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Abstract: Background: The spread of herbicide-resistance Ambrosia artemisiifolia threatens not only
the production of agricultural crops, but also the composition of weed communities. The reduction of
their spread would positively affect the biodiversity and beneficial weed communities in the arable
habitats. Detection of resistant populations would help to reduce herbicide exposure which may
contribute to the development of sustainable agroecosystems. Methods: This study focuses on the
application of target-site resistance (TSR) diagnostic of A. artemisiifolia caused by different herbicides.
We used targeted amplicon sequencing (TAS) on Illumina Miseq platform to detect amino acid
changes in herbicide target enzymes of resistant and wild-type plants. Results: 16 mutation points of
four enzymes targeted by four herbicide groups, such as Photosystem II (PSII), Acetohydroxyacid
synthase (AHAS), 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) and protoporphyrinogen
IX oxidase (PPO) inhibitors have been identified in common ragweed populations, so far. All
the 16 mutation points were analyzed and identified. Out of these, two mutations were detected
in resistant biotypes. Conclusions: The applied next-generation sequencing-targeted amplicon
sequencing (NGS-TAS) method on A. artemisiifolia resistant and wild-type populations enable TSR
detection of large sample numbers in a single reaction. The NGS-TAS provides information about
the evolved herbicide resistance that supports the integrated weed control through the reduction of
herbicide exposure which may preserve ecological properties in agroecosystems.

Keywords: target-site herbicide resistance; ahas; als; psbA; epsps; targeted amplicon sequencing;
Ambrosia artemisiifolia

1. Introduction

Extensive weed management in agricultural fields is a major threat to agroecosystem
biodiversity as weed communities play a key role in maintaining heterogeneity. The total
number of weed species in agricultural fields has increased since the 1950s. Although this
has resulted in a more diverse composition of agricultural weeds, it has negatively affected
landscape structure and land-use intensity. As a result, crop intensification methods, such
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as herbicide treatment, have become critical to control weed communities to improve
agricultural crop production [1]. It is important not to endanger beneficial weed species
while using weed control. To define the correct management of invasive species, local
environmental drivers have to be identified due to their severe effects on individual
performance [2].

Common ragweed (Ambrosia artemisiifolia L.: Asteraceae, A. artemisiifolia) is a highly
adaptive, invasive weed and has a negative impact on biodiversity [3,4]. Its population
can be found not only in agricultural habitats where herbicides are normally used but also
in field margins and paths, abandoned fields, and forest edges that could be affected by
herbicide or intensified mowing [5,6]. Common ragweed has spread from North America
to habitats in temperate climates such as Eurasia, Asia and Australia [7,8], and has become
distributed in all countries of Southern and Eastern Europe [9–12]. In North America large
common ragweed populations have extensively arisen along roadsides and arable fields as
well, which was recently observed mainly in Eastern Canada [13].

Many weed scientists deliberate on the knowledge and practice gap of the perspectives
and approaches in weed ecology and management [14–16]. Due to the complexity of the
problem, it requires transdisciplinary. Transdisciplinary approaches contribute to the
most promising technological improvements managing weed control and agroecosystem
diversity and reduce the potential unwanted environmental impacts of weed management.
The negative correlation between weed diversity and crop yield loss has been reported [17].
As a consequence of the diverse weed management and crop production systems, the
more adaptable weedy plants may replace the invasive species and the given ecosystems
benefit [15]. Therefore, a well-thought herbicide use strategy should be effective and
reasonable. The weed thresholds are required to promote the usage of optimal herbicides
to protect crop yields and arable habitats [18].

To improve weed management and avoid ecological damages, monitoring the different
herbicide-resistance in a population seems to be a great solution to find the optimal chemical
crop protection. In this study, we focus on the subject of the common ragweed chemical
control. Our primary goal is to achieve the controlled eradication of ragweed or at least to
maintain its low moderate level while minimizing the ecological damage caused by the
applied herbicide.

Common ragweed has evolved different herbicide resistance modes, making it par-
ticularly problematic to control [19]. Herbicide resistance can be categorized into two
categories based on mode of action: target-site resistance (TSR) and non-target-site resis-
tance (NTSR) [20–22]. Here, we focus on TSR resistance, which can be caused by mutation
or polymorphism that results in either increased abundance of the target protein or a struc-
tural change in the target protein that reduces affinity to the herbicide [23,24]. Structural
changes are generally due one or several amino acid substitutions [25–29]. The accumula-
tion of multiple amino acid substitutions in a target protein has been known as multiple
target-site resistance (MTSR) which triggers an increased resistance level of individual
plants [22,30,31]. MTSR has been detected in different weeds conferring resistance to
Photosystem II (PSII) and Acetohydroxyacid synthase (AHAS) inhibitors [32–34]. Resistant
genotypes proliferate in areas where herbicides are used for weed control. In order to
effectively combat herbicide-resistant common ragweed, effective methods to measure the
prevalence of TSR and MTSR within target populations are needed.

Four herbicide mode-of-action groups are commonly used to control A. artemisiifolia.
These are: (i) triazines and ureas (Photosystem II (PSII) inhibitors), (ii) sulfonylureas,
imidazolinones, sulfonylaminocarbonyl-triazolinones, pyrimidinylthiobenzoates and tria-
zolopyrimidines (AHAS inhibitors), (iii) glyphosate (5-enolpyruvylshikimate 3-phosphate
synthase (EPSPS) inhibitors) and (iv) diphenylethers, N-phenylphthalimides, aryl triazoli-
nones, phenylpyrazoles, pyrimidinediones (protoporphyrinogen IX oxidase (PPO) inhibitors).

PS II inhibitors bind to the D1 protein of the photosystem II (EC: 1.10.3.9) complex,
blocking electron transport and stopping CO2 fixation. The D1 protein is encoded by the
chloroplast psbA gene. The first documented herbicide resistant population of A. artemisiifolia
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was discovered in 1976 and was resistant to the PSII-inhibitor atrazine (a triazines) [35].
Resistance was conferred by a point mutation in the psbA gene resulting in a serine-to-
glycine substitution, which alters D1 protein conformation, causing reduced herbicide
target interaction [36,37]. To detect the causal mutation (Ser264Gly) in common ragweed, a
bidirectional allele-specific PCR (Bi-PASA) method was developed [38]. Resistant biotypes
and populations have also been reported against linuron (belonging to ureas) in eastern
Canada [39,40]. TSR, conferred by the psbA mutation Val219Ile, was detected after linuron
treatment using TaqMan single nucleotide polymorphism (SNP) genotyping and Sanger
sequencing [41]. Moreover, three additional mutations at the site of action (Ala251Val,
Phe255Ile, and Asn266Thr) have been confirmed in populations of other species, each with
a unique cross resistance pattern [42].

AHAS inhibitors are among the most used common ragweed inhibitors worldwide.
AHAS (EC 4.1.3.18 also known as acetolactate synthase, ALS) catalyses the first common
step in the pathway for synthesis of the branched-chain amino acids leucine, isoleucine,
and valine in plants [43]. AHAS inhibitors have low mammalian toxicity, are broad
spectrum and highly effective in low doses. However, resistance to AHAS inhibitors
tends to arise rapidly in weed populations. Multiple studies have reported that AHAS
inhibitor-resistant weed species are more numerous than weed species resistant to other
herbicide groups [44,45]. Many AHAS inhibitor-resistant common ragweed populations
have been reported. Cross resistance in these populations is common, with resistant in-
dividuals displaying resistance to additional herbicides, including cloransulam-methyl
(triazolopyrimidines), chlorimuron (sulfonylureas), and imazaquin (imidazolinones) [46].
Resistance in common ragweed against AHAS inhibitors is conferred by the substitution
Trp574Leu [47]. Although eight different AHAS amino acid substitutions confer resis-
tance to AHAS inhibitors in other species, only Trp574Leu has been reported in common
ragweed [20,48].

Several polymorphisms in the epsps gene of many plant species confer resistance to
glyphosate. Resistance is conferred by mutations at Pro106 and Thr102, and recently an
example of MTSR was reported in Amaranthus hybridus that contained the triple-substitution
Thr102Ile, Ala103Val and Pro106Ser [49–52]. Glyphosate resistance in A. artemisiifolia was
first reported in Missouri and Arkansas in 2004 but the mechanism of the resistance has
not yet been determined [53].

PPO inhibitors have been used widely to control weeds in different crop cultures
since the 1960s. PPO (EC 1.3.3.4) is a key enzyme in the tetrapyrrole biosynthetic pathway
that produces heme and chlorophyll in plastids and mitochondria [54]. Two different
nuclear-encoded PPO isozymes are in plants: plastidal PPO1 encoded by the gene ppx1 and
mitochondrial PPO2 encoded by the ppx2 gene [55]. The weed reported to evolve resistance
to PPO inhibitors was Amaranthus tuberculatus, which contained a glycine deletion at
position 210 (∆G210) in PPX2 (GenBank accession: DQ386114) [56]. In A. artemisiifolia, an
Arg98Leu substitution in the ppx2 gene contributes to PPO resistance [57].

Multi-resistant A. artemisiifolia populations can be found worldwide, containing multi-
ple resistance-conferring mutations in genes encoding PSII, AHAS, EPSPS, and PPO [46].
The investigation of specific mutations conferring herbicide resistance in populations is
essential for the selection of effective herbicides for weed control. Targeted amplicon
sequencing (TAS) is an effective approach that takes advantage of NGS (next generation se-
quencing) to detect specific mutations. To sequence large numbers of targeted gene regions,
NGS is using indexed primers to label samples that are expansively used for population
genetics and for genome-wide genotyping in plants with ultralow SNP densities [58].

This study presents an NGS-TAS method for TSR identification in A. artemisiifolia.
In order to discover multiple polymorphisms in psbA, ahas, epsps, and ppx2 that confer
resistance, we analysed sensitive biotypes, as well as imazethapyr-resistant (imidazoli-
nones, AHAS inhibitor) and linuron-resistant (ureas, PSII inhibitor) biotypes. This method
may contribute to the sustainable maintenance of biological integrity in agroecosystems by
screening herbicide resistant common ragweed populations.
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2. Materials and Methods
2.1. Plant Materials and DNA Extraction

Leaves of 20 susceptible A. artemisiifolia plants were collected from an agricultural
field in West-Transdanubian region of Hungary (46◦44′54.7′′ N 17◦14′07.7′′ E). Seeds of
linuron resistant biotypes were collected in a field border of Ste-Clotilde Legault Quebec,
Canada (45◦07′14′′ N 73◦38′19′′ W) and seeds of imazethapyr resistant biotypes were
collected in a soybean field of Mirabel Quebec, Canada (45◦39′16.94′′ N 74◦05′45.31′′ W).
Seedlots were sampled from sites where ragweed was tested and identified as imazethapyr
and linuron resistant. Resistance seeds were germinated in petri dishes at 30 ◦C/20 ◦C
16 h photoperiod and were planted in pots and were growing in greenhouse. Leaves of
20-20 planted individuals were further collected. Samples were frozen in liquid nitrogen
immediately after collection and stored at −80 ◦C until DNA and RNA analysis.

Total DNA from leaf tissues was isolated according to the protocol Doyle, J. J. and
Doyle, J. L. [59]. The DNA quantity and purity were assessed on NanoDrop2000 (Thermo
Scientific, Waltham, MA, USA). For the experiments, DNA of resistant and sensitive bio-
types were used according to the following classification: (i) bulked sample of 20 sensitive
genotypes deriving from Hungarian sampling site; (ii) bulked sample of 20 imazethapyr
(imidazolinones) resistant genotypes collected from Mirabel sampling site (AMI) and (iii)
bulked sample of 20 linuron (ureas) resistant genotypes collected from Ste-Clotilde Legault
sampling site (AMU). All individuals, both susceptible and resistant genotypes, were
analyzed by Sanger method.

2.2. Identification of A. artemisiifolia Herbicide Target Enzyme mRNAs

In order to identify in silico coding sequences (cds) of herbicide target enzymes of
each herbicide group, we used the transcript dataset of A. artemisiifolia, deposited in the
National Centre for Biotechnology Information’s (NCBI) Transcriptome Shotgun Assembly
(TSA) dataset under the accession GEZL01000001 [60]. Reference genes were selected based
on taxonomic relationship from closely related species and were downloaded from the
UniProt database: A. artemisiifolia, psbA (B5MF75); Xanthium sp., ahas (Q41716); Cichorium
intybus, ppx1 (Q9SPL6); Amaranthus palmeri, ppx2 (A0A291B3V5); Erigeron canadensis, epsps
(G4U4J5) [61]. The identity of reference genes and identified genes was 96–99% [62]. The
investigated sequences were deposited in the NCBI GenBank database (Accession numbers
see below).

2.3. Intron Analysis, Amplification and Cloning of A. artemisiifolia Herbicide Target
Enzyme Genes

Multiple primer pairs were designed in order to cover all possible mutation points
along the whole psbA and ahas gene sequences by using Primer3Plus [63] (Figures S1 and S2).

In the case of intron containing epsps gene, the exon-intron bounds were predicted
based on complete gene sequences of closely related species by using ClustalW aligning
the sequences of Conyza canadensis (AY545667.1) and Amaranthus palmeri (FJ861242.1 and
FJ861243.1) [64] (Figure S3).

In order to validate polymorphisms that characterize herbicide resistance, the imazethapyr,
linuron resistant, and sensitive bulked samples were amplified. The PCR amplifications
was performed by using Dream Taq DNA polymerase (Thermo Fisher Scientific, Waltham,
MA, USA) The PCR products were separated on 1.5% agarose gel (Promega, Madison, WI,
USA) and were purified using NucleoSpin Gel and PCR Clean-up system (Macharey-Nagel
GmbH & Co, Düren, Germany). The pGEM-T Easy Vector System kit (A1360 Promega,
Madison, WI, USA) and JM109 Competent Cells were used to clone PCR products [65].
Sanger sequencing of the cloned fragments was performed with ABI 3130xl Genetic Ana-
lyzer (Applied Biosystems, Carlsbad, CA, USA). Sequenced fragments of herbicide target
genes were aligned to predicted gene sequences certifying amino acid substitutions in the
mutation points.
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2.4. PCR Amplification for NGS-TAS Experiments

The KAPA HiFi HotStart PCR Kit (Kapa Biosystems, Wilmington, NC, USA) was used
for amplification of target fragments. In NGS-TAS experiments of investigated regions of
psbA, ahas, epsps, and ppx2 genes, primers were designed by using Primer3Plus (Figure S7).

The PCR amplifications were performed and the PCR products were separated on
1.5% agarose gel (Promega, Madison, USA). PCR products were controlled with Agilent
2100 Bioanalyzer (Agilent Technologies, Waldbronn, Germany) using Agilent DNA 1000 Kit
and were purified using NucleoSpin Gel and PCR Clean-up system (Macharey-Nagel
GmbH &Co, Düren, Germany).

2.5. NGS-TAS Experiments

For NGS-TAS experiments, resistant samples were used and grouped with the follow-
ing nomenclature.

Sample AMI was named based on the imidazolinone (imazethapyr) resistant bulked
DNA of A. artemisiifolia and sample AMU was named based on the urea (linuron) resistant
bulked DNA of A. artemisiifolia. Numbers 1–3 were three biological repeats of the same
bulked DNA (AMI1-3, AMU1-3). The concentrations of PCR products were measured
by NanoDrop2000 (Thermo Scientific, Waltham, USA) and fragments for each sample
were diluted relative to the PCR product with the lowest concentration. AMI1control and
AMU1control contained the not diluted samples of the first biological repeats. In the AMI
and AMU groups bulked DNA of 20 individuals were used.

In order to obtain long fragments that cover all the mutation points in each gene,
fragments were sequenced on MiSeq 550 platform obtaining 300 bp paired-end reads
detailed as follows: locus-specific PCR products were purified using 1.0 volume KAPA
PureBeads (F. Hoffmann-La Roche, Basel, Switzerland) according to the manufacturer’s
protocol. The concentration of eluted DNA was measured using a Qubit 3.0 Fluorometer
with Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific, Waltham, USA). Index PCR
reactions (20 µL each) were set up by using 20 ng of purified template in 6 µL, 2 µL Nextera
XT Index kit v2 Primers (N7xx & S5xx) (Illumina, Inc. San Diego, CA, USA), and 10 µL of
2xKAPA Hifi Hot Start Ready Mix (F. Hoffmann-La Roche, Switzerland). The used primer
and IlluminaNextera adapter sequences are detailed in Figure S7. PCR cycling parameters
for index PCRs were as follows: initial denaturation at 95 ◦C for 3 min; 8 cycles at 95 ◦C
for 30 s, 55 ◦C for 30 s, 72 ◦C for 30 s; final extension at 72 ◦C for 5 min. PCR products
were purified using 1.0 volume KAPA PureBeads and eluted in 20 µL of 10 mM Tris-
HCl pH 8. The product libraries were quantified and qualified by using High Sensitivity
D1000 ScreenTape on TapeStation 2200 instrument (Agilent Technologies, Santa Clara, CA,
USA) (Figure S11). Equimolar concentrations of libraries were pooled, diluted to 4 nM,
and combined with other sample pools to gain the desired sequencing depth. Sequencing
was carried out using Illumina MiSeq platform and 600-cycle Reagent Kit v3 (Illumina, Inc.
San Diego, CA, USA). Samples were demultiplexed and adapter-trimmed by using MiSeq
Control Software.

2.6. Bioinformatics Analysis

Pear software [66] was used to merge paired-end reads with minimum overlap size
10 bp, without discard uncalled bases, and with 30 parallel threads in processing (argu-
ments –v 10 –u 1 –j 30). All the samples contained the reads amplified by the 7 primer pairs
covering all the mutation points. Accordingly, the reads belonging to each fragment were
counted in each sample (Figure S12). Usearch software [67] was applied to collect identical
sequences for resistance polymorphism. Usearch was used in three steps: (i) Quality filter
with fastq_filter command with fastq_maxee 1.0 and fastq_minlen 160 parameters; (ii) Sin-
gleton filter with fastq_uniques command; (iii) Grouping with cluster_otus parameter with
minsize 10. Groups were shown the similarity threshold 99% representing the different
amplicon products with nucleotide polymorphism for the investigated gene.
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3. Results

In order to perform NGS-TAS analysis, it would be necessary to know cds and gene
sequences of herbicide target enzymes. However, no whole genome sequence data of
A. artemisiifolia yet exists. To design correct NGS-TAS primer pairs, it is essential to know at
least the sequences at the intron-exon boundaries close to the mutation points. Accordingly,
gene sequences and point mutations of the herbicide target enzymes were determined in
sensitive genotypes by using in silico NGS transcriptome analysis (NGS-TA), SS Sanger
sequencing, and NGS-TAS (Figure 1).
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Figure 1. Flow chart of target-site resistance (TSR) diagnostic method using the following steps:
(i) Next generation sequencing (NGS) Transcriptome analysis (NGS-TA). Open reading frames of
target enzymes were identified based on transcriptome database; (ii) Sanger sequencing method
(SS). Specific primers were designed covering the mutation points, fragments were amplified by
PCR, PCR products were cloned and sequenced; (iii) Next-generation sequencing-Targeted amplicon
sequencing (NGS-TAS) method. PCR products were sequenced on Illumina MiSeq550 platform
resulting 300 bp paired-end reads that were sorted based on primer motifs, assembled, and grouped.
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3.1. Identification of A. artemisiifolia Herbicide Target Enzyme cds and Genes

In silico analysis of investigated herbicide target enzyme cds was performed with
BLAST+. The accession numbers of predicted GOIs are MT425203 (psbA), MK096760 (ahas),
MK096765 (epsps), and MK096762 (ppx2). Open reading frame (ORF) sequences were
predicted using NCBI ORF finder [68]. The predicted sequence of the psbA gene consisted
of one exon with a total length of 1062bp, as previously described (Table 1) [37]. The
psbA gene was amplified with 2 primer pairs covering the resistance mutation points as
described before (Figure S1, GenBank accession MT879746).

The structure of the ahas gene contained one exon with a total length of 1965bp. The
whole ahas gene was amplified with five primer pairs covering the resistance mutation
points as described before (Figures S2 and S4, GenBank accession MT415954) [20,47].

The structure of the epsps gene contained 8 exons and 7 introns with a total length of
3539bp. A similar structure was described in Amaranthus palmeri (JX564536.1) [64]. The
epsps gene was amplified with eight primer pairs covering the resistance mutation points
as described before (Figures S3 and S4, GenBank accessions MT415955 (exon1-intron1),
MT409110 (intron1-exon8)) [32].

The first published weed species to evolve resistance to PPO-inhibiting herbicides
was Amaranthus tuberculatus [56]. The ppx2 gene (GenBank accession DQ386118) from the
resistant biotype of A. tuberculatus contained a glycine deletion at position 210 (∆G210) that
was shown to confer resistance. This deletion in A. artemisiifolia has not been published,
yet, although the substitution Arg98Leu was discovered to contribute to PPO-inhibitor
resistance A. artemisiifolia [57]. So far, no complete gene sequence exists of the whole ppx2
gene in plants covering all of the introns and exons. Therefore, identifying the complete
sequence of ppx2 gene is not possible only using Sanger sequencing. By using the NGS-TAS,
a 324 bp fragment of ppx2 gene was amplified with one primer pair covering the resistance
mutation point Arg98 [55]. Electropherogram of Sanger sequenced PCR product revealed
two product lengths. The differences between the two fragments were 13 bp localised in
one intron (Figures S4 and S5, GenBank accession MT879747, MT879748).

In order to obtain accurate information about the investigated enzymes, in silico
predicted cds of Illumina data and the Sanger sequenced data of the appropriate PCR
products were compared. The two technologies showed slight variability (1–2% differences)
in amino acid sequences across ahas and epsps, however these discrepancies were not at
mutation points. There was no difference in sequencing results of the psbA gene between
the two methods (Figure S6).

3.2. NGS-TAS Experiments of AMI and AMU Biological Repeats

In NGS-TAS experiments specific regions of psbA, ahas, epsps, and ppx2 genes were am-
plified by different primers (Figure 2, Figures S9 and S10). Sample AMI was named based
on the imidazolinone (imazethapyr) resistant bulked DNA of A. artemisiifolia and sample
AMU was named based on the urea (linuron) resistant bulked DNA of A. artemisiifolia.
Both AMI and AMU contained three replicates.



Diversity 2021, 13, 118 8 of 16

Table 1. Detailed information of gene structures and coding sequences (cds) of psbA, ahas, epsps, and ppx2 genes.

Gene Name

cds Complete Gene

Length (bp) Lenght (aa) Similarity
(%)

Reference ID
NCBI GeneBank

Contig ID
NCBI GeneBank
GEZL01000001

NCBI
Accession

GC Content
(%)

Length
(bp)

Intron
Number

Intron Position
from . . . to

NCBI
Accession

GC Content
(%)

psbA 1062 353 99% A. artemisiifolia
AB427162.1 TR92155|c0_g1_i1 MT425203 41.7 1062 - - MT879746 41

ahas 1965 654 95% Xanthium sp.
AAA74913.1

TR49503|c0_g3_i1
TR49503|c0_g8_i1 MK096760 48.1 1965 - - MT415954 48.3

epsps 1539 512 96% Helianthus annuus
XP_022017499.1 TR44247|c0_g1_i1 MK096765 45 3539 7

316 . . . 1311
1557 . . . 1832
1987 . . . 2114
2330 . . . 2410
2529 . . . 2656
2868 . . . 3006
3069 . . . 3400

MT415955
MT409110

34
37.5

ppx2 1476 491 95% Helianthus annuus
XP_021982414.1 TR33881|c0_g1_i1 MK096762 42.8 Partial

325 1 56–276 MT879747
MT879748

34.3
33.1
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Figure 2. The schematic representation of (a), psbA; (b), ahas; (c), epsps, and (d), ppx2 genes in A. artemisiifolia indicating
regions amplified by different primers. Vertical grey lines indicate amino acid positions that contain substitutions in
herbicide resistant plants. The number after the amino acid refers to the amino acid position. Green boxes indicate exons
and grey lines between boxes indicate introns. Colour lines show positions of primer pairs.

Each sample contained the PCR products of psbA, ahas, epsps, and ppx2 genes. The
control of AMI1-3 group was labeled as AMI1control and contained PCR products of
AMI1. Similarly, AMU1control served as a control for AMU1-3 group and contained
PCR products of AMU1. Both in AMI and AMU samples, the concentrations of the PCR
products of the four genes were measured in each replicate, respectively. Afterwards, the
lowest concentration was used as a base for further dilution of the other PCR products to
avoid error in sequencing analysis (Table 2, Figure S8). In NGS-TAS analyses the samples
were sequenced in four lanes. Based on the ratio of concentration/contig number of the
samples, we found that all concentrations of AMI and AMU samples were optimal for the
diagnostic procedure.

3.3. Bioinformatics Analysis of AMI and AMU Groups

Samples with different concentrations showed different distributions in contig number
(Table 2). As a result of amplicon sequencing the number of Illumina MiSeq 300 bp reads
were 276,462 (forward), 296,722 (reverse) in case of AMI and 316,465 (forward), 369,748
(reverse) in case of AMU samples. After quality filtering dropped reads were 0.7% on
average of AMI samples and 4.7% on average of AMU samples. PEAR software was used
to assemble cleaned reads of which unpaired ones were filtered out with the average ratio
5.45 and 9.05% of AMI and AMU samples, respectively. Numbers of filtered and assembled
reads were 255,357–287,197. In order to separate the investigated gene fragments we
clustered the contigs (assembled reads) into groups based on appropriate primer motifs by
using Usearch software. During clustering singletons were dropped (unique groups with
one sequence). Average ratios of the survived contigs were 69.8% and 69.7%. The group
number was 18 and 12 in AMI and AMU samples (Figure S12).
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Table 2. Concentrations of PCR product (cc: ng/µL) and numbers of contig in each group in imidazolinone (imazethapyr) resistant bulked samples (AMI) and urea (linuron) resistant
bulked samples (AMU).

Fragments

Length of
Fragment

with Adapter
(bp)

AMI AMU

1 Sample 2 Sample 3 Sample 1 Control Sample 1 Sample 2 Sample 3 Sample 1 Control Sample

cc
Number

of
Contig

cc
Number

of
Contig

cc
Number

of
Contig

cc
Number

of
Contig

cc
Number

of
Contig

cc
Number

of
Contig

cc
Number

of
Contig

cc
Number

of
Reads

psbA 377

50.3

26,989

32.8

34,594

40.8

30,560 72.1 32,592

24.3

28,106

19.1

28,523

19.9

30,492 48.3 40,178

ahas 1 288 10,009 25,817 11,802 60.3 9129 8066 21,401 12,709 24.3 11,426

ahas 2 273 45,613 32,641 45,887 50.3 34,158 43,411 47,525 50,635 43.4 52,289

ahas 3 319 18,488 15,106 23,639 74.3 20,210 25,580 21,738 19,612 37 23,140

ahas 4 453 12,563 13,668 11,955 88.6 17,567 13,133 15,549 15,854 37.1 12,032

epsps 310 21,543 34,053 29,779 51.9 16,599 18,103 10,839 17,476 31.7 15,737

ppx2 390 11,580 9280 26,659 58.8 10,546 15,205 10,108 9346 37.5 15,583
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Fragments in each sample contain different numbers of contigs. Primer sorted groups
contain min 8066 max 52,289 contigs (Table 2). Undiluted AMI1control and AMU1 control
samples showed an equable read distribution in each fragment, therefore dilution of
samples in the same concentration is recommended. Confirmation of a fragment with such
a large number of reads provides an opportunity for large-sample analysis.

3.4. Detection of Mutation Points in Resistant Biotypes

To be able to identify the mutations causing resistance in A. artemisiifolia, bulked and
amplified DNA sequences of imazethapyr and linuron resistant samples were further
analysed by NGS-TAS that covered 16 known resistance mutations sites in A. artemisiifolia.
In the AMI group, sequence alignment analysis showed that a single nucleotide in the ahas
gene was changed from TGG to TTG and resulted in a Trp574Leu substitution conferring
herbicide resistance [47] (Figure 3). Other amino acid substitutions in the D1 protein, EPSPS
and PPX2 enzymes at known resistance-conferring mutations sites were not found. Based
on these data, the investigated population was susceptible to PSII, EPSP synthase and PPO
inhibitors (Figure 3). In the AMU group, sequence alignment analysis showed that a single
triplet was changed (GTA to ATA) in the psbA gene and resulted in a resistance-conferring
Val219Ile substitution [41] (Figure 3). Other amino acid substitutions in AHAS, EPSPS,
and PPX2 enzymes at known resistance-conferring mutations sites were not found. Based
on this data the investigated biotype was susceptible to AHAS, EPSP synthase, and PPO
inhibitors in terms of TSR (Figure 3).
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Figure 3. Amino acid mutations in investigated gene products. Imidazolinone and urea resistant bulked samples were
analyzed by NGS-TAS that covered 16 known resistance-conferring mutations sites in A. artemisiifolia. Marking: green,
possible mutation sites; red, mutant amino acids. DNA sequencing revealed that an inferred leucine for tryptophan
substitution at amino acid position 574 in AHAS enzyme was responsible for the imazethapyr herbicide resistance. Amino
acid substitution at the position 219 (valine/isoleucine) in psbA gene product, D1 protein, was responsible for the linuron
resistance. Amino acid substitutions in EPSPS and PPX2 enzymes at known resistance-conferring mutations sites were
not found.
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4. Discussion

Chemical weed control is one of the most common ways to fight against weeds in
agricultural areas, giving a high selection pressure for resistant biotypes. After herbicide
treatment, the rapid diagnosis of resistance mutations present in surviving individuals
using would inform and improve the effectiveness of the next herbicide treatment. In
order to maintain sustainability in crop fields and beneficial weed communities that are
required for natural ecosystems, the monitoring of resistant common ragweed populations
between treatments is important. In this study, we present a molecular biology-based
approach (NGS-TAS) to detect herbicide resistant common ragweed populations in arable
habitats [69,70].

It is important that only a few herbicides with new mechanism of action (MOA) have
been released since the 1980s. The increasing number of herbicide resistant weeds and the
lack of discovery of new MOAs make it difficult or even impossible to use existing herbi-
cides effectively. Some studies predict that these problems will endanger the sustainability
of weed control [16,71]. Therefore, it is essential to inform farmers about integrated and
resistant weed management strategies that are less harmful to the environment [16].

Determining TSR would largely improve the weed management strategy of arable
lands. Field sampling of populations and testing them by NGS-TAS method would guide
farmers to select the proper herbicides thereby decreasing the impact of agricultural
chemical inputs on the populations of crop fields. Thereby, unnecessary and ineffective
chemical usage could be avoided [16].

In this study, we describe an effective diagnostic process using NGS-TAS to get infor-
mation about evolved TSR in A. artemisiifolia populations. In NGS-TAS, TSR is determined
using SNP genotyping following genome-wide genotyping. We demonstrate that NGS-
TAS analysis is a method that can monitor TSR against four different enzymes targeted
by different herbicides in A. artemisiifolia simultaneously. In order to analyse SNPs as
part of the resistance mechanism of A. artemisiifolia, coding sequences and complete genes
of D1 protein, AHAS and EPSPS were identified. However, the sequence of PPX2 only
partially was identified at the region of interest as its length and genomic data is unknown.
Mutations and polymorphisms in these four proteins that had previously been reported
to confer resistance were specifically investigated. The developed NGS-TAS markers can
identify 16 amino acid substitutions of the investigated common ragweed genes among
which 4 (psbA: Val219, Ser264, ahas: Trp 574 and ppx2:Arg98) were proven. As a result, the
investigated samples characterized by imidazolinone (imazethapyr) and urea (linuron)
TSR were proved to carry mutation points at Trp574Leu and Val219Ile in the ahas and psbA
genes, respectively. Although no MTSR existed in the studied resistant samples (AMI,
AMU), the NGS-TAS method can be used to detect multiple herbicide resistance, which
needs to be confirmed by specific MTSR samples.

NGS technology can examine a large number of samples simultaneously using frag-
ment or sample-specific indexed primers. Therefore, amplicon primers were provided that
are suitable for discriminating mutation points. In this study, we demonstrated the trial of
a pooled sample evolved mutations points of herbicide target genes supporting resistance
of A. artemisiifolia populations and biotypes.

5. Conclusions

Invasive weed species appeared to be the bane of biodiversity, ecosystem services,
and food security. Integrated weed management practices provide several comprehensive
solutions for weed control to reduce weed coverage in agricultural fields. Unfortunately,
many weed management approaches used nowadays are highly unsustainable. Moreover,
many studies report on the rapid evolution of herbicide-resistant weed populations. This
complex evolution of herbicide-resistant weeds makes it difficult to use sustainable herbi-
cide technology [20]. Therefore, applying weed management tools for invasive plants are
often ineffective at producing long-term benefits [72]. In order to map evolved resistance
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in populations, different herbicide resistance mechanisms have to be investigated, such
as TSR.

To summarize, NGS-TAS method is a powerful approach that was used for the de-
tection of amino acid polymorphism and mutations that induce TSR. Therefore, it can
improve effective weed control taking into account biological integrity and sustainability in
agroecosystems by selecting the optimal and effective herbicide usage in cropping systems.

Supplementary Materials: The following are available online at https://www.mdpi.com/1424-281
8/13/3/118/s1, Figures S1–S12: Primers, gel pictures and electropherograms of Sanger sequencing.
Primers, gel pictures, electropherograms and concentrations of amplicon sequencing. Bioinformat-
ics analysis.
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