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Abstract: Rusty blackbirds (Euphagus carolinus), once common across their boreal breeding 

distribution, have undergone steep, range-wide population declines. Newfoundland is home to 

what has been described as one of just two known subspecies (E. c. nigrans) and hosts some of the 

highest known densities of the species across its extensive breeding range. To contribute to a 

growing body of literature examining rusty blackbird breeding ecology, we studied habitat 

occupancy in Western Newfoundland. We conducted 1960 point counts across a systematic survey 

grid during the 2016 and 2017 breeding seasons, and modeled blackbird occupancy using forest 

resource inventory data. We also assessed the relationship between the presence of introduced red 

squirrels (Tamiasciurus hudsonicus), an avian nest predator, and blackbird occupancy. We evaluated 

31 a priori models of blackbird probability of occurrence. Consistent with existing literature, the best 

predictors of blackbird occupancy were lakes and ponds, streams, rivers, and bogs. Red squirrels 

did not appear to have a strong influence on blackbird habitat occupancy. We are among the first to 

model rusty blackbird habitat occupancy using remotely-sensed landcover data; given the 

widespread availability of forest resource inventory data, this approach may be useful in 

conservation efforts for this and other rare but widespread boreal species. Given that 

Newfoundland may be a geographic stronghold for rusty blackbirds, future research should focus 

on this distinct population. 

Keywords: red squirrel; boreal; wetland; Euphagus carolinus; point count; remotely sensed landscape 

data; unmarked  

 

1. Introduction 

Though the rate of decline may have eased in the last decade [1], long-term monitoring has 

documented range-wide declines in rusty blackbird (Euphagus carolinus) populations that exceed 80% 

over the past century, with qualitative evidence for declines dating back to the 19th century [2–4]. 

Migratory species such as blackbirds can be affected by stressors or threats acting during any or all 
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phases of the annual cycle [5,6]. The factors driving this dramatic range-wide decline in the formerly 

wide-spread and common rusty blackbird are not fully understood, though this species may have 

been affected by threats manifested during at least two phases of the annual cycle. Multiple stressors 

on the species’ wintering grounds have likely contributed to declines, including: “Pest” control 

measures on agricultural land that target other species of blackbirds but also lead to incidental rusty 

blackbird mortality [7]; loss of up to 80% of potential wintering wetland habitat through conversion 

to agricultural land use and fragmentation [3]; and exposure to high levels of methyl mercury 

through dietary intake (during both wintering and breeding) that could cause physiological or 

reproductive impacts [8]. Factors acting on the species’ boreal forest breeding grounds have also 

likely contributed to population declines [2], including wetland conversion for agricultural purposes 

[9,10] and habitat degradation linked to climate change [11,12]. Regarding the latter, McClure et al. 

[11] detected a 143 km northward shift in the southern edge of the breeding range of rusty blackbirds 

between 1966 and 2005, and also found a significant correlation between rusty blackbird population 

declines detected in Breeding Bird Survey (BBS) data and Pacific Decadal Oscillations. McClure et al. 

[11] suggested that warmer temperatures and drier conditions may reduce the amount of arthropod 

prey and change prey phenology, resulting in a temporal disconnect between breeding phenology 

and prey availability. 

Habitat and habitat quality can play key roles in determining both distribution and productivity 

of forest songbirds [13,14] and boreal songbirds are known to be influenced by factors that include 

natural [15,16] and anthropogenic disturbance [17,18]. Broad-scale breeding season habitat 

associations have been described for rusty blackbirds [4] and various factors have been hypothesized 

as influencing them on their breeding grounds. These factors include competition with other icterids 

[19], timber harvesting [20,21], changes to wetland hydrology and ecology [11], and nest predator 

dynamics [22]. However, though most jurisdictions across the boreal biome maintain relatively 

standardized forest resource inventory landcover databases to support the management of forests 

and other natural resources, few studies have quantitatively assessed breeding habitat for rusty 

blackbirds using forest inventory data. Given their widespread availability and direct role in natural 

resource management planning, forest inventory data may be particularly useful for efficient, cost-

effective monitoring, and for studying a widespread and rare species such as the Rusty Blackbird. 

This is especially true in the boreal forest, which is often remote or inaccessible to surveyors. Further, 

these landcover inventories may be used to identify key habitat for conservation and management of 

species across a wide geographic area, and so may prove useful when applied in the conservation of 

boreal species at risk. 

The breeding range of rusty blackbirds extends across the boreal forest of Canada and the United 

States, and within this biome breeding activity is most often associated with wetland and riparian 

ecosystems and adjacent dense conifer stands [4]. During the breeding period, rusty blackbirds forage 

primarily on aquatic invertebrates along the shorelines of lakes and streams but occasionally seek 

terrestrial prey [22,23]. Powell et al. [24] assessed breeding site occupancy of rusty blackbirds using 

ground-based measurement of habitat features (i.e., they did not use remotely sensed data); 

occupancy was affected by various factors acting at multiple spatial scales, but was driven primarily 

by the availability of wetlands that afforded suitable foraging opportunities (i.e., areas of shallow 

water) and evidence of beaver (Castor canadensis) activity. The presence of dense patches of conifers 

in the vicinity of those wetlands was also required for nesting, while stand age and harvest history 

were less influential [24]. Lack of specificity in the latter matches the largely anecdotal descriptors of 

nest substrates reported elsewhere; rusty blackbirds appear to prefer nesting in short (less than 4.5m 

tall), dense conifer stands [21,22,25–27], and predominantly use black spruce (Picea mariana) and 

balsam fir (Abies balsamea) near wetlands [24]. They have also been reported nesting in willow thickets 

(Salix sp.; [23]). Most recently, Wohner et al. [27] assessed rusty blackbird habitat use during various 

periods of the breeding season. They found that streams, softwood and mixed wood sapling stands, 

wetlands, and areas characterized by slopes between 1% and 8% were important in predicting rusty 

blackbird occupancy. Streams were very important in predicting nest sites and adult occupancy, but 

were especially important in predicting fledgling occupancy. In contrast, fledglings and adults 
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strongly selected wetlands, but this habitat was not strongly associated with nest sites. Wohner et al. 

[27] proposed that streams may be a more important source of smaller arthropod prey for nestlings, 

whereas wetlands may host larger prey—for example, dragonflies—valuable for adults and large 

dependent fledglings. 

There has been limited research on the impact of nest predators on rusty blackbirds. Matsuoka 

et al. [25] assessed nesting success in rusty blackbirds and found that of failed nests, 89% were lost to 

depredation, and various studies have shown that predation risk can affect nest site selection in 

songbirds (e.g., [28]). In a study of rusty blackbird nest success, Luepold et al. [22] found that North 

American red squirrels (Tamiasciurus hudsonicus) were the most frequent predator of rusty blackbird 

nests in Maine, USA. Red squirrels are an important predator of nests and fledglings of boreal 

songbirds that can affect populations and community structure (e.g., [29–31]). Red squirrels were 

introduced to Newfoundland, Canada during the 1960s and spread rapidly; they are now the most 

important predator of songbird nests on the island [32–34]. Squirrels have been implicated in the 

imperilment of two endemic Newfoundland songbird subspecies and represent a novel threat that 

may affect rusty blackbird nesting success, habitat associations, and abundance on Newfoundland 

[35,36]. During concurrent research at our study site, McDermott et al. [37] determined that during 

the 2016 summer season that followed a high mast crop (G. Robineau-Charette and D. Whitaker, 

unpublished data), red squirrels were detected at 18% of survey points. In contrast, during the 2017 

summer season which followed a low mast crop, detections occurred at only 5% of survey points. 

During both years there was a negative relationship between squirrel detections and elevation with 

no squirrels detected above 515 m in either year (see [37] for further details). Benkman [38] suggested 

that red squirrel populations on Newfoundland were more than double those of mainland North 

American populations. 

Forest management has been shown to affect breeding distribution, behavior and success in 

many species of birds (e.g., [39–41]). By contrast, Powell et al. [24] found that recent logging in 

adjacent uplands did not feature among the variables retained in the best occupancy models for rusty 

blackbirds in Northern New England, USA. However, an assessment of nesting success in 

regenerating, recently harvested stands versus older, established stands at the southern edge of the 

rusty blackbird breeding range in Maine suggested that recently harvested areas are an ecological 

trap, with nests in older stands being 2.3 times more likely to fledge young than nests in stands <20 

years post-harvest [20]. Conversely, Buckley [26] found that nesting success in managed forest stands 

was comparable to that for other cup-nesting species, while Wohner et al. [27] suggested that 

regenerating softwood forests provided dense cover for fledglings to hide from predators. More 

research is needed to examine the role of forest harvesting at territory and landscape scales on habitat 

occupancy by rusty blackbirds, and to assess the extent to which such findings from southern 

portions of the breeding range are applicable in more northerly boreal regions. 

As has occurred in continental portions of the rusty blackbird breeding range, the population on 

the island of Newfoundland experienced a significant decline between 1970 and 2014, as estimated 

from Breeding Bird Survey (BBS) data (−6.33% per year, 95% credible interval −3.58 to −9.35 based on 

23 routes; [1]). Despite this decline, the number of individuals encountered per BBS route on 

Newfoundland was substantially higher than for all other regions ([7]; mean of 2.03 birds per route 

on Newfoundland based on data from 1980–2005 compared to a survey-wide mean of 0.26 birds per 

route for data collected from 1966–2005). As is the case for many bird species found on the island of 

Newfoundland [42–44], it has been suggested that the rusty blackbird population breeding on 

Newfoundland and possibly some adjacent portions of Atlantic Canada may be a distinct subspecies 

(E. c. nigrans) from that found across the remainder of the boreal forest (E. c. carolinus; [45]), and so 

may represent a distinct conservation unit for rusty blackbirds. Thus, Newfoundland appears to 

remain a stronghold for rusty blackbirds and is an important element for range-wide conservation 

planning. 

We used an occupancy modelling approach based on two years of systematic survey data from 

a 257 km2 study area in western Newfoundland to assess how rusty blackbird occupancy is 

influenced by habitat. We used forest resource inventory landcover data derived from aerial 
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photography to measure habitat availability, an uncommon approach for rusty blackbirds (but, see 

Bale et al. [46], Wohner et al. [27], who used aerial photography-derived habitat data). In addition, 

we evaluated the influence of red squirrel presence on the probability of blackbird occupancy. We 

predicted that rusty blackbirds would be associated with wet environments—specifically, 

waterbodies, watercourses, and bogs—and coniferous stands. Furthermore, we predicted that rusty 

blackbird occupancy and red squirrel presence would be negatively related.  

2. Materials and Methods  

2.1. Study Site 

We collected data in the Main River and upper Humber River watersheds, located on the eastern 

slope of the Long Range Mountains of western Newfoundland, Canada (49.75° N, 57.25° W; Figure 

1; see also [36,37]). The 257 km2 study area spans an elevation range from 75 m to 608 m, with 

elevation increasing from southeast to northwest. Landcover is dominated by wet boreal forest [47] 

containing a mosaic of mixed and single-species stands dominated by balsam fir or black spruce 

along with white birch (Betula papyrifera), tamarack (Larix laricina), and white spruce (P. glauca). Much 

of the mature forest consists of a closed canopy with few, large canopy gaps, and trees at higher 

elevations tend to have more stunted growth forms [48]. 68% of sites had >25% cover of forest stands 

older than approximately 30 years of age. In a study in the northern boreal forest of Alaska and Yukon 

Territory, Viglas et al. [49] found that 30 year old trees had an approximately 50% chance of 

producing cones, and that this probability increased with age. Thus, a large proportion of our survey 

area may provide valuable habitat for red squirrels. Qualitative evidence suggests there was a large 

cone crop in 2015–2016, with a lighter cone crop during 2016–2017 (G. Robineau-Charette and D. 

Whitaker, unpublished data). Approximately 5% of our survey points were located above 550 m, the 

approximate altitude of the tree line [48]. Various forms of boreal wetlands and aquatic habitat 

suitable for rusty blackbirds are widespread across the study area, including bogs, fens, and the 

shorelines of rivers and lakes, while barrens and other natural openings also make up a proportion 

of landcover. Overall, landcover within our survey point buffers consisted of an average of 3% lakes, 

7% bog, 29% coniferous scrub, and 48% balsam fir- and/or black spruce-dominated forest. Natural 

disturbances such as wildfire and outbreaks of defoliating insects are uncommon at higher elevations 

due to climatic conditions, leading to the development of mixed age, old growth fir forests having an 

abundance of canopy gaps and complex vertical structure [48,50]. Trees at this site have been aged at 

over 250 years old [48], and around our survey points alone, 27% of points contained 50% or more 

forest greater than 110 years old. Portions of the study area were harvested by clearcutting between 

1990 and 2004 resulting in 19.7% of the study area being cleared in cutblocks ranging from 0.30 ha to 

197.4 ha; natural regeneration of balsam fir has followed harvest at these sites. The construction of a 

60 m-wide electricity transmission corridor during 2016 and 2017 (Figure 1) created a linear strip of 

cleared land through the study area. All lands in the study area are provincial public lands (i.e., 

“Crown lands”). 
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Figure 1. Distribution of survey points in the Main River and upper Humber River watersheds in 

western Newfoundland, Canada. Each year, points in the survey grid were spaced 500 m apart, and 

in 2017 the grid was shifted 250 m north and 250 m east, placing the points midway between those 

sampled the previous year. The location of the study area on the island of Newfoundland is shown 

by the red box on the inset map. 

2.2. Field Methods 

We collected field data from early June through mid-July of 2016 and 2017 to span the period of 

peak territorial display and defense for most migratory songbirds in the region, including rusty 

blackbirds. Systematic surveys were carried out across a grid of points spaced 500 m apart (Figure 1), 

and for the 2017 season we shifted the grid 250 m north and 250 m east so that survey points fell 

midway between those sampled the previous year (i.e., a diagonal distance of 354 m from the points 

sampled the previous year). The total number of surveyed points was 991 during 2016 and 969 in 

2017. Solitary observers conducted point counts; data collection included four surveyors during 2016 

and five surveyors in 2017 (one individual was common to both seasons). Each surveyor sampled 5–

12 adjacent points per day between 05:40 h and 14:30 h. This timeline deviated from standardized 

avian survey protocols such as Breeding Bird Surveys [51] and was devised as part of a survey using 
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call broadcast originally designed to target gray-cheeked thrush (Catharus minimus) and red squirrels 

(see description below, and [37]). However, 85% of our point counts were conducted before 10am, 

and the probability of rusty blackbird detection did not vary substantially between hours within our 

survey period, despite a larger standard error after 13:00. Surveyors recorded wind strength using 

the Beaufort scale, and stopped field work when high winds (>5 Beaufort scale; 29 km/h) or 

precipitation/fog impaired visual or auditory detections of songbirds (similar to BBS protocol; [51]). 

We continued to operate in the presence of light drizzle and fog, as these weather conditions are 

frequent in this climate, particularly in the morning, and we believe that this approach did not detract 

from our capacity to detect individuals during surveys. Precipitation was recorded as either absent, 

fog, drizzle, rain, or snow. Surveyors also recorded cloud cover on a scale from 1–5 (0 = no clouds, 1 

< 25% cloud cover, 2 = 26–50%, 3 = 51–75%, 4 = 76–99%, 5 = 100%).  

Surveyors visited each survey point once, conducting an 11-min unlimited radius point count 

[52] that was divided into the following sequence of five sub-periods: (1) six minutes silent listening; 

(2) two minutes broadcast of gray-cheeked thrush (Catharus minimus) calls and songs (3) a one-minute 

silent period; (4) one minute broadcast of red squirrel vocalizations; and (5) a final one-minute silent 

period. These subperiods were designed for an unrelated study that examined the relationship 

between gray-cheeked thrush and red squirrels. However, we recorded all bird species seen and/or 

heard and each red squirrel detected during each of the time blocks within the 11 min of a point 

count. As such, these methods provided suitable data for our study on rusty blackbirds. There is no 

reason to believe that the broadcast of gray-cheeked thrush vocalizations would influence Rusty 

Blackbird behavior or detectability. However, rusty blackbirds are known to mob potential predators 

(e.g., [25,53]) so might be attracted rather than deterred by the squirrel broadcasts. Surveyors used 

broadcast equipment (FoxPro model FX3 or Crossfire game callers; FoxPro Incorporated, Lewistown, 

PA 17044, USA) played at a consistent volume; when measured 1 m from the speaker, the peak 

volume of broadcasts was 82.6 dB. 

2.3. Data Analysis 

Using ArcMap (version 10.5.1; [54]), we extracted landcover data for each survey point from the 

provincial forest resource inventory Geographic Information System (GIS) database, which was 

created using high resolution (sub 10 cm pixel resolution) 3D aerial photographs taken in 2007. 

Landcover was mapped according to the standard forest resource inventory classification scheme 

used by the Province of Newfoundland and Labrador, with landcover elements assigned to cover 

types (e.g., forest, forest scrub, bog, barren, lakes and ponds, rivers). Forest stands were further 

classified according to 20-year age classes and dominant tree species composition. The provincial 

forest resource inventory only includes rivers >15 m wide, which are mapped as two-dimensional 

landcover features (i.e., polygons). However, smaller streams are likely important habitat features for 

rusty blackbirds [24,27], and are classified as linear features (i.e., 1-dimensional vectors) in Natural 

Resources Canada’s CanVec geospatial database (available under the Government of Canada’s open 

government License [https://open.canada.ca/en]). The national Canvec database is produced using 

several data sources and resolution varies from 1:10,000–1:50,000 scale. Consequently, we extracted 

two variables for moving water: (1) The extent of rivers > 15 m wide (m2) from the provincial forest 

resource inventory, and (2) the linear length of smaller streams (m) from the CanVec database. 

We extracted landcover information within a 347 m radius around each point (i.e., a 37.8 ha 

circle); this approximates the rusty blackbird home range estimate of 37.5 ± 12.6 ha developed by 

Powell et al. [20] based on radiotracking 13 rusty blackbirds (6 males, 7 females) in Maine. We 

converted point count detections of rusty blackbirds into presence-absence data for each point and 

standardized most habitat features as the proportion of the 37.8 ha buffer circle covered by that 

habitat type. The only exception was for streams, which were measured as the total length (m) of 

streams in the 37.8 ha circle, and then re-scaled from 0–1 by dividing these values by the maximum 

observed stream length (2463.7 m). We assessed these raw landscape variables for collinearity using 

Spearman’s ρ, and did not detect correlations that warranted further consideration or screening of 

variables (correlation coefficients were less than 0.45, which is below thresholds requiring additional 
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consideration [55]). We aggregated balsam fir and black spruce stands into conifer stands since we 

believed that they would function similarly as rusty blackbird habitat [4]. Additionally, we excluded 

habitat features that were present in the landscape but that (1) occurred at less than 10% of the total 

survey points, or (2) were presumed to be unimportant for rusty blackbirds based on current 

understanding of the species’ habitat needs. The latter habitat features included soil barrens, 

herbaceous soil barrens, rock barrens, sand, fens, residential land, rights-of-way, cleared land, and 

forests that were not dominated by either balsam fir or black spruce. Based on this approach our final 

analysis included seven landcover variables (Table 1). 

Table 1. Landcover variables used in modeling rusty blackbird occupancy in Newfoundland, Canada, 

2016 and 2017. Variables were measured as either the linear amount of the feature (streams [m]) or 

the proportion of landcover within a 347 m radius of each survey point (all other variables). 

Landcover Variable Description 

Lakes and Ponds Fresh water bodies >0.15 ha at high water mark 

Streams Combined length (m) of all streams <15 m wide 

Rivers Watercourses >15 m wide measured at the high water mark 

Bogs Wetlands where sphagnum moss is the dominant cover type 

Conifer 
Forest stands where Black Spruce or Balsam Fir makes up 75% or more 

of the basal area 

Coniferous Scrub Low productivity stands having <10% crown closure and >50% conifer. 

Cut90-04 Clearcuts harvested between 1990 and 2004. 

We used the package UNMARKED [56] in Program R version 3.5.1 [57], using the function 

“occu” to assess relationships between rusty blackbird occurrence and the seven landcover variables 

(Table 1) plus year, elevation, and red squirrel presence. This program allowed us to model rusty 

blackbird detectability prior to running occupancy models. We explored the potential influence of six 

variables (cloud cover, observer, precipitation type, wind strength, time of day, and day of the year) 

on likelihood of detection (Table 2) in order to predict occupancy more effectively [58]. Each of the 

five sub-periods of each point count was considered a site visit, for a total of 5 repeated visits (see 

[56]). Observer and precipitation type were fit as categorical variables. For both detectability and 

occupancy modeling (the latter described below), we considered the model having the lowest AICc 

as the best-fit model and based our conclusions primarily on this model. We then fit 31 a priori 

occupancy models including the null and global models. We used the best-fit detectability model as 

the base (i.e., null) model for all occupancy models. We formulated these models following the 

approach of Powell et al. [24] based on information presented in existing rusty blackbird habitat 

studies [4,24] along with anecdotal reports. Similar to Powell et al. [24], our models included habitats 

which reflect where one could reasonably expect to find rusty blackbirds. Candidate models included 

various combinations of landcover variables, including hypothesized interactions between some 

terms, and this resulted in models containing biologically relevant combinations of (1) nesting 

habitat, and (2) foraging habitat, and (3) models containing nesting and foraging habitat (Table 3). 

We also included elevation and red squirrel presence/absence in several of our candidate models. 

Rather than exploring the influence of geographic coordinates on rusty blackbird occupancy, we 

considered elevation to be a relevant substitute for assessing overall spatial variation in occupancy. 

We chose this approach because elevation increases with increased latitude, but east–west 

dimensions at the study site do not vary drastically. Models having a ΔAICc less than or equal to two 

were considered to be competing models (i.e., not measurably better than one-another), and the 

subset of top-ranked models having a cumulative weight of 95% were taken as the best model set 

[59]. 
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Table 2. Candidate models explaining detectability of rusty blackbirds in Newfoundland, Canada, in 

2016 and 2017 (n = 1960 survey points). 

Model ΔAICc LL wi K 

Observer 0 a −1352.11 0.67 9 

Cloud 3.11 −1359.71 0.14 3 

Precipitation 4.53 −1357.40 0.07 6 

Null 4.76 −1361.53 0.06 3 

Wind 6.76 −1361.53 0.02 3 

Date 6.83 −1361.56 0.02 3 

Time 9.10 −1362.70 0.01 3 

Date + Time 11.93 −1363.11 0.00 4 
a AICc of best model = 2722.31. 

3. Results 

Observers identified rusty blackbirds at 209 of the 1960 points visited over two years (105 points 

in 2016, 104 points in 2017), a naïve occupancy rate of 10.7%. At 174 sites we detected only one 

individual, whereas at 30 sites we observed 2 individuals, and at 5 sites we observed 3 individuals. 

The factor that most strongly affected detectability was observer (Table 2), whereas the model 

including cloud cover was marginally better than the null model but performed considerably worse 

than the model only including observer (ΔAICc = 3.11, wi = 0.14). The model including precipitation 

performed similarly to the null model (ΔAICc = 4.53, wi = 0.07; Table 2). A post-hoc check of an 

observer + cloud model revealed that adding cloud cover improved model fit only slightly (AICc = 

2721.15). Models including wind, time of day, and ordinal day were all worse than the null model, 

and a post-hoc assessment of the model containing time of day and observer did not prove to be 

important in detection probability. Based on these findings, we included observer in the base model 

for all subsequent occupancy models. 

Four models were included in our 95% confidence set of best occupancy models, and of these 

the model that best predicted rusty blackbird occupancy contained lakes and ponds (β = 7.21 ± 0.94), 

bogs (β = 3.53 ± 0.73), streams (β = 2.06 ± 0.41), and rivers (β = 6.94 ± 3.57) (Table 3). This model 

included strong positive relationships for lakes and ponds, bogs, and streams, and a weaker positive 

relationship for rivers (Figure 2a–d). Based on this model, the mean predicted occupancy of rusty 

blackbirds across our study area was 12.2% (95% confidence interval = 9.4–15.7%; Figure 3). The next 

two models in the best model set were similar to the best model, but with rivers being replaced by 

either conifer scrub (β = −0.38 ± 0.44), or conifer forest (β = 0.14 ± 0.36); no strong directional 

relationship was observed between the probability of rusty blackbird occurrence and conifer scrub 

cover or conifer forest (Table 3; Figure 2e–f). The final model in our best model set was the global 

model. Red squirrels were more abundant in the summer of 2016 compared with the summer of 2017 

(i.e., they were more abundant following a high cone production year), with 84% of squirrels detected 

in 2016 [37]. While red squirrel presence did not appear in our 95% confidence set of best occupancy 

models, adding red squirrel to the best-fit model improved it slightly (AICc = 2601.99; (β = −0.49 ± 

0.33). Additionally, a red squirrel by year interaction term was added to the best model post hoc; 

inclusion of this interaction term among the best models was not supported (AICc = 2605.17). We 

followed the same process with an interaction term that included red squirrel and elevation, and 

found that this interaction term also did not improve our best model (AICc = 2604.16). We found no 

evidence that squirrels meaningfully influenced rusty blackbird distribution or occupancy (Table 3; 

Figure 2 g).  
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Table 3. Candidate models describing occupancy (Ψ) of rusty blackbirds in Newfoundland, Canada, 

in 2016 and 2017 (n = 1960 survey points). Models in the 95% confidence set of best models are 

highlighted in bold. All models include a term for the effect of observer on detectability.  

Model ΔAICc LL wi K 

Ψ Observer ~ Lakes and Ponds + Bogs + Streams + Rivers 0 a −1288.20 0.60 13 

Ψ Observer ~ Lakes and Ponds + Bogs + Streams + Conifer 

Scrub 2.49 
−1289.44 

0.17 13 

Ψ Observer ~ Lakes and Ponds + Bogs + Streams + Conifer 3.09 −1289.74 0.13 13 

Ψ Observer ~ Global 3.74 −1284.98 0.09 18 

Ψ Observer ~ Lakes and Ponds + Bogs + Cut90-04 + Red Squirrel 20.33 −1298.36 0.00 13 

Ψ Observer ~ Lakes and Ponds + Bogs + Cut90-04  21.04 −1299.73 0.00 12 

Ψ Observer ~ Lakes and Ponds + Bogs 22.66 −1301.55 0.00 11 

Ψ Observer ~ Lakes and Ponds + Bogs + Red Squirrel x Elevation 23.02 −1298.70 0.00 14 

Ψ Observer ~ Lakes and Ponds x Bogs 23.69 −1301.05 0.00 12 

Ψ Observer ~ Lakes and Ponds + Bogs + Conifer + Red Squirrel 23.95 −1300.18 0.00 13 

Ψ Observer ~ Lakes and Ponds + Bogs + Conifer 24.62 −1301.52 0.00 12 

Ψ Observer ~ Lakes and Ponds + Bogs + Rivers + Conifer 24.63 −1300.51 0.00 13 

Ψ Observer ~ Lakes and Ponds + Bogs + Red Squirrel + Elevation 24.63 −1300.51 0.00 13 

Ψ Observer ~ Lakes and Ponds + Bogs + Conifer Scrub + Rivers 24.68 −1300.54 0.00 13 

Ψ Observer ~ Lakes and Ponds + Bogs + Conifer Scrub 24.68 −1301.55 0.00 12 

Ψ Observer ~ Lakes and Ponds + Bogs + Conifer + Conifer Scrub 26.63 −1301.51 0.00 13 

Ψ Observer ~ Lakes and Ponds + Conifer 59.06 −1319.75 0.00 11 

Ψ Observer ~ Bogs + Streams + Conifer + Red Squirrel 64.39 −1320.39 0.00 13 

Ψ Observer ~ Bogs + Streams + Conifer Scrub 65.25 −1321.84 0.00 12 

Ψ Observer ~ Bogs + Streams + Conifer 65.72 −1322.07 0.00 12 

Ψ Observer ~ Lakes and Ponds + Conifer Scrub 68.91 −1324.68 0.00 11 

Ψ Observer ~ Streams + Conifer 76.38 −1328.41 0.00 11 

Ψ Observer ~ Bogs + Conifer + Red Squirrel 77.57 −1328 0.00 12 

Ψ Observer ~ Bogs + Rivers + Conifer + Red Squirrel 78.76 −1327.58 0.00 13 

Ψ Observer ~ Bogs + Conifer 79.37 −1329.91 0.00 11 

Ψ Observer ~ Bogs + Rivers + Conifer 80.79 −1329.61 0.00 12 

Ψ Observer ~ Bogs + Conifer Scrub 81.58 −1331.01 0.00 11 

Ψ Observer ~ Bogs + Rivers + Conifer Scrub 83.27 −1330.85 0.00 12 

Ψ Observer ~ Streams + Conifer Scrub 84.00 −1332.23 0.00 11 

Ψ Observer ~ NULL  119.73 −1352.11 0.00 9 

Ψ Observer ~ Year 121.46 −1351.96 0.00 10 
a AICc of best model = 2602.58. 
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Figure 2. Relationship between rusty blackbird probability of occurrence and landcover variables 

found in our highest-ranked occupancy models (A–F), as well as with red squirrel occurrence (G), in 

Newfoundland, Canada, in 2016 and 2017 (n = 1960). Landcover variables were (A) proportion of 

lakes and ponds (B) proportion of bogs (C) length of stream (D) proportion of rivers, (E) proportion 

of conifer scrub, (F) proportion of conifer forest, and (G) red squirrel probability of occurrence. Each 

variable was plotted using the best model that included that factor (Table 3). Error bars show one 

standard error. Note that while the vertical axis is the same for all plots, the scale and units of the 

horizontal axis varies.  

4. Discussion 

Of our 31 a priori models, we found that the amount of lakes and ponds, streams, bogs, and rivers 

best predicted rusty blackbird occurrence. Aquatic invertebrates are an important food source for 

rusty blackbirds [22,23], and blackbird foraging activities often focus on the edges of waterbodies 

with abundant shallow water [2]. Thus, the importance of these aquatic habitats in our model is not 

surprising and is consistent with findings from previous studies of rusty blackbird habitat occupancy 

[22–24]. However, the absence of conifer forest from our best model and the apparent overall weak 

influence of either conifer forest or conifer scrub cover on rusty blackbird occupancy initially appears 

counterintuitive. Powell et al. [24] suggested that blackbird habitat occupancy in Maine, where the 

forest has a greater component of deciduous cover, is heavily influenced by the presence of patches 
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of suitable conifer habitat in which to nest. In contrast, our study area on Newfoundland is dominated 

by dense, often single species, conifer stands and consequently rusty blackbirds may not need to 

actively select for such a ubiquitous feature on the landscape. In particular, wet soils in riparian zones 

and wetlands on Newfoundland often support dense stands of conifer scrub. To retain landcover 

features where rusty blackbirds were most likely to occur, we only included forest types that were 

dominated by either black spruce or balsam fir. Since primarily deciduous stands dominated less 

than 5% of points, most forested points included conifer cover. Thus, within the spatial scale at which 

we examined occupancy, rusty blackbirds in Newfoundland appear to select sites primarily based 

on the availability of appropriate foraging habitat. Additional research such as radio-telemetry 

studies or nest searching may allow us to better describe the nesting habitat needs of rusty blackbirds 

in Newfoundland, as well as their space use and breeding ecology. We did not find a strong influence 

of red squirrel occurrence or year on rusty blackbird occupancy. This is unexpected, given the notable 

difference in red squirrel detections between years [37]. Red squirrels are known to reproduce later 

in the season following low cone crop years so that they can take better advantage of seasonal food 

resources [60], and this influences juvenile survivorship when compared with individuals born 

earlier in the year [61]. Luepold et al. [22] found that during a year when red squirrel occurrence was 

higher following a large mast crop, red squirrels were more frequently observed to prey on rusty 

blackbird nests. It is possible that red squirrels are preying upon rusty blackbird nests, but that 

despite this, the blackbirds continue to return to habitat where red squirrels are present due to other 

attractive factors. Red squirrels are prominent members of most boreal forest ecosystems and can 

directly affect other species through an omnivorous diet and generalist predatory behavior [62,63]. 

De Santo and Willson [64] found that nest predation was lowest in open wetlands and within forests, 

compared with both forest and wetland edges and clearcuts. Our observation that red squirrel 

presence was not strongly related to rusty blackbird occupancy—despite marginally improving our 

best model in a post-hoc test—may suggest a deviation from the typical vulnerability to nest 

predation commonly experienced by forest songbirds [63,65,66]. Related research at our study site 

indicates that squirrels are much more abundant at lower elevations [37] and in these areas they may 

have caused the local extirpation of breeding populations of another species, the gray-cheeked thrush 

(McDermott, unpublished data; see also [36,44]). Unlike gray-cheeked thrushes, we found that 

elevation appeared to have little or no effect on rusty blackbird occupancy. It may be that the impact 

of squirrels is not as strong for rusty blackbirds as for gray-cheeked thrushes because of a greater 

capacity to deter predators; for example, rusty blackbirds have been observed mobbing presumed 

threats (e.g., field crews) near nest sites [53], a trait which is known to drive nest predators away [67]. 

Alternatively, there may be aspects of their nest site selection that enable them to avoid strong 

impacts of squirrel predation. Aquatic habitat may also impede squirrel movements during summer 

and consequently compel squirrels and blackbirds to select different habitats. 

McDermott et al. [37] found that squirrel occurrence was inversely related to surface water and 

ambiguously related to “open” habitats (an amalgamation of bogs, barrens, and other natural 

openings), which could offer some protection to rusty blackbird nests near those habitat types. 

Specifically, these open, wet habitats could act as barriers to red squirrel movement. However, the 

weak relationship between rusty blackbirds and red squirrels could also have resulted from an 

ecological trap (see Powell et al. [21]), as Luepold et al. [22] found red squirrels to be the most 

important predator of rusty blackbird nests in New England. More research into rusty blackbird nest 

success and predator dynamics on Newfoundland may help to clarify the impact of the introduction 

of red squirrels on this and other boreal bird species. 

Consistent with the findings of Powell et al. [24], clearcuts did not appear in our best model set, 

indicating that this habitat type had little influence on blackbird occupancy. Provincial forestry 

regulations require that an unharvested buffer strip at least 20-m wide be left along the shorelines of 

water bodies, and Whitaker and Montevecchi [68] found that, in western Newfoundland, abundance 

of rusty blackbirds did not differ between these buffer strips and unharvested shorelines. Thus, it 

may be that current forestry regulations are sufficient to safeguard blackbird habitat needs on 

Newfoundland. However, because it has been suggested that harvested forests can act as ecological 
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traps for Rusty Blackbirds [21], more research into nesting success of blackbirds at this site could 

provide a more nuanced perspective into effects of forest management. In addition, the influence of 

forest management history and temporal patterns at this site is as yet unexplored. This study area 

provides a unique opportunity to study rusty blackbirds with an abundance of old growth forest. 

Given that Newfoundland remains a stronghold for rusty blackbirds, it may be worth investigating 

in more detail the relationship between forest characteristics (i.e., age, structure, diversity) and rusty 

blackbird abundance. 

Our best detectability model included observer as an explanatory variable. Contrary to Powell 

et al. [24], wind, precipitation, cloud cover, time of day, and ordinal day did not strongly affect 

detectability, which may reflect differences in the sampling protocol. Variability in detection 

probability by the observer may reflect false negatives (species was present but was not detected) or 

false positives (an observer incorrectly identified a species as present; [69–71]). However, false 

positives are unlikely because similar-looking species (e.g., other blackbirds) are not present on 

Newfoundland. Intuitively, the frequency of these errors is lower if observers have higher skill levels 

[70]; all of our observers were skilled in the identification of local species prior to data collection. 

Given the naïve and predicted blackbird occupancy rates of only 10.7% and 12.2%, respectively, 

across the study area, differences in detectability between observers may at least in part reflect the 

potential for some observers to have been assigned survey areas where they were less likely to 

encounter rusty blackbirds (e.g., due to physical ability or back-country navigation skills). 

Broadcasting rusty blackbird calls would likely increase detections among all observers because of 

behavioural responses to conspecific bird calls [24]. In addition, ensuring that all surveyors are of a 

similar skill level in fitness and backcountry orienteering would improve the consistency of detection 

rates between observers, since it would ensure that observers cover a similar number of points across 

a challenging landscape.  

The spatial scale at which habitat use is assessed inevitably affects the apparent habitat 

requirements of a given species [72]; thus, more research on the spatial ecology of rusty blackbirds 

may lead to improved inferences. Our habitat analysis buffer size reflected the best available home 

range estimate for rusty blackbirds, although values ranged from 3.8 ha to 172.8 ha [20]. Powell et al. 

[20] noted that the home range size of colonial rusty blackbirds was significantly larger than that of 

non-colonial pairs. This likely reflects the potential for birds nesting in loose colonies to share 

information on the location of short-lived sources of emergent insects, whereas pairs on their own 

may have more limited sources of food [20]. Therefore, home range size, and a bird’s ability to take 

advantage of available resources may vary drastically based on behavioral factors between 

individuals. Because we only detected more than two individuals at five out of 209 occupied sites 

(2.4%) over the two years, it is likely that, as is typical for much of their breeding range, solitary 

nesting is prevalent at our study area. Concrete evidence of pair versus colonial status is another area 

where radio-telemetry studies may improve our understanding of rusty blackbird breeding ecology.  

Our study is among the first of its kind to model rusty blackbird occupancy using information 

on habitat from a typical Forest Resource Inventory database that was developed based on high 

resolution aerial photography, as well as from other publicly available landcover data (e.g., our 

stream data; but, see Wohner et al. [27]). The fact that we did not undertake field habitat surveys 

allowed us to efficiently complete a systematic survey of over 1900 point counts across a large area 

having limited road access. Remote sensing resources such as aerial imagery are considered valuable 

tools in predicting species distributions and developing population estimates [73,74]. Further, this is 

the same spatial database that the province uses to plan and monitor industrial forestry and other 

forms of natural resource management. Consequently, it would be straightforward to use the 

findings of studies such as this, which are based on information contained in those spatial databases, 

to predict and map the distribution of rusty blackbirds across the landscape (e.g., Figure 3). This offers 

the opportunity to easily incorporate consideration of blackbird habitat into conservation, 

management, and research planning. For example, while the mean predicted occupancy across our 

study area was 12.2%, the 5% of points having the highest estimates had a mean predicted occupancy 

of 46.8% (range 32.9%–86.9%); this type of information could be of value in planning research or 
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rapidly identifying high-value habitat during land use planning. Similar forest resource databases 

are available for many jurisdictions across the North American boreal forest, especially those subject 

to large scale extractive resource use, so this approach may be applied across much of the species’ 

breeding range to map and protect potential blackbird habitat. Based on our findings, and the 

findings from other studies on Rusty Blackbird occupancy and habitat use (e.g., [21,22,24,26,27]), key 

Rusty Blackbird habitat with a high probability of occupancy—such as concentrations of wetlands, 

waterbodies and watercourses, with nearby dense conifer forest—may be identified from remotely 

sensed data. Once these areas are identified, prioritization of survey areas and conservation planning 

may proceed. 

 

Figure 3. Probability of rusty blackbird occupancy mapped across our study area in Newfoundland, 

Canada, in 2016 and 2017. Probability of occupancy was estimated from our best model (Table 3) 

based on landcover data available in the provincial forest resource inventory and publicly available 

national CanVec stream data. 
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5. Conclusions 

This is the first quantitative study of rusty blackbirds on the island of Newfoundland, and 

among the first published studies to use remotely-sensed data to predict their breeding habitat. Given 

that they may be genetically distinct, this population is important to the overall conservation and 

recovery of the species. Further, the decline of rusty blackbirds on Newfoundland has been more 

gradual than in most other areas of the species’ breeding range, and they continue to be detected in 

higher numbers on Newfoundland than elsewhere in their breeding range [7]. Indeed, our naïve 

occupancy rate was 41.7% higher than that of Powell et al. [24] for a population in northern New 

England, while our predicted occupancy in the upper 5% of most preferred sites averaged more than 

four times the overall naïve occupancy rate.  

Consistent with past research, our study indicates a strong association for breeding rusty 

blackbirds with aquatic habitats in the boreal forest, including lakes, ponds, streams, rivers, and bogs; 

these findings echo the results of Bale et al. [46], and the conservation value of these wetland 

environments, particularly in the face of climate change. Due to the island’s cool, wet maritime 

climate, boreal landscapes across much of Newfoundland consist of a complex mosaic of bogs and 

surface water intertwined with coniferous scrub and forests. This appears to offer relatively plentiful 

habitat for rusty blackbirds, and presents an opportunity to study this declining species in a region 

where relatively high numbers persist. 
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