, H 1.26, N 8.73. Found: C 31.88, H 0.66, N 8.21. M.p. = 186 ◦C. FT-IR (KBr,
4000–400 cm−1): 1599 m, 1458 vs, 1410 s, 1335 m, 1290 m, 1207 m, 1124 m, 1063 m, 995 m,
939 s, 825 ms, 748 m, 733 ms, 712 ms, 677 m, 636 ms, 505 m, 474 w, 422 w cm−1(Figure S1).

4. Conclusions

The halogen-bonded co-crystal (1) was obtained by the self-assembly of 3,5-di-(pyridin-
4-yl)-1,2,4-thiadiazole (L1) and 1,4-diiodotetrafluorobenzene (1,4-DITFB) in chloroform.
The crystal structure of 1, determined by means of crystallographic tools, corresponds to
the formulation L1·1,4-DITFB. A comparison between the FT-IR spectra of 1 and 1,4-DITFB
provided further evidence for the halogen bonding between the two building blocks.

Supplementary Materials: The following supporting information is available online. Figure S1:
Solid-state FT-IR spectrum of compound 1 (500–3500 cm−1, KBr pellet); Table S1: Crystal data and
structure refinement parameters for compound 1; Tables S2: Bond lengths (Å) for compound 1;
Tables S3: Bond angles (°) for compound 1.
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