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Abstract: Potamogeton crispus (curlyleaf pondweed) and Myriophyllum spicatum (Eurasian watermilfoil)
are widely thought to competitively displace native macrophytes in North America. However, their
perceived competitive superiority has not been comprehensively evaluated. Coexistence theory
suggests that invader displacement of native species through competitive exclusion is most likely
where high niche overlap results in competition for limiting resources. Thus, evaluation of niche
similarity can serve as a starting point for predicting the likelihood of invaders having direct
competitive impacts on resident species. Across two environmental gradients structuring macrophyte
communities—water depth and light availability—both P. crispus and M. spicatum are thought to
occupy broad niches. For a third dimension, phenology, the annual growth cycle of M. spicatum is
typical of other species, whereas the winter-ephemeral phenology of P. crispus may impart greater
niche differentiation and thus lower risk of native species being competitively excluded. Using an
unprecedented dataset comprising 3404 plant surveys from Minnesota collected using a common
protocol, we modeled niches of 34 species using a probabilistic niche framework. Across each niche
dimension, P. crispus had lower overlap with native species than did M. spicatum; this was driven in
particular by its distinct phenology. These results suggest that patterns of dominance seen in P. crispus
and M. spicatum have likely arisen through different mechanisms, and that direct competition with
native species is less likely for P. crispus than M. spicatum. This research highlights the utility of
fine-scale, abundance-based niche models for predicting invader impacts.

Keywords: abundance-based niche; probabilistic niche model; competition; depth; light availability;
macrophyte; phenology; trait probability distribution

1. Introduction

Invasive species are among the greatest threats to biodiversity worldwide [1,2]. Across taxonomic
groups and trophic levels, invaders have consistent negative effects on native communities’ species
richness, evenness, and other measures of diversity [3]. Despite these clear overall patterns, important
gaps remain in our ability to predict how particular invaders will interact with particular native species.
The strength and directionality of individual invader-native interactions, and the attendant impacts of
invasions on communities as a whole, can be difficult to assess and are often poorly understood [1,4].
Variation in impacts of invasive species arises through multiple mechanisms by which invasive species
interact with native species and alter invaded communities [4–6]. These mechanisms range from
altering disturbance regimes [7] to better tolerating diseases [8] to directly competing for limiting
resources [9]. Direct competition for limiting resources can cause competitive displacement of native
species—one of multiple mechanisms that can be detrimental to native communities and give rise to a
pattern of invader dominance [10,11].
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According to contemporary coexistence theory, coexistence of species within a community is
dependent on a balance between relative fitness (competitive) differences, which drive the most-fit
species towards dominance, and stabilizing niche differences, which allow weaker competitors to
avoid direct competition [12]. The likelihood that an invader will directly compete with a native
species is a function of the degree to which the species’ environmental requirements (i.e., niche)
overlap. When co-occurring species occupy very similar niches, the superior competitor should
displace the inferior competitor, preventing stable coexistence [13]. Conversely, where differences
in the niches occupied are sufficiently large, coexistence is possible [14]. Thus, the relation of an
invader’s niche to those of resident species is increasingly recognized as a key predictor of community
impacts [15,16]. Predicting contexts where invasive species will have the greatest ecological impacts is
vital for prioritizing limited resources for invasive species management. Niche-based approaches to
address this challenge have a long history in ecology and are an active area of current research [15–24].

In freshwater systems, invasive species are among the strongest drivers of change [25], and invasive
aquatic plants cause significant ecological impacts [26,27]. Freshwater lakes are highly susceptible to
plant invasions [28,29], and losses of diversity and ecosystem functioning associated with these invasions
are of great concern to natural resource managers and other stakeholders [26,30]. Tremendous effort is
allocated to preventing and mitigating potential impacts of invasive aquatic plants; better understanding
of impacts could be used to improve effort allocation [31–33]. The abiotic (i.e., environmental)
dimensions that structure freshwater plant communities are relatively well studied [34], but improved
knowledge of the precise niches occupied by particular species, and the implications for invader-native
interactions, are critical for predicting the effects of, and responding to, invasions. Water depth,
light availability, and phenology are primary abiotic factors that define the niches of aquatic
vegetation [35–37]. Water depth is one of the strongest gradients in aquatic systems, with plant
species spanning from tolerating seasonally saturated soils to completing their entire life cycles
underwater [35]. Additionally, depth gradients capture other important gradients such as nutrient
availability [38], sediment resuspension, and hydraulic forces [39]. Light is a critical determinant of
all plant growth that is particularly constraining in aquatic environments, where photosynthetically
active radiation rapidly decays with water depth and transparency [35,40]. The seasonality of
temperate freshwater systems is a strong driver of species distribution and annual growth patterns,
and phenological niche differentiation, or use of distinct seasonal or temporal growth windows,
influences community structure [36,41,42].

Two of the most widespread and problematic invasive aquatic plant species in temperate North
America are Myriophyllum spicatum L. (Haloragaceae; Eurasian watermilfoil) and Potamogeton crispus
L. (Potamogetonaceae; curlyleaf pondweed). Both of these species receive significant attention
from resource managers, yet their niche overlap and interactions with native plant species—and
thus their potential competitive impacts—may be quite different. Myriophyllum spicatum has broad
tolerances of water depth [43–45] and light availability [45,46], as well as phenology typical of most
temperate macrophytes [45,47]. Potamogeton crispus also occupies relatively broad water-depth and
light gradients [48,49]; however, the phenology of P. crispus is distinct compared to other aquatic
macrophytes in North American temperate lakes [49–52]. In these systems, P. crispus behaves as
a winter annual, maintaining a life cycle in which it reaches peak biomass early in the summer,
then senesces to dormant propagules until fall [48,51]. The unique phenological niche of P. crispus,
and associated low temporal overlap with native species, may make it less likely to drive native species
declines than M. spicatum.

To assess the potential for these two invasive species to competitively exclude native macrophytes,
and to test the hypothesis that P. crispus would have lower niche overlap with native species than
M. spicatum, we applied a recently introduced approach, probabilistic niche modeling [53,54], to a
novel dataset. The dataset consisted of plant occurrence and environmental data for three key niche
axes (depth, light, and phenology). Occurrence data were obtained from a variety of lake managers
across Minnesota, USA, all implementing a unified survey methodology to collect data on plant
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occurrences at the local scale (i.e., within-lake distributions). To date, these data have been disparate in
their storage and analysis—we retrieved and united these disconnected data to develop an extensive
dataset covering a wide geographic range and time period. We incorporated these data into the
probabilistic niche modeling framework, which allows robust evaluation of niche differentiation among
species. This approach generated fine-scale niche models for Minnesota macrophytes incorporating
both species occupancy along each niche axis and abundance within occupied segments of the niche
(Figure 1). The use of a novel dataset that unites disparate but consistently collected local-scale plant
data enables niche models to be built based on neighborhood-level species occurrences and fine-scale
environmental variation, i.e., within-lake differences in habitat conditions. The probabilistic nature of
this approach is made possible by inclusion of abundance data (how often was a species observed in
particular conditions relative to all other conditions) and results in niche models that predict likelihood
of occurrence along each modeled niche axis, as opposed to only defining niche boundaries [55].
Finally, the probabilistic niche modeling framework enabled attribution of niche differences to either
differences in the niche space occupied (“non-shared niche differences”) or differences in the abundances
of two species in co-occupied niche space (“shared niche differences”) (Figure 1). This extensive
dataset and use of probabilistic niche models allowed (1) development of within-lake habitat models
(as opposed to coarse regional models based on climate or other large-scale variables), (2) incorporation
of abundance along niche axes to account for differential distribution within fundamental niches,
and (3) discrimination of niche differentiation as both differences in niche boundaries and differences
in relative abundances within shared niche space.
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Figure 1. Graphical depiction of niches modeled using probability density functions (PDFs) [53] for two
hypothetical species along one niche axis. Each PDF is built from occurrence (histogram of occurrences
shown for Sp 1 only) and associated environmental data and PDFs integrate to 1. Dissimilarity is
estimated as follows: total dissimilarity = 1 − shared area (a), non-shared niche dissimilarity is the ratio
of dissimilar PDF area in niche space occupied by only one of the two species (d, e) to all dissimilar
PDF area (d + b + c + e), and shared dissimilarity is the ratio of dissimilar PDF area in niche space
occupied by both species (b, c) to all dissimilar PDF area (d + b + c + e).

We used the probabilistic niche modeling framework to assess the potential for competition
between the focal invasive species and native macrophyte species. We developed niche models for
P. crispus, M. spicatum, and 32 native macrophyte species that were sufficiently represented in our
dataset for modeling purposes. For each invader, we calculated its niche overlap with each native
species across all three niche dimensions as a whole and for each individual dimension. We further
distinguished niche differences between species that arose from differences in shared vs. non-shared
niche space. Using these results, we tested the hypothesis that M. spicatum would have greater
niche overlap with native species than P. crispus, suggesting greater potential for direct competitive
displacement by M. spicatum.
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2. Materials and Methods

2.1. Macrophyte Occurrence Data

In Minnesota, many organizations (state agencies, local units of government, consultants,
and others) conduct point-intercept surveys of aquatic plant communities in lakes. These surveys
are used for a wide variety of purposes, including baseline monitoring [56], long-term ecological
trend monitoring (SLICE: https://www.dnr.state.mn.us/fisheries/slice/index.html), university research
projects [57,58], and monitoring of management outcomes [59]. Recent work has illustrated the research
opportunities these datasets provide, as they are cohesive surveys conducted using a common method
over long time scales and wide geographic ranges [59–62]. We compiled plant occurrence and depth
data from point-intercept surveys performed by agencies, researchers, and lake managers in the period
2000–2018. These data are representative of the geographic distribution of lakes in Minnesota (Figure 2).
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Figure 2. Distribution of lakes with survey data included in this study (translucent black dots) and
weather stations used for associated weather data (red circles with crosses) across major ecoregions of
Minnesota, USA. Ecoregions represent areas with similar climatic and environmental conditions [63].

All data preparation, analysis, and visualization of results were conducted in R version 3.6.1 [64].
All code used for analyses and visualizations are included in Supplementary Material (Supplementary
Code). Data used for analysis were collected via the point-intercept method, in which surveyors
navigate to a predetermined grid of points in a lake and use a metal rake to sample macrophytes growing
in that location. Use of point-intercept data ensured unbiased sample selection (point locations are
pre-determined prior to surveys) and consistent methodology across surveys [65]. We analyzed data at
the point scale, i.e., each record comprised one sampling point with associated survey information (date,

https://www.dnr.state.mn.us/fisheries/slice/index.html
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surveyor, lake identifier), and the water depth and plant species recorded at the point. The average
number of points sampled in point-intercept surveys was 104 (± 108, 1 SD; distribution shown in
Supplementary Code). For our analysis, we treated each plant observation at each survey point as
a data point (mean taxa observed per sample point 2.05 ± 1.62, 1 SD; Supplementary Code) and
compiled associated data for each of these observations. Plant occurrences from each survey point
were translated to scientific names from codes or common names using keys provided by the data
contributors and referencing common names in regional identification guides [66–69]. We standardized
species names based on the Taxonomic Name Resolution Service [70] using the “taxize” package in R
3.6.1 [64,71]. In total, we compiled 3404 surveys comprising 2514 lake-years of data (each lake × year
combination comprises a lake-year) from 1526 Minnesota lakes surveyed at least once between 2000
and 2018, representing 353,148 total survey points, with a combined 564,038 macrophyte observations
across 218 taxa (163 identified to species, 56 to higher taxa when surveyors were unable to resolve
to species).

2.2. Environmental Data

Water depth data were collected by surveyors at each sampling point. We omitted sample
points with no depth information, a depth of 0, or depths > 5 standard deviations above the mean
(depth > 7 m, 0.4% of all occurrences). If units were not specified for depth (i.e., whether in feet or
meters), we plotted the distribution of depths and plant occurrences observed in the survey and
compared these to lake bathymetry and reasonable colonization depths of plants. For example, if a
survey with unlabeled depths occurred in a lake with a maximum depth of 3 m, and unlabeled depths
ranged from 0 to 8.5, we concluded that depth must have been recorded in feet.

Secchi depth data for each lake-year were collected from several sources and cleaned to ensure
consistency. For most surveys, we used an empirical Secchi dataset compiled to develop predictive
models of lake clarity for Minnesota (Kelsey Vitense, University of Minnesota, unpublished data).
If a lake-year in our dataset did not have a corresponding value in this dataset, we used Secchi data
collected by the surveyor if available. We only used Secchi measurements taken in summer (July,
August, or September) to avoid measurements sensitive to large seasonal changes in water clarity [72].
Finally, summer Secchi data for a three-year window (the survey year, the year prior, and the year
after) were used to calculate a mean Secchi value for each survey (lake-year) to minimize the effects of
sampling error and variability in Secchi readings [73].

Three-year average Secchi depths for each survey and point-specific water depth were used
to estimate light availability for each survey point [73–76], calculated as the proportion of surface
irradiance remaining at the substrate (hereafter, light availability). Light at Secchi depth was assumed
to be 10% of surface irradiance, which enabled us to use Secchi depth measurements to estimate a
lake-level light decay constant, Kd [75]:

Kd = ln(10)/Secchi depth (1)

We then used the Lambert-Beer relationship to calculate the proportion of surface irradiance (light
availability) remaining at the substrate for each plant observation’s associated depth to substrate [76]
using the lake-wide Kd and assuming water clarity to be constant throughout each waterbody:

Light availability = eˆ(−Kd × Depth to substrate) (2)

Secchi data were sufficient in coverage to calculate light availability for 82.9% of plant observations in
our dataset.

We examined phenology using growing degree days (GDD), a measure of the heat energy received
by a plant over a given time period (e.g., within a year) [77]. Growing degree days are a more robust
way to assess phenology compared to time of year or day of the year, which do not account for
geographic location or interannual variability in temperature [78,79]. Daily minimum and maximum
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temperatures were required to calculate GDD. For each lake, we identified the nearest weather station
with comprehensive daily weather data using the “get_weather” function in the chillR package in
R [80]. We used the same function to download daily weather data for each weather station from
the Integrated Surface Dataset [81]. A total of 16 weather stations were used with a mean distance
of 64 km (± 31 km, 1 SD) from associated lakes. Some stations were located outside of Minnesota,
but these political boundaries are not associated with abrupt disjuncts in climate or environmental
conditions, as for example if the borders were associated with abrupt changes in elevation (Figure 2).
Using associated station data, we calculated GDD as,

GDD = (maximum daily temperature + minimum daily temperature)/2 − base temperature, (3)

where base temperature is temperature below which no plant growth is expected. We used 4 ◦C as
the base temperature, following Boissezon et al. [82], and 1 March as the “biofix date”, i.e., the date
on which GDD began accumulating each year. For some daily weather records, minimum and/or
maximum temperatures were missing (<0.2% of all records). When this occurred, we substituted the
previous day’s minimum and/or maximum temperature. We used the cumulative yearly GDD for each
vegetation survey date as the GDD value associated with each survey point.

Following the collection, cleaning, and merging of all datasets, we retained a total of 462,118 plant
occurrences from 292,824 sample points for which we had complete depth, light, and phenology data.

2.3. Data Analysis

We constructed probabilistic niche models by fitting probability density functions (PDFs) to the
occurrence of each species and axis of interest using a kernel density estimation (KDE) method [83–85].
These PDFs represent the realized niche occupied by that species based on the three niche dimensions
we evaluated (depth, light, and phenology). The result is a model wherein any location within
the realized niche of a species is represented by a probability of its occurrence at that location in
three-dimensional niche space. We then compared niches between species to reveal where species are
likely to compete for the same resources, i.e., where the species have overlapping niche requirements.
We conducted niche modeling and dissimilarity evaluations among species using the “TPD” package
in R [83].

To characterize the availability of potential niche space represented in our dataset, we first
modeled the probabilistic niche of all survey points, i.e., generated a representation of the total “niche”
occupied by all survey points. Probability distributions of sampling effort indicated sampling effort
was non-uniform (Supplementary Code). Specifically, sampling was biased toward shallower sites and
those with lower light availability, and survey efforts peaked mid-summer at 1500 GDD. Nonetheless,
sampling effort was sufficient to provide good coverage of the multi-dimensional niche space across
all three dimensions (Figure 3, Figures S1–S3). In addition, correlations among niche axes indicated
no issues with collinearity for use in niche models (Light-GDD r = −0.01, Light-Depth r = −0.41,
GDD-Depth r = −0.05; visualizations presented in Supplementary Code).

We standardized niche data (centered data on the variable mean and scaled it to one standard
deviation) to ensure equal weights among variables measured on different scales [54,85]. To ensure
sufficient fit of PDFs, we limited our analysis to species with a minimum number of occurrences equal
to en niche dimensions, or 1000 occurrences [85,86]. This restricted our dataset to 371,053 occurrences of
34 species used in the analysis.

For each species × niche dimension, we fit a PDF to the abundance data across that dimension
using KDE, such that the final probability function for each dimension integrated to 1 (i.e., the area
under the curve = 1; Figure 1). Differences between the probabilistic niche models produced for
P. crispus and M. spicatum for each niche dimension were evaluated using a Kolmogorov-Smirnov
test. We also constructed PDFs for each species across all three niche dimensions simultaneously,
then estimated the dissimilarity of species’ niche models using the proportion of overlap in the volume
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(three niche dimensions) of the two species’ niche volumes [53]. In three-dimensional niche space,
the total dissimilarity between two species is equivalent to 1 − the niche model PDF volume shared by
the two species.
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Dissimilarity among species was further decomposed into two elements: the dissimilarity of
abundances within niche space shared between the two species and the dissimilarity measured as
non-shared niche space occupied by only one of the two species (Figure 1) [53,83]. In this way, we were
able to parse the relative importance of two different ways that niche space can be partitioned between
species. Finally, we calculated the dissimilarity of each species from all other species (the total
community) as the mean of all pairwise PDF dissimilarity values for that species. A two-proportion
z-test was used to evaluate the hypothesis that the dissimilarity of P. crispus was more strongly driven
by contributions of non-shared dissimilarity than that of M. spicatum. Species dissimilarity was further
subdivided as the dissimilarity contributed individually by each of the three niche dimensions.

3. Results

For the 34 species evaluated, we produced PDFs for the three niche dimensions considered
(Figure 3, Figures S1–S3). These distributions were constructed for multi-dimensional niche space
(Figure 3) and each individual niche dimension (Figure 4). In both cases, there was substantial
phenological niche separation for P. crispus, for which most occurrences were under low-GDD values
(~750 GDD). Potamogeton crispus also had peaks in its abundance under low-light conditions and water
depth of ~2.5 m (Figure 3). In comparison, M. spicatum showed broad phenology with two peaks,
one near 900 GDD and the other at approximately 2000 GDD (Figure 4). Relative to P. crispus, there was
lower occupancy under low-light conditions and broader occupancy across depths (Figures 3 and 4).

On average, P. crispus was the most dissimilar to all species of any species evaluated, whereas
M. spicatum was much more similar to other plant species (Figure 5). The dissimilarity of P. crispus
was driven by a lower use of niche space shared with native species than M. spicatum. This difference
in niche use was reflected in the strong relative contribution of non-shared niche space (Figure 5),
indicating that a difference in absolute niche boundaries, rather than relative abundance within shared
niche space, drove the dissimilarity of P. crispus. Whereas the total dissimilarity of P. crispus to native
species was strongly influenced by non-shared niche space, the dissimilarity of M. spicatum was
primarily driven by differences in shared niche space. In comparisons with 25 of 32 native species,
non-shared niche dissimilarity was greater for P. crispus than it was for M. spicatum. In addition,
when compared to each native species, the relative contribution of non-shared niche dissimilarity for
P. crispus exceeded that of shared niche dissimilarity 72% of the time (24 of 33 cases) compared to 0%
for M. spicatum (0 of 33 cases); this difference was significant (two proportion z-test with continuity
correction, p < 0.001).

The distribution of P. crispus and M. spicatum differed across all three niche dimensions evaluated.
For P. crispus, niche differentiation was greatest in phenology (Figures 4 and 6); P. crispus exhibited
earlier annual growth (mean = 747 GDD) than M. spicatum (mean = 1351 GDD), and native species
as a whole (mean = 1254 GDD). Potamogeton crispus also differed more from other species than
did M. spicatum in terms of depth and light (Figures 4 and 6). Overall, P. crispus exhibited earlier
phenology and occupied locations that were deeper and had lower light availability than M. spicatum
(Figures 3 and 4, Kolmogorov-Smirnov tests: p < 0.001 for all three dimensions, D values = 0.41, 0.16,
and 0.31 for GDD, depth, and light availability, respectively).
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4. Discussion

Niche differentiation of P. crispus was greater than that of M. spicatum, suggesting that P. crispus
may be less likely to directly displace native species through competition for limiting resources—thus,
previously observed detrimental impacts on native assemblages for each of these species have likely
arisen through differing mechanisms. Niche models exhibited three main patterns in support of this
conclusion: (1) a lower overall similarity of the P. crispus niche to those of native macrophyte species,
(2) a greater contribution of non-shared niche space (vs. shared niche space) to the overall dissimilarity
of P. crispus than was observed for M. spicatum, and (3) less similarity between P. crispus and other
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macrophytes within each individual niche axis, with the phenological component making the greatest
contribution to niche dissimilarity.

The expectation that invasive species’ competitive superiority will lead to the exclusion of
co-occurring native species and give rise to invader dominance is often the basis of concerns regarding
non-native plant invasions [7,11,87]. By comparing habitat-use strategies of invasive species to
resident species of invaded communities, we assessed the potential risk of displacement of native
species through competitive interactions. This study provides evidence for large differences in niche
overlap with native species for two well-established invasive species that are the subject of intensive
management efforts, and indicates that their impacts on native plant communities are likely to differ in
magnitude with respect to direct competition and/or arise through different mechanisms [9,88].

Competition for limiting resources can lead to loss of native species following the addition of a
competitively superior invader to a community [16], but thoroughly evaluating the extent to which
resource competition drives impacts of invasive species to native communities requires experimental
manipulations [11,89,90] rather than the observational data used in this study. Further, there are
numerous indirect, non-competitive mechanisms by which invasive species can affect native organisms
(e.g., [91]). For example, community impacts of P. crispus could arise through increased turbidity of
lakes driven by its mid-summer senescence and release of biomass-contained nutrients that stimulate
algal productivity [9,92,93]. With the niche-based approach we used, it would not be possible to
predict such—potentially substantial—invader impacts. Our approach using observational data cannot
address alternative, non-competitive mechanisms of interactions between invasive and native species,
rather it provides an estimation of whether direct competition for limited niche space per se is likely
to drive displacement of particular native species by particular invasive species. Thus, our findings
should not be interpreted as meaning that P. crispus is not detrimental to native macrophytes or is
necessarily less detrimental than M. spicatum.

Nonetheless, the distinctiveness of the niche occupied by P. crispus suggests that its potential for
direct competitive displacement of native species is lower than that of M. spicatum [14]. Despite this,
it is critical to note that both species have succeeded in establishing in North America and both can
exhibit dominance of lake plant communities [48,94]. Our results suggest that P. crispus may achieve
high abundance through occupancy of a relatively vacant niche [12,86], whereas M. spicatum reaches
high abundances under conditions favored by common native species, which may indicate competitive
superiority [87] and greater likelihood of driving native species declines via competitive exclusion.

We also found that the dissimilarity of P. crispus to the native community was driven much more
by occupancy of non-shared (novel) niche space than in the case of M. spicatum, for which there was
greater occupancy of niche space well used by native species. These differences are important to
consider in the context of the influence these invaders may have on native species [88,95] and suggest
that the competitive threat to native species posed by P. crispus may be lower. However, because the
phenological niche we evaluated (GDD) has a strong association with annual growth patterns, P. crispus
may be dominating a phenological niche that is important for critical early life stages of native species
that are underrepresented through rake-based surveys. Specifically, rake-based methods under sample
low-growing or recently sprouted plants [96]. Yet, it is precisely during short-statured, early life stages
when macrophyte germinants may be most susceptible to shading by P. crispus individuals that are
further into their annual life cycle. Such a phenomenon would be missed by the sampling methods
and phenological measures applied in this study. However, in the case of P. crispus, we found that
the niche occupied by its early phenology was also highly dissimilar from native species in terms of
depth. Because of this, we suspect that P. crispus is capitalizing on seasonal water clarity variations
to grow at deeper locations than would be possible for plants with later phenology that encounter
lower light availability [72]. In other words, P. crispus may be exploiting a deeper, earlier niche to
grow in locations that have insufficient light availability by midsummer (due to high algal biomass
in productive, nutrient-rich lakes in temperate regions) [97]. This suggests that P. crispus may have
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a minimal competitive effect on an early or critical phase of native growth because it is not only
temporally separated from native species but also spatially separated.

Interestingly, for both P. crispus and M. spicatum, phenological differentiation was the greatest
contributor to niche dissimilarity, though it was exhibited in different ways. In P. crispus, the strong
effect of an early-season growth strategy was evident [51], whereas the phenological niche we observed
for M. spicatum was highly bimodal. This bimodality is consistent with previous descriptions of
M. spicatum phenology [98,99]. However, other studies have described high biomass throughout the
growing season, accentuated by two summer peaks [46,98–100], whereas our analysis identified a
larger apparent gap in its presence in surveys, despite representative sampling effort across GDD.
This pattern of bimodality has previously been attributed to sloughing of plant parts between two
flowering peaks [100], but the pattern observed in our results shows a lack of presence of M. spicatum
in mid-season surveys (our dataset did not include biomass at occurrences). Future work could follow
multiple populations through the growing season to evaluate whether observed bimodality arises
from of a two-peaked phenology, a variation in the phenological pattern among lakes (populations
tending to have either early- or late-season phenology), or a product of both.

A variety of mechanisms may allow each species to compensate for stressors along each of these
three axes. For example, M. spicatum exhibits no significant photosynthetic advantage for low-light
conditions, but instead tolerates low-light conditions through the ability to elongate and form a
canopy at the water surface where light is sufficient for growth [101,102]. For P. crispus, an inverted
reproductive cycle and the ability to grow under low temperatures enable it to persist in deeper and
more eutrophic waters at times of year when algal biomass is lower and light availability is sufficient
for photosynthesis [51,52,72,103]. In short, P. crispus can capitalize on early phenology to grow in
locations that have insufficient light later in the growing season. In ecosystems with strong seasonality,
as in northern temperate lakes, the influence of temperature on community structure can occur through
differences in occupancy of different phenological niches [41,42]. The role of phenology in invasions
remains an area of active research, especially as it relates to competition avoidance in early stages of
invasion [104].

Even with this dataset, which is unusually large in comparison to other macrophyte studies, there
are limitations to the retrospective niche modeling approach using observational data. For example,
data demands of the PDF niche model used here meant that only 34 of 163 recorded species had
sufficient data to develop three-dimensional niche models. Had we considered a fourth niche dimension
(e.g., soluble nutrient concentrations), modeling would have required 10,000 occurrences per species
and limited our analysis to just 12 species. In addition, the scale of the dataset meant that measurements
of some environmental data were not available. For example, water chemistry data have been collected
in a subset of the lakes analyzed, but the need for complete data records for our analysis meant
that these data were not useable for our study. We believe that our use of weather station data to
calculate annual GDD is reasonable, but lake-level water temperatures would be more accurate—these
data, however, are not available. As a consequence, the models we have derived may be shifted
with respect to the actual thermal regime of a lake at any given time (i.e., average air temperature
will generally increase faster than lagging water temperatures throughout the year), but because of
the comparative nature of this study, all modeled niches are subjected to the same direction and
magnitude of this potential bias. It is important to note that we have not captured every factor that
influences macrophyte niches in this study. For some cases, such as free-floating plants (which have no
physiological reason to be constrained by water depth, yet show a strong depth pattern in their niche
occupancy; Figures S1 and S3), observed patterns likely reflect the effects of an unobserved covarying
factor, such as wave-induced surface movement. In addition, nutrient loading has been associated
with dominance of invasive species [8]. Light is often, but not always driven by nutrient concentrations
in Minnesota lakes [105], thus future work should explicitly explore the mechanism by which nutrient
enrichment promotes invader dominance in these systems. We acknowledge these limitations and
suggest that each be addressed or expanded upon in the future.
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It is rarely feasible to evaluate the full niche of an invasive species in its invaded range, where
it is unlikely to have yet reached the full extent of its potential spread. Moreover, it is difficult to
infer whether co-occurrences with native species translate to antagonistic interactions [106]. However,
we can make preliminary inferences regarding interactions between native and invasive species when
there is suitable information to characterize the niche of an invading species, as enabled by the large
state-wide dataset we used here. By evaluating multiple niches across many species, we were able
to draw inferences about the extent to which species may be competing or avoiding competition.
Experiments to directly quantify the strength of competitive interactions between these invaders and
resident plant communities should subsequently test our finding that P. crispus exhibits less competitive
interaction with native species than M. spicatum.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-2818/12/4/162/s1,
Figures S1–S3: Visualizations of niches for all species analyzed. Code S1: Statistical software code (R) for conducting
the primary data cleaning, analysis, and visualizations presented in this manuscript and supplementary figures.

Author Contributions: Conceptualization, M.R.V., W.J.G. and D.J.L.; methodology, M.R.V., W.J.G. and D.J.L.;
formal analysis, M.R.V.; investigation, M.R.V.; data curation, M.R.V.; writing—original draft preparation, M.R.V.;
writing—review and editing, M.R.V., W.J.G. and D.J.L.; visualization, M.R.V.; funding acquisition, M.R.V., W.J.G.
and D.J.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Minnesota Environmental and Natural Resources Trust Fund as
recommended by the Minnesota Aquatic Invasive Species Research Center (MAISRC) and the Legislative-Citizen
Commission on Minnesota Resources. The APC was funded by MAISRC. This material is based upon work
supported by the National Science Foundation Graduate Research Fellowship Program under Grant No.
CON-75851, project 00074041. Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Acknowledgments: We thank Justin Townsend, Noah Berg, Carolyn Kalinowski, James Dickson, and Natalie
Holmes for their help in inventorying plant survey data. We are very grateful to all of the surveyors who generously
organized and shared their data with us. For their exceptional contributions of data, we are particularly indebted
to James Johnson of Freshwater Scientific Services, Matt Berg of Endangered Resource Services, Meg Rattei of Barr
Engineering, Eric Fieldseth of AIS Consulting Services, Steve McComas of Blue Water Science, Jill Sweet of the
Minnhehaha Creek Watershed District, Cole Loewen of the Clearwater River Watershed District, Britta Belden of
the Capitol Region Watershed District, the Minnesota Department of Natural Resources Invasive Species Program
and Lake Ecology Unit, Andrea Prichard of Ramsey Conservation District, and Rob Brown of the Minneapolis
Parks District. We thank Ray Newman for the invitation to contribute to this special issue and three anonymous
reviewers for comments that substantially improved the manuscript.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Courchamp, F.; Fournier, A.; Bellard, C.; Bertelsmeier, C.; Bonnaud, E.; Jeschke, J.M.; Russell, J.C. Invasion
biology: Specific problems and possible solutions. Trends Ecol. Evol. 2017, 32, 13–22. [CrossRef]

2. Bellard, C.; Cassey, P.; Blackburn, T.M. Alien species as a driver of recent extinctions. Biol. Lett. 2016, 12,
20150623. [CrossRef]

3. Bradley, B.A.; Laginhas, B.B.; Whitlock, R.; Allen, J.M.; Bates, A.E.; Bernatchez, G.; Diez, J.M.; Early, R.;
Lenoir, J.; Vilà, M.; et al. Disentangling the abundance-impact relationship for invasive species. Proc. Natl.
Acad. Sci. USA 2019, 116, 9919–9924. [CrossRef] [PubMed]

4. Moles, A.T.; Flores-Moreno, H.; Bonser, S.P.; Warton, D.I.; Helm, A.; Warman, L.; Eldridge, D.J.; Jurado, E.;
Hemmings, F.A.; Reich, P.B.; et al. Invasions: The trail behind, the path ahead, and a test of a disturbing idea.
J. Ecol. 2012, 100, 116–127. [CrossRef]

5. Boltovskoy, D.; Sylvester, F.; Paolucci, E.M. Invasive species denialism: Sorting out facts, beliefs,
and definitions. Ecol. Evol. 2018, 8, 11190–11198. [CrossRef]

6. Schirmel, J.; Bundschuh, M.; Entling, M.H.; Kowarik, I.; Buchholz, S. Impacts of invasive plants on resident
animals across ecosystems, taxa, and feeding types: A global assessment. Glob. Chang. Biol. 2016, 22, 594–603.
[CrossRef]

http://www.mdpi.com/1424-2818/12/4/162/s1
http://dx.doi.org/10.1016/j.tree.2016.11.001
http://dx.doi.org/10.1098/rsbl.2015.0623
http://dx.doi.org/10.1073/pnas.1818081116
http://www.ncbi.nlm.nih.gov/pubmed/31036667
http://dx.doi.org/10.1111/j.1365-2745.2011.01915.x
http://dx.doi.org/10.1002/ece3.4588
http://dx.doi.org/10.1111/gcb.13093


Diversity 2020, 12, 162 15 of 19

7. Seabloom, E.W.; Harpole, W.S.; Reichman, O.J.; Tilman, D. Invasion, competitive dominance, and resource
use by exotic and native California grassland species. Proc. Natl. Acad. Sci. USA 2003, 100, 13384–13389.
[CrossRef] [PubMed]

8. Fleming, J.P.; Dibble, E.D. Ecological mechanisms of invasion success in aquatic macrophytes. Hydrobiologia
2015, 746, 23–37. [CrossRef]

9. Levine, J.M.; Vilà, M.; D’Antonio, C.M.; Dukes, J.S.; Grigulis, K.; Lavorel, S. Mechanisms underlying the
impacts of exotic plant invasions. Proc. R. Soc. Lond. 2003, 270, 775–781. [CrossRef]

10. Blumenthal, D.M.; Hufbauer, R.A. Increased plant size in exotic populations: A common-garden test with 14
invasive species. Ecology 2007, 88, 2758–2765. [CrossRef]

11. MacDougall, A.S.; Turkington, R. Are invasive species the drivers or passengers of change in degraded
ecosystems? Ecology 2005, 86, 42–55. [CrossRef]

12. Hillerislambers, J.; Adler, P.B.; Harpole, W.S.; Levine, J.M.; Mayfield, M.M. Rethinking community assembly
through the lens of coexistence theory. Annu. Rev. Ecol. Evol. Syst. 2012, 43, 227–248. [CrossRef]

13. Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 2000, 31, 343–366.
[CrossRef]

14. Shea, K.; Chesson, P. Community ecology theory as a framework for biological invasions. Trends Ecol. Evol.
2002, 17, 170–176. [CrossRef]

15. Divíšek, J.; Chytrý, M.; Beckage, B.; Gotelli, N.J.; Lososová, Z.; Pyšek, P.; Richardson, D.M.; Molofsky, J.
Similarity of introduced plant species to native ones facilitates naturalization, but differences enhance
invasion success. Nat. Commun. 2018, 9, 1–10. [CrossRef]

16. Zwerschke, N.; van Rein, H.; Harrod, C.; Reddin, C.; Emmerson, M.C.; Roberts, D.; O’Connor, N.E.
Competition between co-occurring invasive and native consumers switches between habitats. Funct. Ecol.
2018, 32, 2717–2729. [CrossRef]

17. Escoriza, D.; Ruhí, A. Functional distance to recipient communities may favour invasiveness: Insights from
two invasive frogs. Divers. Distrib. 2016, 22, 519–533. [CrossRef]

18. Fournier, A.; Penone, C.; Pennino, M.G.; Courchamp, F. Predicting future invaders and future invasions.
Proc. Natl. Acad. Sci. USA 2019, 116, 7905–7910. [CrossRef]

19. Mack, R.N. Predicting the identity and fate of plant invaders: Emergent and emerging approaches.
Biol. Conserv. 1996, 78, 107–121. [CrossRef]

20. Darwin, C.R. On the Origin of Species by Means of Natural Selection, or Preservation of Favoured Races in the
Struggle for Life; John Murray: London, UK, 1859.

21. Patten, B.C.; Auble, G.T. System theory of the ecological niche. Am. Nat. 1981, 117, 893–922. [CrossRef]
22. Elton, C.S. The Ecology of Invasions by Animals and Plants; Springer: Boston, MA, USA, 1958.
23. Carpenter, S.R.; Mooney, H.A.; Agard, J.; Capistrano, D.; DeFries, R.S.; Diaz, S.; Dietz, T.; Duraiappah, A.K.;

Oteng-Yeboah, A.; Pereira, H.M.; et al. Science for managing ecosystem services: Beyond the Millennium
Ecosystem Assessment. Proc. Natl. Acad. Sci. USA 2009, 106, 1305–1312. [CrossRef] [PubMed]

24. Grinnell, J. The niche-relationships of the California Thrasher. Auk 1917, 34, 427–433. [CrossRef]
25. Gallardo, B.; Clavero, M.; Sánchez, M.I.; Vilà, M. Global ecological impacts of invasive species in aquatic

ecosystems. Glob. Chang. Biol. 2016, 22, 151–163. [CrossRef] [PubMed]
26. Hussner, A.; Stiers, I.; Verhofstad, M.J.J.M.; Bakker, E.S.; Grutters, B.M.C.; Haury, J.; van Valkenburg, J.L.C.H.;

Brundu, G.; Newman, J.; Clayton, J.S.; et al. Management and control methods of invasive alien aquatic
plants: A review. Aquat. Bot. 2017, 136, 112–137. [CrossRef]

27. Hussner, A.; Van De Weyer, K.; Gross, E.M.; Hilt, S. Comments on increasing number and abundance of
non-indigenous aquatic macrophyte species in Germany. Weed Res. 2010, 50, 519–526. [CrossRef]

28. Capers, R.; Selsky, R.; Bugbee, G.; White, J. Aquatic plant community invasibility and scale-dependent
patterns in native and invasive species richness. Ecology 2007, 88, 3135–3143. [CrossRef]

29. Muthukrishnan, R.; Hansel-Welch, N.; Larkin, D.J. Environmental filtering and competitive exclusion drive
biodiversity-invasibility relationships in shallow lake plant communities. J. Ecol. 2018, 106, 2058–2070.
[CrossRef]

30. Schultz, R.; Dibble, E. Effects of invasive macrophytes on freshwater fish and macroinvertebrate communities:
The role of invasive plant traits. Hydrobiologia 2012, 684, 1–14. [CrossRef]

http://dx.doi.org/10.1073/pnas.1835728100
http://www.ncbi.nlm.nih.gov/pubmed/14595028
http://dx.doi.org/10.1007/s10750-014-2026-y
http://dx.doi.org/10.1098/rspb.2003.2327
http://dx.doi.org/10.1890/06-2115.1
http://dx.doi.org/10.1890/04-0669
http://dx.doi.org/10.1146/annurev-ecolsys-110411-160411
http://dx.doi.org/10.1146/annurev.ecolsys.31.1.343
http://dx.doi.org/10.1016/S0169-5347(02)02495-3
http://dx.doi.org/10.1038/s41467-018-06995-4
http://dx.doi.org/10.1111/1365-2435.13211
http://dx.doi.org/10.1111/ddi.12421
http://dx.doi.org/10.1073/pnas.1803456116
http://dx.doi.org/10.1016/0006-3207(96)00021-3
http://dx.doi.org/10.1086/283777
http://dx.doi.org/10.1073/pnas.0808772106
http://www.ncbi.nlm.nih.gov/pubmed/19179280
http://dx.doi.org/10.2307/4072271
http://dx.doi.org/10.1111/gcb.13004
http://www.ncbi.nlm.nih.gov/pubmed/26212892
http://dx.doi.org/10.1016/j.aquabot.2016.08.002
http://dx.doi.org/10.1111/j.1365-3180.2010.00812.x
http://dx.doi.org/10.1890/06-1911.1
http://dx.doi.org/10.1111/1365-2745.12963
http://dx.doi.org/10.1007/s10750-011-0978-8


Diversity 2020, 12, 162 16 of 19

31. Pimentel, D.; Zuniga, R.; Morrison, D. Update on the environmental and economic costs associated with
alien-invasive species in the United States. Ecol. Econ. 2005, 52, 273–288. [CrossRef]

32. Hiatt, D.; Serbesoff-King, K.; Lieurance, D.; Gordon, D.R.; Flory, S.L. Allocation of invasive plant management
expenditures for conservation: Lessons from Florida, USA. Conserv. Sci. Pract. 2019, 1, 1–10. [CrossRef]

33. Hussner, A.; Nehring, S.; Hilt, S. From first reports to successful control: A plea for improved management
of alien aquatic plant species in Germany. Hydrobiologia 2014, 737, 321–331. [CrossRef]

34. Bornette, G.; Puijalon, S. Response of aquatic plants to abiotic factors: A review. Aquat. Sci. 2011, 73, 1–14.
[CrossRef]

35. Cronk, J.K.; Fennessy, M.S. Wetland Plants, 1st ed.; CRC Press: Boca Raton, FL, USA, 2001.
36. Wetzel, R.G. Limnology; W.B. Saunders Company: Philidelphia, PA, USA, 1975.
37. Hudon, C.; Lalonde, S.; Gagnon, P. Ranking the effects of site exposure, plant growth form, water depth,

and transparency on aquatic plant biomass. Can. J. Fish. Aquat. Sci. 2000, 57, 31–42. [CrossRef]
38. Gillefalk, M.; Herzog, C.; Hilt, S. Phosphorus availability and growth of benthic primary producers in littoral

lake sediments: Are differences linked to induced bank filtration? Water 2019, 11, 1111. [CrossRef]
39. Hofmann, H.; Lorke, A.; Peeters, F. Wave-induced variability of the underwater light climate in the littoral

zone. Verh. lnt. Verein. Limnol. 2008, 30, 627–632. [CrossRef]
40. Chambers, P.A. Light and nutrients in the control of aquatic plant community structure. II. In situ observations.

J. Ecol. 1987, 75, 621–628. [CrossRef]
41. Godoy, O.; Levine, J.M. Phenology effects on invasion success: Insights from coupling field experiments to

coexistence theory. Ecology 2014, 95, 726–736. [CrossRef] [PubMed]
42. Torso, K.; Scofield, B.D.; Chess, D.W. Variations in aquatic macrophyte phenology across three temperate

lakes in the Coeur d’Alene Basin. Aquat. Bot. 2020, 162, 103209. [CrossRef]
43. Aiken, S.G.; Newroth, R.; Wiles, I. The biology of Canadian weeds. Myriophyllum spicatum L. Can. J. Plant

Sci. 1979, 59, 201–215. [CrossRef]
44. Eiswerth, M.; Donaldson, S.; Johnson, W. Potential environmental impacts and economic damages of Eurasian

watermilfoil (Myriophyllum spicatum) in western Nevada and northeastern California. Weed Technol. 2000, 14,
511–518. [CrossRef]

45. Barko, J.W.; Smart, M.R. Comparative Influences of Light and Temperature on the Growth and Metabolism
of Selected Submersed Freshwater Macrophytes. Ecol. Monogr. 1981, 51, 219–236. [CrossRef]

46. Smith, C.S.; Barko, J.W. Ecology of Eurasian watermilfoil. J. Aquat. Plant Manag. 1990, 28, 55–64.
47. Titus, J.E.; Adams, M.S. Coexistence and the comparative light relations of the submersed macrophytes

Myriophyllum spicatum L. and Vallisneria americana Michx. Oecologia 1979, 40, 273–286. [CrossRef]
[PubMed]

48. Bolduan, B.R.; Van Eeckhout, G.C.; Quade, H.W.; Gannon, J.E. Potamogeton crispus—The other invader.
Lake Reserv. Manag. 1994, 10, 113–125. [CrossRef]

49. Tobiessen, P.; Snow, P.D. Temperature and light effects on the growth of Potamogeton crispus in Collins Lake,
New York State. Can. J. Bot. 1984, 62, 2822–2826. [CrossRef]

50. Chambers, P.A.; Spence, D.H.N.; Weeks, D.C. Photocontrol of turion formation by Potamogeton Crispus, L.
in the laboratory and natural water. New Phytol. 1985, 99, 183–194. [CrossRef]

51. Woolf, T.E.; Madsen, J. Seasonal biomass and carbohydrate allocation patterns in southern Minnesota
curlyleaf pondweed populations. J. Aquat. Plant Manag. 2003, 41, 113–118.

52. Adamec, L. Ecophysiological characteristics of turions of aquatic plants: A review. Aquat. Bot. 2018, 148,
64–77. [CrossRef]

53. Carmona, C.P.; de Bello, F.; Mason, N.W.H.; Lepš, J. Traits without borders: Integrating functional diversity
across scales. Trends Ecol. Evol. 2016, 31, 382–394. [CrossRef]

54. Blonder, B. Hypervolume concepts in niche- and trait-based ecology. Ecography (Cop.). 2018, 41, 1441–1455.
[CrossRef]

55. Blonder, B.; Lamanna, C.; Violle, C.; Enquist, B.J. The n-dimensional hypervolume. Glob. Ecol. Biogeogr. 2014,
23, 595–609. [CrossRef]

56. Perleberg, D.; Radomski, P.; Simon, S.; Carlson, K.; Knopik, J. Minnesota Lake Plant Survey Manual, for Use
by MNDNR Fisheries Section and EWR Lake Habitat Program; Minnesota Department of Natural Resources:
Brainerd, MN, USA, 2016.

http://dx.doi.org/10.1016/j.ecolecon.2004.10.002
http://dx.doi.org/10.1111/csp2.51
http://dx.doi.org/10.1007/s10750-013-1757-5
http://dx.doi.org/10.1007/s00027-010-0162-7
http://dx.doi.org/10.1139/f99-232
http://dx.doi.org/10.3390/w11051111
http://dx.doi.org/10.1080/03680770.2008.11902204
http://dx.doi.org/10.2307/2260194
http://dx.doi.org/10.1890/13-1157.1
http://www.ncbi.nlm.nih.gov/pubmed/24804456
http://dx.doi.org/10.1016/j.aquabot.2020.103209
http://dx.doi.org/10.4141/cjps79-028
http://dx.doi.org/10.1614/0890-037X(2000)014[0511:PEIAED]2.0.CO;2
http://dx.doi.org/10.2307/2937264
http://dx.doi.org/10.1007/BF00345324
http://www.ncbi.nlm.nih.gov/pubmed/28309611
http://dx.doi.org/10.1080/07438149409354182
http://dx.doi.org/10.1139/b84-376
http://dx.doi.org/10.1111/j.1469-8137.1985.tb03648.x
http://dx.doi.org/10.1016/j.aquabot.2018.04.011
http://dx.doi.org/10.1016/j.tree.2016.02.003
http://dx.doi.org/10.1111/ecog.03187
http://dx.doi.org/10.1111/geb.12146


Diversity 2020, 12, 162 17 of 19

57. Johnson, J.A.; Jones, A.R.; Newman, R.M. Evaluation of lakewide, early season herbicide treatments for
controlling invasive curlyleaf pondweed (Potamogeton crispus) in Minnesota lakes. Lake Reserv. Manag.
2012, 28, 346–363. [CrossRef]

58. Jones, A.R.; Johnson, J.A.; Newman, R.M. Effects of repeated, early season, herbicide treatments of curlyleaf
pondweed on native macrophyte assemblages in Minnesota lakes. Lake Reserv. Manag. 2012, 28, 364–374.
[CrossRef]

59. Verhoeven, M.R.; Larkin, D.J.; Newman, R.M. Constraining invader dominance: Effects of repeated herbicidal
management and environmental factors on curlyleaf pondweed dynamics in 50 Minnesota lakes. Freshw. Biol.
2020, 1–14. [CrossRef]

60. Nault, M.; Mikulyuk, A.; Hauxwell, J.; Skogerboe, J.; Asplund, T.; Barton, M.; Wagner, K.; Hoyman, T.;
Heath, E. Herbicide Treatments in Wisconsin Lakes: Building a Framework for Scientific Evaluation of
Large-scale Herbicide Treatments in Wisconsin Lakes. NALMS Lake Line 2012, 32, 19–24.

61. Kujawa, E.R.; Frater, P.; Mikulyuk, A.; Barton, M.; Nault, M.E.; Van Egeren, S.; Hauxwell, J. Lessons from a
decade of lake management: Effects of herbicides on Eurasian watermilfoil and native plant communities.
Ecosphere 2017, 8, e01718. [CrossRef]

62. Frater, P.; Mikulyuk, A.; Barton, M.; Nault, M.; Wagner, K.; Hauxwell, J.; Kujawa, E. Relationships between
water chemistry and herbicide efficacy of Eurasian watermilfoil management in Wisconsin lakes. Lake Reserv.
Manag. 2016, 33, 1–7. [CrossRef]

63. Anderson, M.; Clark, M.; Cornett, M.; Hall, K.; Olivero Sheldon, A.; Prince, J. Resilient Sites for Terrestrial
Conservation in the Great Lakes and Tallgrass Prairie Region; The Nature Conservancy, Eastern Conservation
Science and North America Region: Boston, MA, USA, 2018.

64. R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2019.
65. Madsen, J.D.; Wersal, R.M. A review of aquatic plant monitoring and assessment methods. J. Aquat. Plant

Manag. 2017, 55, 1–12.
66. Chadde, S.W. Wetland Plants of Minnesota: A Complete Guide to the Wetland and Aquatic Plants of the North Star

State; Createspace Independent Publishing Platform: Lexington, KY, USA, 2012; ISBN 9781460940341.
67. Crow, G.E.; Hellquist, C.B. Aquatic and Wetland Plants of Northeastern North America. Volum Pteridophytes,

Gymnosperms and Angiosperms: Dicotyledons; University of Wisconsin Press: Madison, WI, USA, 2000.
68. Crow, G.E.; Hellquist, C.B. Aquatic and Wetland Plants of Northeastern North America. Volume Angiosperms:

Monocotyledons; University of Wisconsin Press: Madison, WI, USA, 2000.
69. Skawinski, P.M. Aquatic Plants of the Upper Midwest; Paul Skawinski: Wausau, WI, USA, 2011;

ISBN 978-1-4507-9247-9.
70. Boyle, B.; Hopkins, N.; Lu, Z.; Raygoza Garay, J.A.; Mozzherin, D.; Rees, T.; Matasci, N.; Narro, M.L.;

Piel, W.H.; Mckay, S.J.; et al. The taxonomic name resolution service: An online tool for automated
standardization of plant names. BMC Bioinf. 2013, 14, 16. [CrossRef]

71. Chamberlain, S.A.; Szöcs, E. Taxize: Taxonomic search and retrieval in R. F1000 Res. 2013, 2, 1–30. [CrossRef]
72. Stadelmann, T.H.; Brezonik, P.L.; Kloiber, S. Seasonal patterns of chlorophyll a and secchi disk transparency

in lakes of East-central Minnesota: Implications for design of ground—And satellite-based monitoring
programs. Lake Reserv. Manag. 2001, 17, 299–314. [CrossRef]

73. Preisendorfer, R.W. Eyeball optics of natural waters: Secchi disk science. Limnol. Oceanogr. 1986, 31, 909–926.
[CrossRef]

74. Steele, E.A.; Neuhausser, S. Comparison of methods for measuring visual water clarity. J. North Am. Benthol.
Soc. 2002, 21, 326–335. [CrossRef]

75. Megard, R.O.; Settles, J.C.; Boyer, H.A.; Combs, W.S.J. Light, Secchi disks, and trophic states. Limnol. Oceanogr.
1980, 25, 373–377. [CrossRef]

76. Van Duin, E.H.S.; Blom, G.; Los, F.J.; Maffione, R.; Zimmerman, R.; Cerco, C.F.; Dortch, M.; Best, E.P.H.
Modeling underwater light climate in relation to sedimentation, resuspension, water quality and autotrophic
growth. Hydrobiologia 2001, 444, 25–42. [CrossRef]

77. McMaster, G.S.; Wilhelm, W.W. Growing degree-days: One equation, two interpretations. Agric. For. Meteorol.
1997, 87, 291–300. [CrossRef]

http://dx.doi.org/10.1080/07438141.2012.744782
http://dx.doi.org/10.1080/07438141.2012.747577
http://dx.doi.org/10.1111/fwb.13468
http://dx.doi.org/10.1002/ecs2.1718
http://dx.doi.org/10.1080/10402381.2016.1235634
http://dx.doi.org/10.1186/1471-2105-14-16
http://dx.doi.org/10.12688/f1000research.2-191.v1
http://dx.doi.org/10.1080/07438140109354137
http://dx.doi.org/10.4319/lo.1986.31.5.0909
http://dx.doi.org/10.2307/1468419
http://dx.doi.org/10.4319/lo.1980.25.2.0373
http://dx.doi.org/10.1023/A:1017512614680
http://dx.doi.org/10.1016/S0168-1923(97)00027-0


Diversity 2020, 12, 162 18 of 19

78. Cross, H.Z.; Zuber, M.S. Prediction of flowering dates in maize based on different methods of estimating
thermal units. Agron. J. 1972, 64, 351–355. [CrossRef]

79. Russelle, M.P.; Wilhelm, W.W.; Olson, R.A.; Power, J.F. Growth analysis based on degree days. Crop Sci. 1984,
24, 28–32. [CrossRef]

80. Luedeling, E.; Kunz, A.; Blanke, M.M. Identification of chilling and heat requirements of cherry trees-a
statistical approach. Int. J. Biometeorol. 2013, 57, 679–689. [CrossRef]

81. NOAA. National Centers for Environmental Information Global Surface Hourly [2001–2018]; NOAA: Washington,
DC, USA, 2018.

82. Boissezon, A.; Auderset Joye, D.; Garcia, T. Temporal and spatial changes in population structure of the
freshwater macroalga Nitellopsis obtusa (Desv.) J.Groves. Bot. Lett. 2018, 165, 103–114. [CrossRef]

83. Carmona, C.P.; Bello, F.; Mason, N.W.H.; Lepš, J. Trait probability density (TPD): Measuring functional
diversity across scales based on TPD with R. Ecology 2019, 100, 1–8. [CrossRef] [PubMed]

84. Blonder, B.; Lamanna, C.; Violle, C.; Enquist, B.J. Using n-dimensional hypervolumes for species distribution
modelling: A response to Qiao et al. (). Glob. Ecol. Biogeogr. 2017, 26, 1071–1075. [CrossRef]

85. Blonder, B.; Morrow, C.B.; Maitner, B.; Harris, D.J.; Lamanna, C.; Violle, C.; Enquist, B.J.; Kerkhoff, A.J. New
approaches for delineating n -dimensional hypervolumes. Methods Ecol. Evol. 2018, 9, 305–319. [CrossRef]

86. Blonder, B. Do hypervolumes have holes? Am. Nat. 2016, 187, E93–E105. [CrossRef]
87. Zedler, J.B.; Kercher, S. Causes and consequences of invasive plants in wetlands: Opportunities, opportunists,

and outcomes. CRC. Crit. Rev. Plant Sci. 2004, 23, 431–452. [CrossRef]
88. MacDougall, A.S.; Gilbert, B.; Levine, J.M. Plant invasions and the niche. J. Ecol. 2009, 97, 609–615. [CrossRef]
89. Mitchell, C.E.; Agrawal, A.A.; Bever, J.D.; Gilbert, G.S.; Hufbauer, R.A.; Klironomos, J.N.; Maron, J.L.;

Morris, W.F.; Parker, I.M.; Power, A.G.; et al. Biotic interactions and plant invasions. Ecol. Lett. 2006, 9,
726–740. [CrossRef]

90. Seabloom, E.W.; Borer, E.T.; Boucher, V.L.; Burton, R.S.; Cottingham, K.L.; Goldwasser, L.; Gram, W.K.;
Kendall, B.E.; Micheli, F. Competition, seed limitation, disturbance, and reestablishment of California native
annual forbs. Ecol. Appl. 2003, 13, 575–592. [CrossRef]

91. Callaway, R.M.; Ridenour, W.M. Novel weapons: Invasive success and the evolution of increased competitive
ability. Front. Ecol. Environ. 2004, 2, 436–443. [CrossRef]

92. Hilt, S.; Henschke, I.; Rücker, J.; Nixdorf, B. Can submerged macrophytes influence turbidity and trophic
state in deep lakes? Suggestions from a case study. J. Environ. Qual. 2010, 39, 725. [CrossRef]

93. James, W.F.; Dechamps, A.; Turyk, N.; Mcginley, P. Contribution of Potamogeton Crispus Decay to the Phosphorus
Budget of McGinnis Lake, Wisconsin; U.S. Army Engineer Research and Development Center: Vicksburg, MS,
USA, 2007.

94. Boylen, C.W.; Eichler, L.W.; Madsen, J.D. Loss of native aquatic plant species in a community dominated by
Eurasian watermilfoil. Hydrobiologia 1999, 415, 207–211. [CrossRef]

95. Scheele, B.C.; Foster, C.N.; Banks, S.C.; Lindenmayer, D.B. Niche contractions in declining species:
Mechanisms and consequences. Trends Ecol. Evol. 2017, 32, 346–355. [CrossRef] [PubMed]

96. Johnson, J.; Newman, M. A comparison of two methods for sampling biomass of aquatic plants. J. Aquat.
Plant Manag. 2011, 49, 1–8.

97. Marshall, C.T.; Peters, R.H. General patterns in the seasonal development of chlorophyll a for temperate
lakes. Limnol. Oceanogr. 1989, 34, 856–867. [CrossRef]

98. Titus, J.; Goldstein, R.A.; Adams, M.S.; Mankin, J.B.; O’neill, R.V.; Weiler, P.R., Jr.; Shugart, H.H.; Booth, R.S.
A production model for Myriophyllum spicatum L. Ecology 1997, 56, 1129–1138. [CrossRef]

99. Grace, J.B.; Wetzel, R.G. The production biology of Eurasian watermilfoil (Myriophyllum spicatum L.):
A Review. J. Aquat. Plant. Manag. 1978, 16, 1–11.

100. Adams, M.S.; McCracken, M.D. Seasonal Production of the Myriophyllum Component of the Littoral of
Lake Wingra, Wisconsin. J. Ecol. 1974, 62, 457. [CrossRef]

101. Galatowitsch, S.M.; Anderson, N.O.; Ascher, P.D. Invasiveness in wetland plants in temperate North America.
Wetlands 1999, 19, 733–755. [CrossRef]

102. Valley, R.D.; Bremigan, M.T. Effects of macrophyte bed architecture on largemouth bass foraging: Implications
of exotic macrophyte invasions. Trans. Am. Fish. Soc. 2002, 131, 234–244. [CrossRef]

103. Wu, J.; Cheng, S.; Liang, W.; He, F.; Wu, Z. Effects of sediment anoxia and light on turion germination and
early growth of Potamogeton crispus. Hydrobiologia 2009, 628, 111–119. [CrossRef]

http://dx.doi.org/10.2134/agronj1972.00021962006400030029x
http://dx.doi.org/10.2135/cropsci1984.0011183X002400010007x
http://dx.doi.org/10.1007/s00484-012-0594-y
http://dx.doi.org/10.1080/23818107.2017.1356239
http://dx.doi.org/10.1002/ecy.2876
http://www.ncbi.nlm.nih.gov/pubmed/31471976
http://dx.doi.org/10.1111/geb.12611
http://dx.doi.org/10.1111/2041-210X.12865
http://dx.doi.org/10.1086/685444
http://dx.doi.org/10.1080/07352680490514673
http://dx.doi.org/10.1111/j.1365-2745.2009.01514.x
http://dx.doi.org/10.1111/j.1461-0248.2006.00908.x
http://dx.doi.org/10.1890/1051-0761(2003)013[0575:CSLDAR]2.0.CO;2
http://dx.doi.org/10.1890/1540-9295(2004)002[0436:NWISAT]2.0.CO;2
http://dx.doi.org/10.2134/jeq2009.0122
http://dx.doi.org/10.1023/A:1003804612998
http://dx.doi.org/10.1016/j.tree.2017.02.013
http://www.ncbi.nlm.nih.gov/pubmed/28284374
http://dx.doi.org/10.4319/lo.1989.34.5.0856
http://dx.doi.org/10.2307/1936152
http://dx.doi.org/10.2307/2258991
http://dx.doi.org/10.1007/BF03161781
http://dx.doi.org/10.1577/1548-8659(2002)131&lt;0234:EOMBAO&gt;2.0.CO;2
http://dx.doi.org/10.1007/s10750-009-9749-1


Diversity 2020, 12, 162 19 of 19

104. Gioria, M.; Osborne, B.A. Resource competition in plant invasions: Emerging patterns and research needs.
Front. Plant Sci. 2014, 5, 1–21. [CrossRef]

105. Hautier, Y.; Niklaus, P.; Hector, A. Competition for light causes plant biodiversity loss after eutrophication.
Science 2009, 324, 636–638. [CrossRef]

106. Kolar, C.S.; Lodge, D.M. Progress in invasion biology: Predicting invaders. Trends Ecol. Evol. 2001, 16,
199–204. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3389/fpls.2014.00501
http://dx.doi.org/10.1126/science.1169640
http://dx.doi.org/10.1016/S0169-5347(01)02101-2
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Macrophyte Occurrence Data 
	Environmental Data 
	Data Analysis 

	Results 
	Discussion 
	References

