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Abstract: Anguillid eels are widely acknowledged for their ecological and socio-economic value in
many countries. Yet, knowledge regarding their biodiversity, distribution and abundance remains
superficial—particularly in tropical countries such as Indonesia, where demand for anguillid eels is
steadily increasing along with the threat imposed by river infrastructure developments. We investi-
gated the diversity of anguillid eels on the western Indonesian islands of Sumatra and Java using
automated molecular classification and genetic species delimitation methods to explore temporal
patterns of glass eel cohorts entering inland waters. A total of 278 glass eels were collected from
monthly samplings along the west coast of Sumatra and the south coast of Java between March 2017
and February 2018. An automated, DNA-based glass eel identification was performed using a DNA
barcode reference library consisting of 64 newly generated DNA barcodes and 117 DNA barcodes
retrieved from BOLD for all nine Anguilla species known to occur in Indonesia. Species delimitation
methods converged in delineating eight Molecular Operational Taxonomic Units (MOTUs), with
A. nebolusa and A. bengalensis being undistinguishable by DNA barcodes. A total of four MOTUs were
detected within the glass eel samples, corresponding to Anguilla bicolor, A. interioris, A. marmorata,
and A. nebulosa/A. bengalensis. Monthly captures indicated that glass eel recruitment peaks in June,
during the onset of the dry season, and that A. bicolor is the most prevalent species. Comparing
indices of mitochondrial genetic diversity between yellow/silver eels, originating from several sites
across the species range distribution, and glass eels, collected in West Sumatra and Java, indicated a
marked difference. Glass eels displayed a much lower diversity than yellow/silver eels. Implications
for the management of glass eel fisheries and species conservation are discussed.

Keywords: species delimitation; DNA-based classification; genetic diversity; catadromy; conservation

1. Introduction

The freshwater eel family Anguillidae consists of 20 species and two genera [1], all
well known for their catadromous life-cycles. Adults spawn in marine environments, and
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hatched larvae, known as leptocephalus, migrate to inland waters. Upon approaching con-
tinental shelfs, larvae become competent (glass eels) before entering inland waters, where
they acquire pigmentation (elvers). Eels further grow up in freshwaters (yellow eels) until
they become sexually mature (silver eels) and return to marine spawning grounds [2–6].

Anguillid eels are a significant food resource around the world, and contribute greatly
to many national economies [2,7–10]. For example, approximately 150,000 tons of eels were
consumed each year both in Japan (2000–2002) and China (2012–2013) [11]. In Indonesia,
the annual eel trade is estimated to be worth 100 million USD [12]. Demand for anguillid
species has steadily increased in recent years; however, eel farming solely relies on wild-
caught juvenile eels (elvers, silver eels), as breeding in captivity is not yet commercially
viable [11,13,14]. The growing demand, in combination with habitat destruction and
fragmentation caused by dams and other infrastructures, has led to a precipitous decline
in populations across the globe, and some species have become endangered [2,15–19].
Unfortunately, scientific knowledge regarding eel diversity, distribution and abundance
is sparse [15,19]. In particular, little is known about the ecology of anguillid eels in the
tropics, even though such regions typically support relatively high abundances and species
richness’ of anguillid eels [7,20–22]. Indeed, two-thirds of the known species of the genus,
Anguilla, occur in the tropical Indian and Pacific Ocean, while the remaining species occur
in temperate parts of both the Pacific and Atlantic Ocean [1]. For Indonesia, a total of seven
to nine species has been reported, as the biological status of two species pairs (A. bengalensis
vs. A. nebulosa, A. borneensis vs. A. malgumora) is still under debate [7,22–24]. This diversity
is among the highest in the Indo-Pacific Ocean; however, few attempts have been made
to document diversity and distribution of Anguilla spp. in Indonesia. Previous studies
have mostly focused on either specific life stages or selected species [7,22,25,26]. Therefore,
there is a clear and pressing need to assess spatial and temporal patterns of all life stages of
tropical anguillid eels to gain a comprehensive understanding of their ecology.

Studies of biodiversity and distribution of tropical anguillid eels were long impeded
by difficulties in identifying species using morphological characters, particularly for early
life stages [27]. The development of standardized molecular approaches to automated
specimen identification, such as DNA barcoding [28,29], opened new perspectives for mon-
itoring and the exploration of species boundaries. Several studies have already successfully
applied DNA barcoding to characterize the Indonesian ichthyofauna in various contexts,
ranging from island inventories [30] over lineage-specific re-appraisals [31–36] to larval
identification [37,38].

This study investigated the diversity of anguillid eels on the western Indonesian
islands of Sumatra and Java using DNA barcoding. Anguillid glass eels are currently
being intensively harvested in the western parts of Indonesia, particularly A. bicolor and
A. marmorata on Java [22]. In addition, the rapid development of dams and other river
infrastructures is compromising upstream glass eel migration. Therefore, this study aimed
to: (1) establish a DNA barcode reference library for all known Anguilla species occurring
in Indonesia based on both available and newly generated Cytochrome Oxidase I (COI)
sequences, (2) apply this library to automated glass eel identification to examine temporal
patterns of recruitment and species composition of glass eel cohorts in western Indonesia,
where the fishing pressure is currently high.

2. Materials and Methods
2.1. Sampling

Sampling consisted of two distinct campaigns in Indonesia targeting freshwater life
stages (yellow/silver eels) and early life stages (glass eels/elvers) entering freshwaters.
Yellow/silver eels were sampled across several sites on Sumatra, Java, Bali, Lombok,
Sulawesi and Ambon Islands between November 2012 and July 2019 using electrofishing
and fishing rods (DS-ANGUILLA; doi:dx.doi.org/10.5883/DS-ANGUILLA). Specimens
were photographed, individually labeled and voucher specimens were preserved in a
5% formalin solution. Prior to fixation, a fin clip or a muscle biopsy was taken and
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fixed separately in a 96% ethanol solution for further genetic analyses. Both tissues and
voucher specimens were deposited in the National Collections at the Museum Zoologicum
Bogoriense (MZB), Research Center for Biology (RCB), Indonesian Institute of Sciences
(LIPI). Specimens were further identified using field guides [39–41]. Glass eels and elvers
were sampled using a systematic and standardized procedure, developed for the purpose
of this study, on Sumatra and Java between March 2017 and February 2018 (Figure 1). A
trap device (dimensions 3.5 m × 2 m × 0.8 m) was used for 6-h periods after dark once
every week (Figure 2). Glass eel and elver samples were collected and preserved in 70%
ethanol solution for further genetic analysis.

Diversity 2021, 13, 193 3 of 15 
 

 

2. Materials and Methods 
2.1. Sampling 

Sampling consisted of two distinct campaigns in Indonesia targeting freshwater life 
stages (yellow/silver eels) and early life stages (glass eels/elvers) entering freshwaters. 
Yellow/silver eels were sampled across several sites on Sumatra, Java, Bali, Lombok, Su-
lawesi and Ambon Islands between November 2012 and July 2019 using electrofishing 
and fishing rods (DS-ANGUILLA; doi:xx). Specimens were photographed, individually 
labeled and voucher specimens were preserved in a 5% formalin solution. Prior to fixa-
tion, a fin clip or a muscle biopsy was taken and fixed separately in a 96% ethanol solution 
for further genetic analyses. Both tissues and voucher specimens were deposited in the 
National Collections at the Museum Zoologicum Bogoriense (MZB), Research Center for 
Biology (RCB), Indonesian Institute of Sciences (LIPI). Specimens were further identified 
using field guides [39–41]. Glass eels and elvers were sampled using a systematic and 
standardized procedure, developed for the purpose of this study, on Sumatra and Java 
between March 2017 and February 2018 (Figure 1). A trap device (dimensions 3.5 m × 2 m 
× 0.8 m) was used for 6-h periods after dark once every week (Figure 2). Glass eel and 
elver samples were collected and preserved in 70% ethanol solution for further genetic 
analysis. 
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Figure 1. Collection sites for the 278 glass eels (white circle) and 64 yellow/silver eels (white squares)
sampled in this study. 1: Tengah Kedurang, Kedurang river, Bengkulu Selatan, Bengkulu (−4.462,
103,067); 2: Serayu River, Purwokerto, Jawah Tengah (−7.508, 109.296); 3: Kebumen, Jawa Tengah
(−7.768, 109.644).

2.2. DNA Extraction, Amplification and Sequencing

Total genomic DNA was extracted from muscle tissue using the Geneaid extrac-
tion procedure following manufacturer’s specifications (www.geneaid.com, accessed on
12 March 2020). A partial fragment of 652 bp of the mitochondrial COI coding gene,
corresponding to the standard DNA Barcoding fragment [42], was amplified using the
universal primers, Fish-COI-F and COI-Fish-R [43]. The primer sequences were as fol-
lows: Fish-COI-F, 5′-TAA TAC GAC TCA CTA TAG GGT TCT CCA CCA ACC ACA ARG
AYA TYGG-3′; COI-Fish-R, 5′-ATT AAC CCT CAC TAA AGG GCA CCT CAG GGT GTC
CGA ARA AYC ARAA-3′. Amplifications were performed in a 50 µL reaction volume
consisting of 16 µL of ultrapure water, 2 µL of each primer (1 µM), 25 µL of PCR ready
mixture solution (KAPA), and 25 µL of genomic DNA. The polymerase chain reaction
(PCR) cycling parameters included an initial DNA polymerase activation step of 15 min
at 95 ◦C, followed by 35 cycles of 30 s at 94 ◦C, 90 s at 55 ◦C and 30 s at 72 ◦C and
ending with a final extension of 5 min at 72 ◦C. The PCR products were visualized on a
1% agarose gel and purified (Thermo Scientific PCR purification kit). Yellow/silver eel
amplicons were bi-directionally sequenced and larval amplicons were sequenced with
the reverse primer (COI-Fish-R). Sequencing was done using the EZ-Seq service (Macro-
gen) for glass eels, and the Centre for Biodiversity Genomics (University of Guelph) for

www.geneaid.com
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yellow/silver eels. Sequences were deposited in BOLD in the dataset DS_ANGUILLA
(doi:dx.doi.org/10.5883/DS-ANGUILLA) and GenBank (accession numbers MN961249-
MN961267; MT155391-MT155483). Additional publicly available COI sequences for the
Anguilla species occurring in Indonesia were retrieved from BOLD [44] and aggregated in
the dataset DS-ANGUILLA (doi:dx.doi.org/10.5883/DS-ANGUILLA).
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(B) collecting section; (C) close-up.

2.3. Data Analysis

As one main objective was to implement automated identification of Anguilla glass
eels and elvers through DNA barcodes, we first established a reference library. The
reference library was based both on sequences produced from yellow/silver eel specimens,
identified using morphological characters, and on DNA barcode records retrieved from
BOLD. To validate each reference, we examined the match of species boundaries, delineated
either by morphological characters, or Molecular Operational Taxonomic Units (MOTU),
representing diagnosable molecular lineages [45–47]. It is well accepted that a combination
of different delimitation approaches is capable of overcoming potential pitfalls arising
from uneven sampling [33,48–51]. Therefore, we used a scheme based on a 50 percent
consensus between four algorithms: (1) Refined Single Linkage (RESL) as implemented in
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BOLD and used to produce Barcode Index Numbers (BIN) [52], (2) Automatic Barcode Gap
Discovery (ABGD) [53], (3) Poisson Tree Process (PTP) in its single (sPTP) and multiple
(mPTP) rates version as implemented in the stand-alone software mptp_0.2.3 [54,55], and
(4) General Mixed Yule-Coalescent (GMYC) in its single (sGMYC) and multiple (mGMYC)
rates version as implemented in the R package Splits 1.0–19 [56].

As the mPTP algorithm uses a phylogenetic tree as an input file, a maximum likelihood
(ML) tree was first reconstructed using RAxML [57] based on a GTR+I+Γ substitution
model. An ultrametric, fully resolved tree was reconstructed using the Bayesian approach
implemented in BEAST 2.6.2 [58], to be later applied with the GMYC algorithm. Duplicated
sequences were pruned prior to reconstructing the ultrametric tree based on a strict-clock
of 1.2% per million year [59]. Two Markov chains, each with a length of 10 million, were
run independently using Yule pure birth and GTR+I+Γ substitution models. Trees were
sampled every 5000 states, after an initial burnin period of 1 million. Both runs were
combined using LogCombiner 2.6.2 and the maximum credibility tree was constructed
using TreeAnnotator 2.6.2 [58].

A final COI gene tree was reconstructed using the SpeciesTreeUCLN algorithm of
the StarBEAST2 package [60]. This approach implements a mixed-model, including a
coalescent component within species and a diversification component between species,
that allows accounting for variations of substitution rates within and between species [61].
StarBEAST2 jointly reconstructs gene trees and species trees, and as such requires species
designations, which were determined using the consensus of our species delimitation
analyses. The StarBEAST2 analysis was performed using the same parameters as the
BEAST analysis described above.

Finally, unknown sequences from early life stages were classified to the species level
using the R package BarcodingR [62]. A single sequence was randomly selected for each of
the MOTUs for classification using the following algorithms: (1) BP [62], (2) fuzzy-set [63],
and (3) Bayesian [64]. Similarly, the final assignment of an unknown to a known sequence
was established based on a 50% consensus.

Several parameters of genetic diversity were estimated using the R package pegas
0.14 [65], including the number of haplotypes (h), haplotype diversity (Hd) [66], nucleotide
diversity (π) [67], genetic diversity based on the number of segregating sites (θ) [68], and
Tajima’s D test of neutrality [69]. Kimura 2-parameter (K2P) [70] pairwise genetic distances
were calculated using the R package Ape 5.4 [71]. Maximum intraspecific and nearest
neighbor distances were calculated from the matrix of pairwise K2P genetic distances using
the R package Spider 1.5 [72].

3. Results

A total of 64 and 278 COI sequences were generated for all yellow/silver and glass
eels sampled, respectively. The yellow/silver eel COI sequences were combined with
117 sequences retrieved from BOLD into a DNA barcode reference library comprising
181 COI mostly full-length sequences (652 bp) for the 9 species of Anguilla occurring in
Indonesia [1,23].

DNA-based species delimitation analyses resulted in congruent delimitation schemes
with 7 MOTUS for mPTP, 8 MOTUs for RESL, ABGD and mGMYC, 10 MOTUs for sPTP
and 11 MOTUs for sGMYC; with a consensus scheme consisting of 8 MOTUs (Figure 3;
Table S1). All MOTUs matched the species boundaries defined by morphology-based
identifications, with the exception of Anguilla bengalensis and A. nebulosa, which displayed
tightly intertwined mitochondrial lineages (Figure 3). The coalescent tree of this species pair
was the youngest of the Anguilla mitochondrial gene trees, with a Most Recent Common
Ancestor (MRCA) dated around 500,000 years. By contrast the mitochondrial MRCA of
the Anguilla analyzed in our study dated back 5.3 million years (Myr). Species showed a
distinct barcoding gap, which is defined as the lack of overlap between the distributions of
maximum intraspecific and minimum interspecific genetic distance. Maximum intraspecific
distances were ten-fold higher on average than minimum interspecific distances (Table 1).
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Assignment of unknown glass eels/elvers sequences to known yellow/silver eels
sequences resulted in fully congruent classifications across the three methods (Table 1 and
Table S2). Fuzzy average yielded the lowest support, with assignment probabilities ranging
from 0.753 to 0.989 per species on average; while Bayesian assignments were all supported
by probabilities of 1 (Table 1). Among the 278 larvae sequences, 15 were assigned to A.
interioris, 26 to A. marmorata, 24 to the species pair A. bengalensis/A. nebulosa and 213 to A.
bicolor (Table S2). During the sampling period from February 2017 to March 2018, glass eels
were collected only between May and November 2017 (Figure 4). A peak of abundance was
observed in May and June, a period corresponding to the onset of the dry season and tightly
following the first peak of annual temperatures in May (Figure 4). Multi-species glass eel
assemblages were observed throughout the dry season between May and August, and later
in November, with a peak of species richness in June when 4 species were collected.
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Table 1. MOTUs delimitated among yellow/silver eels based on the majority rule consensus of the six delimitation methods, summary statistics of MOTU genetic distances, assignment
probabilities (average, minimum, and maximum) of unknown glass eel sequences according to Fuzzy, Bayesian, and BP, and identifications of glass eels to the species level.

K2P Genetic Distance Assignment Probability

BIN Max.
Intraspecific Min. Interspecific Species Fuzzy Average

(Min–Max) Fuzzy Identif. Bayesian Average
(Min–Max) Bayesian Identif. BP Average

(Min–Max) BP Identif.

BOLDAAD2092 0.004 0.031 A. marmorata 0.753 (0.636–0.758) A. marmorata 1 A. marmorata 0.949 (0.945–0.949) A. marmorata
BOLDAAD9080 0.002 0.060 A. reinhardtii
BOLDAAE4923 0.029 0.044 A. bicolor 0.735 (0.572–1) A. bicolor 1 A. bicolor 0.885 (0.853–0.963) A. bicolor
BOLDAAJ2664 0.015 0.038 A. bengalensis 0.989 (0.969–1) A. bengalensis 1 A. bengalensis 0.948 (0.947–0.948) A. bengalensis

A. nebulosa A. nebulosa A. nebulosa A. nebulosa
BOLDADC7451 0.008 0.038 A. interioris 0.789 (0.595–0.919) A. interioris 1 A. interioris 0.946 (0.936–0.952) A. interioris
BOLDADC7453 0 0.087 A. malgumora
BOLDADC7455 0.006 0.060 A. celebesensis
BOLDADC8019 0.002 0.035 A. obscura
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Figure 4. Abundance and species diversity of glass eels collected between March 2017 and April 2018.
(A), monthly temperatures and rainfalls in South Sumatra and West Java between 1991 and 2016
(modified from World Bank); (B), number of monthly collected glass eels (N, number of individual);
(C), monthly proportions of species among collected glass eels.

All estimates of mitochondrial genetic diversity indicated that glass eels/elvers display
a much lower diversity than their species gene pools (Table 2). The number of haplotypes
(h) and the haplotypic diversity (Hd) were four-fold and three-fold lower, respectively, in
glass eels/elvers than in yellow/silver eels. A similar trend was observed at the nucleotide
level, with nucleotide diversity (π) and Theta (θw) being two-and-a-half-fold and ten-fold
lower, respectively, in glass eels/elvers than in yellow/silver eels. This result was also
reflected by noticeable differences in the Tajima D test, which shifted toward a positive D
value in larvae indicating a scarcity of rare alleles. However, none of the Tajima D tests
performed were significant, except for the A. bengalensis/A. nebulosa species pair among
yellow/silver eels with a significant negative D value.
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Table 2. Summary statistics of genetic diversity per species, including yellow/silver and glass eels/elevers, for the four
species detected among glass eel cohorts. N, number of individuals; h, number of haplotypes; Hd, haplotypic diversity; π,
nucleotide diversity; θw, theta; Tajima’s D test including D value and significance of the test (* significant). Regional refers
to estimates at the scale of species distribution ranges. Local refers to estimates at the scale of glass eel sampling sites.

Species Stage/Scale N h Hd π θw D p-Value

A. interioris Yellow-silver eels/Regional 35 9 0.718 0.004 2.428 −0.341 0.7330
Glass eels/Local 15 2 0.514 0.004 1.230 2.155 0.0312

A. marmorata Yellow-silver eels/Regional 58 6 0.539 0.003 5.381 −2.158 0.0308
Glass eels/Local 26 2 0.077 0.001 0.262 −1.156 0.2479

A. nebulosa/A. bengalensis Yellow-silver eels/Regional 91 16 0.667 0.002 4.132 −2.243 0.0249 *
Glass eels/Local 24 2 0.489 0.001 0.268 1.391 0.1642

A. bicolor Yellow-silver eels/Regional 15 11 0.952 0.013 6.766 0.050 0.9603
Glass eels/Local 213 7 0.476 0.003 1.179 0.997 0.3189

4. Discussion

The present study further highlights the usefulness of DNA barcoding in capturing
boundaries between Anguilla species [7,22,73–76]. Among the nine species included, seven
displayed well-differentiated mitochondrial lineages, with minimum genetic distances
to the nearest neighbor largely exceeding maximum intraspecific genetic distance. DNA
barcodes failed to differentiate between the species-pair Anguilla bengalensis and A. nebulosa.
The young age of their mitochondrial MRCA may be indicative of a recent divergence.
However, the persistence of ancestral polymorphisms between diversifying lineages [77]
tend to inflate genetic diversity in diverging pairs [78]. Here, genetic diversity indices
show no differences between this species pair and the other species, thus questioning their
distinctiveness. Although A. nebulosa and A. bengalensis are currently both considered
as valid species, they have a complex taxonomic history and were synonymized in the
past [23]. The lack of a declared type locality in the original description of A. bengalensis
is further confusing its taxonomic status. From a mitochondrial perspective, this species
pair behaves as a single cohesive lineage, which suggests that further studies are needed
across their distribution range to establish a more comprehensive assessment of their
genetic diversity.

Tropical river systems support assemblages of multiple anguillid species [26,79,80].
The co-occurrence of multiple species in the tropics, particularly Southeast Asia, is thought
to be the result of shorter migration routes, easing dispersal [24], and of higher productivity
leading to better growth rates and increased carrying capacities of aquatic habitats [81].
The detection of multiple species in glass eel cohorts in Sumatra and Java is consistent
with the co-occurrence of multiple species of anguillid eels. Although the four species
detected have been previously reported from Western Indonesia [1,23,82], little information
is available on diversity patterns and the abundance of yellow/silver eels upstream. In
particular, our results question how species abundance in glass eel cohorts translates into
yellow/silver eel communities. Ecological dynamics during growth may translate into
important shifts in species composition from larval to later stage assemblages, a trend
that was observed in previous DNA barcoding studies of early life stages of marine and
freshwater fishes [38,83–85]. An alternative explanation might be that anguillid eels are
typical r-strategists, producing a large number of offspring at the cost of low survival and
recruitment rates [5,21,86]. Such species are subject to important stochastic fluctuations of
their demographic parameters depending on temporal heterogeneity and environmental
disturbances [87]. Recent new records of amphidromous fishes (i.e., species for which the
adult breeds in freshwater and the larva drifts into the sea) in Java, particularly in the
family Gobiidae, based on a single or a few individuals, seem to corroborate the stochastic
nature of migratory fish recruitment in Western Indonesia [30].

A. bicolor, for instance, was extremely abundant during our glass eel sampling cam-
paign. Yet, yellow/silver eels of A. bicolor are known to be uncommon throughout the
species’ range distribution [88]. A. bicolor may have several spawning sites, one of which is
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supposed to be located off the Southwest cost of Sumatra [88]. The abundance of A. bicolor
in glass eel samples may corroborate this hypothesis; however, it questions the supposed
scarcity of yellow/silver eels. A similar trend has been observed for A. interioris, in which
most yellow/silver eel specimen records have been reported from New Guinea, while glass
eels have been observed in several western islands of Indonesia [25,81,88]. Due to this
knowledge gap on distribution and biology, A. interioris is currently listed as data deficient
in the IUCN Red List [6].

Comparison of mitochondrial genetic diversity between yellow/silver eels originating
from their known species range and glass eels from local streams in Sumatra and Java
indicated large differences. Several species, such as A. marmorata, A. bicolor and A. ben-
galensis/A. nebulosa, display wide range distributions throughout the Indian and Pacific
oceans. These differences might be explained by the existence of several spawning sites and
associated genetic population structuring [21,79]. Likewise, mechanisms inducing glass eel
migration choices may account for these large differences between glass and yellow/silver
eel mitochondrial genetic diversity. Natal homing, that is migration directed towards
parental habitats, is currently observed for A. anguilla and A. americana, which seemingly
share spawning grounds in the Atlantic Ocean and hybridize but whose yellow/silver
eels do not co-occur in Europe and North America [89–91]. Alternatively, inter-annual
variability in reproductive success and larval survival might be responsible for these large
differences between glass and yellow/silver eel genetic diversity in A. marmorata, A. bicolor
and A. bengalensis/A. nebulosa. This result is more intriguing for A. interioris, as its yel-
low/silver eels have been mainly observed in the northern rivers of New Guinea and it is
supposed to have a single spawning site offshore of northern New Guinea. The presence of
glass eels of A. interioris at low frequency in western Indonesia suggests random dispersal
of glass eels for A. interioris and very low recruitment outside of New Guinea. These results
suggest interspecific differences in life history traits, and phenotypic plasticity seems to be
an important driver of species-specific life history traits and adaptation in Anguilla [92].

The general trend towards lower mitochondrial genetic diversity among glass eels in
western Indonesia than among yellow/silver eels over species range distributions suggests
small effective population sizes as a consequence of either fragmentation and the existence
of several spawning sites or stochastic fluctuations in breeding and recruitment outcomes,
as well as potential migration preferences for some species. This pattern suggests that
Anguilla populations in South Sumatra and Java should probably be considered small
populations. If commercial harvesting of glass eels were to be intensified in the future, this
could bring them potentially close to an extinction vortex, i.e., a situation in which reduced
population size and increased demographic variance either induce spatial fragmentation or
a reduction in population adaptive potential [93,94]. Furthermore, the rapid development
of infrastructure during the last two decades in this part of Indonesia has already resulted
in fragmentation and reduced habitat availability, as well as water pollution associated
with industrial waste and agricultural run-off [95–98].

5. Conclusions

Given the intense harvesting of glass eels in Java, the present study calls for a broader
assessment of their recruitment dynamics to inform the sustainable management of these
fisheries. The presence of only a small portion of the species’ mitochondrial genetic di-
versity in Sumatra and Java glass eels sampled suggests that they have small effective
population sizes and are potentially endangered in some regions. It also suggests important
shifts of species abundance between glass and yellow/silver eels, pointing to major gaps
in our understanding of tropical Anguilla life cycle ecology, and highlighting inadequacies
in knowledge about glass eel recruitment per se for the sustainable management of An-
guilla fisheries. The yellow and silver eel life stages of these species should receive high
priority for conservation, given that they play an inherently important role in recruitment,
particularly in the context of fragmented and disconnected aquatic landscapes.
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