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Abstract: Gobies and their ectoparasitic monogenean flatworms are promising models for species
diversification because of their species richness. Recent decades have seen the discovery of several
new species of Gyrodactylus (Monogenea: Gyrodactylidae) on European gobies, mostly in the sand
goby lineage and especially in the eastern Mediterranean. However, the monogenean fauna of
other gobies is much less understood. Therefore, we inspected five gobiid species (34 specimens,
vouchered, with some representatives sequenced), sampled in Greece, for monogenean ectoparasites.
Only specimens of the giant goby, Gobius cobitis, were infected; they harbored Xenoligophoroides cobitis
(Monogenea: Dactylogyridae) on their gills. Here, we provide the first record from Greece, and
the first ITS rDNA and COI sequences of the representative of this monotypic genus. Additionally,
28S rDNA was sequenced and compared with published data from across its known distribution,
suggesting clinal variation. No sister-group for Xenoligophoroides could be proposed, nor could we
explain the presence of a single known member of this genus on gobies, due to a lack of sequence
data of closely related dactylogyrid monogeneans in public databases. Possible hypotheses include
either the ancestral long-term presence on gobiids but “missing the boat” of the diversification events
in the “Gobius-lineage”, or a recent host switch from a non-gobiid host.

Keywords: barcoding; Dactylogyridae; Dactylogyrinae; ectoparasites; giant goby; Gobiidae; Gobius
cobitis; Greece; Monogenea; Platyhelminthes

1. Introduction

Gobiidae is the most species-rich fish family worldwide, with 1964 valid species as
of 28 May 2022 [1], and the most species-rich group of European marine fishes [2]. There
are 76 Mediterranean species [3]. Their diversity makes them prime models in evolution-
ary biology. For example, the occurrence of representatives in a wide variety of salinity
conditions, and the often high levels of endemicity of gobies, render them conducive to
study biogeographical patterns in aquatic ecosystems [2]. Furthermore, the radiation and
local adaptation events in gobies have been fruitfully exploited in speciation research [4–7].
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In addition, several goby species are successful invaders, rendering them useful models
for the genomics of colonization and invasion [8] or as proof-of-principle of the use of
fish parasites to elucidate introduction pathways [9]. Indeed, not only are the gobies
valuable targets for biodiversity research, the same goes for their parasites. European
sand gobies, with the gyrodactylid monogeneans that infect them [10,11], constitute one
of the best studied fish–Gyrodactylus host–parasite systems. Since flatworms belonging to
Gyrodactylus von Nordmann, 1832 are considered “the drosophilids of the parasitic world”,
sand gobies and their gyrodactylids are, therefore, a promising model in ecological and
evolutionary parasitology [12]. Indeed, the parasites of assemblages of closely related
host species may reveal important insights in parasite speciation [13]. Goby parasites also
hold a lot of potential for biodiversity discovery. The recent description of seven species
of Gyrodactylus infecting freshwater sand gobies from the Balkan region, the center of
endemism of these hosts, underscores that even European species diversity is far from fully
inventoried [14]. Despite the recent focus on sand gobies, the discovery of Gyrodactylus
quadratidigitus Longshaw, Pursglove et Shinn, 2003 on British Thorogobius ephippiatus (Lowe,
1839) by Longshaw et al. [15] illustrates that non-sand gobies also hold the promise of undis-
covered gyrodactylids. Next to Gyrodactylidae, another species-rich family of Monogenea
is represented among goby parasites: Dactylogyridae. In Europe, only one dactylogyrid
species is reported from marine gobies: Xenoligophoroides cobitis (Ergens, 1963), with its only
known host the giant goby, Gobius cobitis Pallas, 1814 [16,17]. In general, the discovery of a
plethora of marine monogenean species is to be expected: Appeltans et al. [18] estimated
that among marine flatworms, Monogenea is the group of which the lowest percentage
(7 to 13%) of existing species has been formally described.

Here, we expand our survey of the monogenean parasite diversity of eastern Mediter-
ranean gobies, specifically towards marine gobies outside of the sand goby lineage, with
the expectation of retrieving representatives of Gyrodactylus and Xenoligophoroides.

2. Materials and Methods
2.1. Sampling and Morphological Characterization of Parasites

Gobies outside of the sand goby lineage were collected as bycatch by Vanhove et al. [19].
They were diagnosed by a minimum combination of characters that positively identi-
fied the collected specimens among species of the family Gobiidae in the CLOFNAM
area ([20,21] and references therein). We focused on larger gobiid species that often may
also occur in brackish water. The fish were inspected for monogeneans on their gills, body,
and fins; also, the vial and medium were checked.

About half of the monogeneans recovered were transferred to a water droplet using
a dissection needle, fixed in Hoyer’s medium, and mounted between slide and coverslip
for morphological characterization of haptoral and genital hard parts. Measurements
and micrographs were taken under phase contrast with an Olympus BX61 microscope
fitted with a DP71 camera and Olympus Stream Motion software. Since only dactylogyrid
monogeneans were found (Figure 1a–e), measurements followed Sasal et al. [16], whose
study was the most recent publication on dactylogyrid parasites of European gobies at the
onset of this work.

The remaining specimens were stored in absolute ethanol for subsequent molecular
work. To allow taxonomic identification of these animals, photographic vouchers were
made prior to DNA extraction. To this end, flatworms were temporarily mounted in water
and photographed under a 100× (oil immersion) phase contrast objective using a Leica
DM5000B microscope equipped with a Leica DFC420C camera and LAS imaging software
(Figure 1f,g). Host vouchers were deposited in the Natural History Museum Rijeka (Rijeka,
Croatia) (PMR), and parasite vouchers in the general invertebrate collection of the Depart-
ment of Zoology, Swedish Museum of Natural History (Stockholm, Sweden) (SMNH).



Diversity 2022, 14, 580 3 of 13Diversity 2022, 14, x FOR PEER REVIEW 3 of 14 
 

 

 

Figure 1. Micrographs of Xenoligophoroides cobitis. (a) Haptoral hard parts, specimen from Acheloos 
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Acheloos Delta. (d) Haptoral hard parts, specimen from Kryoneri Estuary. (e) Male copulatory or-

gan, specimen from Kryoneri Estuary. (f) Photo voucher of temporarily water-mounted specimen 

from Acheloos Delta. (g) Photo voucher of temporarily water-mounted specimen from Kryoneri 

Estuary. Both photo vouchers show the characteristic “bilobed” (sensu Sasal et al. [16]) or “two-

chambered” base (sensu Dmitrieva et al. [17]) of the male copulatory organ of X. cobitis. Scale bars: 

50 µm (c), 20 µm (a,d,f,g), 10 µm (b,e). 
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Figure 1. Micrographs of Xenoligophoroides cobitis. (a) Haptoral hard parts, specimen from Acheloos
Delta. (b) Male copulatory organ, specimen from Acheloos Delta. (c) Whole mount, specimen from
Acheloos Delta. (d) Haptoral hard parts, specimen from Kryoneri Estuary. (e) Male copulatory organ,
specimen from Kryoneri Estuary. (f) Photo voucher of temporarily water-mounted specimen from
Acheloos Delta. (g) Photo voucher of temporarily water-mounted specimen from Kryoneri Estuary.
Both photo vouchers show the characteristic “bilobed” (sensu Sasal et al. [16]) or “two-chambered”
base (sensu Dmitrieva et al. [17]) of the male copulatory organ of X. cobitis. Scale bars: 50 µm (c),
20 µm (a,d,f,g), 10 µm (b,e).

2.2. Molecular and Genetic Analysis

For the host specimens, DNA extraction, PCR amplification of mitochondrial 12S
and 16S rDNA, subsequent purification of the PCR product, and Sanger sequencing were
performed following the procedures described by Vanhove et al. [19]. Host sequences were
deposited in the NCBI GenBank under accession numbers ON847338-45 (16S rDNA) and
ON853912-19 (12S rDNA). Parasite DNA was extracted with the DNeasy Blood and Tissue
Kit (Qiagen) according to the manufacturer’s instructions. Three potential monogenean
barcoding markers [22] with different mutation rates were amplified for the parasites: a
fragment of the large nuclear ribosomal subunit gene (28S rDNA); the region spanning
internal transcribed spacer (ITS) 1 and 2 including the 5.8S rDNA; and a fragment of
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the mitochondrial cytochrome c oxidase subunit 1 (COI). Although the former is widely
used in monogenean molecular systematics and in somewhat deeper phylogenetic re-
construction (e.g., [23]), the combination of the two latter markers has recently proven
valuable for phylogenetics of closely related monogenean species in the context of host
(and parasite) radiation [24]. Sequences of the ITS region are well-established in the
molecular taxonomy of gyrodactylid monogeneans and, hence, also in the species as-
semblage of Gyrodactylus on European gobies [10]; this includes the first-ever western
Mediterranean record of members of Gyrodactylus [25]. Conversely, the broad applicabil-
ity of COI as a marker for monogeneans and other flatworms has been questioned [22],
although recent work on representatives of Cichlidogyrus Paperna, 1960 (Monogenea, Dacty-
logyridae) highlights its potential for barcoding [26]. Hence, taken together, sequence
data of COI and of 28S rDNA and ITS rDNA served as versatile genetic resources for work
on the monogenean goby parasites retrieved in this study. Primer combinations were C1
(5′-ACCCGCTGAATTTAAGCAT-3′) and D2 (5′-TGGTCCGTGTTTCAAGAC-3′) [27] for 28S
rDNA, ITS1A (5′-GTAACAAGGTTTCCGTAGGTG-3′) and ITS2 (5′-TCCTCCGCTTAGTGATA-
3′) [28] for ITS rDNA, and ASmit1 (5′–TTTTTTGGGCATCCTGAGGTTTAT–3′) [29] and
Schisto3 (5′–TAATGCATMGGAAAAAAACA–3′) [30] for COI. In the latter case, the first
polymerase chain reaction (PCR) was followed by a nested PCR, replacing the Schisto3
primer with ASmit2 (5′–TAAAGAAAGAACATAATGAAAATG–3′) [29]. We performed
PCR using Illustra PuReTaq Ready-To-Go PCR Beads (GE Healthcare), adding 1 µL of each
primer (20 µM) (Sigma Aldrich), 2 µL of template DNA, and 21 µL of double distilled,
autoclaved, and filter-sterilized water. A GeneAmp PCR System 9700 (Applied Biosystems)
thermocycler was used. Cycling conditions are outlined in Table 1.

Table 1. Polymerase chain reaction protocols for the genetic markers of monogenean parasites; the
expected amplicon size is mentioned for each marker. The number of cycles was 39 for the fragment
of large subunit rDNA, and 40 for internal transcribed spacer rDNA and the partial cytochrome c
oxidase subunit 1 gene.

Protocol
Large Subunit 28S

rDNA
(ca. 700–900 bp)

Internal Transcribed
Spacer rDNA

(ca. 900–1200 bp)

Cytochrome c Oxidase
Subunit 1

(ca. 445 bp)

initial denaturation 2 min/94 ◦C 3 min/96 ◦C 5 min/95 ◦C
cycle: denaturation

annealing
elongation

20 s/94 ◦C
30 s/56 ◦C

1 min 30 s/72 ◦C

50 s/95 ◦C
50 s/52 ◦C
50 s/72 ◦C

1 min/94 ◦C
1 min/50 ◦C
1 min/72 ◦C

final elongation 10 min/72 ◦C 7 min/72 ◦C 7 min/72 ◦C
cooling 4 ◦C 4 ◦C 4 ◦C

We purified the PCR product using the QIAquick PCR Purification Kit (Qiagen), follow-
ing the manufacturer’s guidelines. Bidirectional sequencing was carried out in an Applied
Biosystems 3730 DNA analyzer using the BigDye protocol v.1.1. Sequences were validated
by eye in MEGA v.7 [31] and aligned in the same software using ClustalW [32]. Pairwise
distances were also calculated in MEGA. Sequences were subject to a BLAST search [33] on
NCBI GenBank, and deposited there under accession numbers ON847354 (COI), ON853990-
96 (28S rDNA) and ON854080-83 (ITS rDNA). In case published sequences of the same
markers for conspecifics were found, a median-joining network [34] was inferred in PopART
(http://popart.otago.ac.nz/index.shtml, accessed on 5 December 2021). Maps were ren-
dered in QGIS [35].

3. Results
3.1. Host Records

A total of 34 specimens belonging to five goby species were checked for monogenean
ectoparasites; species identities and sampling data are provided in Figure 2 and Table 2,
rendering the host–parasite relationships traceable (see [36]). Interestingly, for Gobius couchi
Miller & El-Tawil, 1974, our sample contains the first record in the Corinthian Gulf, quite

http://popart.otago.ac.nz/index.shtml
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geographically distant from surrounding records of this species from Corfu, Crete, and the
northeastern Aegean Sea coast [37].
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Figure 2. Species and localities sampled for gobies and parasites; see Table 2 for more
sampling information.

Table 2. Non-sand gobies inspected for monogenean ectoparasites and hosts sequenced for host
identification in this study.

Species Locality Sampling Date
Number of Host

Specimens Inspected for
Parasites/Sequenced

Voucher Specimens GenBank Accession
Numbers

Gobius cobitis Pallas,
1814

Acheloos Delta
38◦20′17.6′′ N 21◦07′39.0′′ E 10 June 2008 1/- PMR VP 3175 /

Kryoneri Estuary
38◦22′23.4′′ N 21◦51′55.0′′ E 7 June 2008 1/1 PMR VP 3215 ON847338 (16S rDNA),

ON853912 (12S rDNA)
Gobius couchi 1

Miller & El-Tawil
1974

Lake Heraion
38◦01′31.8′′ N 22◦52′34.6′′ E 8 September 2008 1/- PMR VP 3208 /

Gobius niger
Linnaeus, 1758

Drepano Beach
39◦30′54.3′′ N 20◦12′39.4′′ E 8 June 2008 16/2 PMR VP 3179 to PMR

VP 3194
ON847339-40 (16S rDNA),
ON853913-14 (12S rDNA)

Lake Heraion
38◦01′31.8′′ N 22◦52′34.6′′ E 8 September 2008 11/2

PMR VP 3195 to PMR
VP 3206,

PMR VP 3207, and
PMR VP 3209

ON847341-42 (16S rDNA),
ON853915-16 (12S rDNA)

Gobius ophiocephalus
Pallas, 1814

Acheloos Delta
38◦20′17.6′′ N 21◦07′39.0′′ E 10 June 2008 2/1 PMR VP 3176,

PMR VP 3178
ON847343 (16S rDNA),
ON853917 (12S rDNA)

Gobius paganellus
Linnaeus, 1758

Acheloos Delta
38◦20′17.6′′ N 21◦07′39.0′′ E 10 June 2008 1/1 PMR VP 3177 ON847344 (16S rDNA),

ON853918 (12S rDNA)
Euboea Island (Livadaki,

Karystos)
38◦00′15.8′′ N 24◦23′30.3′′ E

3 June 2008 1/1 PMR VP 3210 ON847345 (16S rDNA),
ON853919 (12S rDNA)

1 The specimen PMR VP 3208 was identified as G. couchi based on the following diagnosis: (1) suborbital papillae of
lateral-line system without longitudinal row a; (2) all three head canals of lateral-line system present; (3) predorsal
area scaled; (4) six suborbital transversal papillae rows; (5) anterior oculoscapular head canal with pore α at rear
of orbit; (6) oculoscapular papillae row x1 not extending forwards to head canal pore β; (7) scales in lateral series
35–45 (present specimen had 35 and 36); (7) suborbital row d divided below between suborbital rows 2 and 3;
(8) pelvic disc complete or no more than 1/8 emarginate (pelvic disc complete in present specimen); (9) pectoral
fin count 15–18 (present specimen, for both sides, had 17).

3.2. Parasite Identification

Among the five goby species studied, only representatives of G. cobitis were infected
by monogenean ectoparasites. A specimen caught in the Acheloos Delta was infected with
nine monogenean gill parasites, five of which were used for genetic analyses and four
of which were prepared as whole mounts (SMNH 207585-86). For an individual from
Kryoneri Estuary, the infection intensity was seven. Three of these worms were subject
to molecular analyses and the four others mounted on a slide (SMNH 207587). The two
infected individuals were the only representatives of Gobius cobitis studied, leading to a
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prevalence of 100%. The results of measurements performed on the whole mounts are
provided in Table 3. Based on Sasal et al. [16] and Dmitrieva et al. [17], all specimens belong
to X. cobitis (Figure 1).

Table 3. Morphometric data of the haptoral and genital hard parts of specimens of Xenoligophoroides
cobitis sampled in Greece. Measurements and their symbols follow Sasal et al. [16] with terminology
adapted from Řehulková et al. [38]; measurements, all in µm, are presented as the range, followed by
the average and the number of measured structures (n) in parentheses.

Parameter Acheloos Delta Population Kryoneri Estuary Population

Body

Total length 387.6–476.2
(425.7, n = 4)

337.3–408.3
(369.3, n = 4)

Total width 140.1–181.4
(160.0, n = 4)

134.5–203.7
(157.0, n = 4)

Dorsal anchor

Total length (a) 43.0–46.4
(44.5, n = 4)

49.6–53.7
(51.2, n = 3)

Length to notch (b) 32.3–34.1
(33.2, n = 4)

36.4–40.7
(38.6, n = 3)

Inner root length (c) 18.3–22.9
(20.3, n = 4)

23.7–24.6
(24.2, n = 3)

Outer root length (d) 5.1–9.6
(8.0, n = 4)

9.5–11.5
(10.5, n = 3)

Point length (e) 11.8–16.4
(14.4, n = 4)

13.5–20.0
(17.0, n = 3)

Ventral anchor

Total length (a) 34.0–40.1
(37.4, n = 4)

36.8–40.1
(38.0, n = 3)

Length to notch (b) 40.4–44.2
(42.0, n = 4)

42.8–46.2
(45.0, n = 3)

Inner root length (c) 10.3–10.9
(10.6, n = 2)

9.8–10.9
(10.4, n = 3)

Outer root length (d) 5.4–6.3
(6.0, n = 3)

6.4–9.3
(8.2, n = 3)

Point length (e) 4.3–5.5
(4.7, n = 4)

5.6–6.3
(6.1, n = 3)

Dorsal bar

Branch length (h) 35.2–38.4
(36.2, n = 4)

40.1–43.3
(41.7, n = 3)

Thickness at mid-length (w) 8.7–13.5
(11.7, n = 4)

12.8–19.3
(15.4, n = 3)

Total straight width (x) 37.2–59.3
(50.7, n = 4)

56.6–72.4
(67.0, n = 3)

Ventral bar

Thickness at mid-length (w) 4.6–6.2
(5.5, n = 4)

7.7–9.2
(8.4, n = 3)

Total straight width (x) 41.1–45.0
(43.0, n = 4)

50.6–54.0
(52.3, n = 3)

Hook

Pair I: total length (o) 15.5–18.1
(16.9, n = 4)

16.9–19.2
(17.7, n = 3)

Pair I: shank length (p) 9.1–12.2
(10.9, n = 4)

10.7–12.7
(11.5, n = 3)

Pair V: total length (o) 13.8–16.0
(14.9, n = 4)

14.6–15.5
(15.1, n = 3)

Pair V: shank length (p) 8.6–9.5
(9.1, n = 4)

8.3–10.2
(9.2, n = 3)

Other pairs: total length (o) 14.2–18.4
(16.4, n = 20)

14.1–20.7
(17.5, n = 18)

Other pairs: shank length (p) 8.7–11.7
(10.4, n = 20)

8.7–14.4
(11.5, n = 18)

Male copulatory organ
Copulatory tube total straight

length (q)
23.3–31.6

(26.7, n = 4)
14.7–35.2

(24.5, n = 4)
Total straight length of the base of

the copulatory tube (r)
15.3–19.2

(16.5, n = 4)
13.9–21.0

(17.5, n = 4)
Copulatory tube total curved

length (s)
46.7–53.7

(50.4, n = 4)
53.3–60.9

(56.2, n = 4)
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3.3. Sequence Analyses

After trimming, sequence fragments of a maximal length of 858 bp (28S rDNA), 880 bp
(ITS rDNA), and 171 bp (COI) were retained. Although only a single COI sequence was
retrieved (from the Acheloos Delta), the four obtained ITS sequences (two from each
locality) yielded a maximal uncorrected pairwise distance of 0.9% between specimens
collected from the two different sites.

After searching nucleotide BLAST for the ITS fragment of X. cobitis, the highest identity
score (93.2%) was found for two species of Dactylogyrus Diesing, 1850 (unpublished se-
quences KX369215 and KX369219), followed by a score of 91.2% for several representatives
of Cichlidogyrus (sequences of [24,39]). These high scores were only found for a fragment
that covered 23–25% of the total query (ca. 220 bp), or more specifically, in the region span-
ning 5.8S rDNA and internal transcribed spacer 2. For the COI fragment, the sequences
with the highest pairwise similarity score belonged to Kapentagyrus tanganicanus Kmentová,
Gelnar et Vanhove, 2018 (between 79.5% and 80.2% identity, sequences of [40]), followed by
Euryhaliotrema pirulum (Plaisance et Kritsky, 2004) (identity 84.5%, sequence of [41]) and by
species of Cichlidogyrus (maximal similarity of 82.0%, sequences of [24]) and Sciadicleithrum
Kritsky, Thatcher et Boeger, 1989 (maximal similarity of 81.4%, sequences of [42]).

Only a single 28S rDNA genotype was found for all seven specimens successfully
sequenced for this marker. Since other 28S rDNA sequences of X. cobitis are available [17],
we only carried out intraspecific comparisons for this marker. The Greek genotype differed
0.7 to 3.1% (uncorrected p-distance) from those from the Black Sea, and between 0.6 and 1.3%
from Sardinian conspecifics. The median-joining haplotype network, including all other
published sequences of X. cobitis for this marker, situated the Greek population in between
the Sardinian and Black Sea ones (Figure 3). In contrast to the Greek specimens all sharing
a genotype, all genotypes from the Sardinian and Black Sea populations were unique.
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Figure 3. Median-joining haplotype network based on 702 bp of 28S rDNA from the newly sequenced
individuals of Xenoligophoroides cobitis from Greece, and the sequences from Dmitrieva et al. [17].
Genotypes are represented by circles with the size of the circle correlating with the number of
specimens displaying the respective genotype. Colors denote sampling localities; genotypes are
connected with lines, indicating the number of mutations between them. Colors correspond to the
sampling localities in Figure 4.
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Figure 4. Distribution of Xenoligophoroides cobitis. Star: type locality, Gulf of Vlorë, Albania. Triangles:
previously published records without accompanying genetic data (overview: see [17] and references
therein). Green: population from northwestern Sardinia, Italy; orange: population from Gelendzhik,
Russia, both sequenced by Dmitrieva et al. [17]. Pink: population from the Acheloos Delta, Greece;
turquoise: population from Kryoneri Estuary, Greece, both sequenced in the present study. Colors
correspond to those in the haplotype network (Figure 3).

4. Discussion

To further our understanding of the monogenean fauna of eastern Mediterranean
gobies, we screened a number of Greek gobies belonging to five species for monogenean
ectoparasites. The 2 individuals of the giant goby G. cobitis harbored a total of 16 dactylo-
gyrid flatworms on their gills, morphologically and genetically identified as X. cobitis; no
other monogeneans were found in any of the studied individuals. Given these infection
parameters, and since X. cobitis is, here and in other studies (e.g., [16,17,43]), consistently
reported on G. cobitis from different localities, an accidental infection is unlikely.

Ergens [43] described this parasite species as Ancyrocephalus cobitis. It was syn-
onymized with Haliotrema cupensis Sasal, Pages et Euzet, 1998 and assigned to Haliotrema
Johnston et Tiegs, 1922 by Merella et al. [44] as Haliotrema cobitis (Ergens, 1963). Dmitrieva et al. [17]
erected the new monospecific genus Xenoligophoroides Dmitrieva, Sanna, Piras, Garippa
et Merella, 2018 for it. With its type locality in the Adriatic Sea, and earlier observations
from the western Mediterranean and the Black Sea, we here report X. cobitis (and hence any
representative of Xenoligophoroides) for the first time in Greece, in the Ionian Sea and the
eastern Mediterranean (Figure 4).

Dmitrieva et al. [17] provided an overview of morphometric data of the various
populations of X. cobitis hitherto studied. In addition to the similarity these authors ob-
served in overall body morphology, in shape of the hard parts, and in soft-part anatomy,
they also mentioned considerable size ranges. For example, the (inner) length of the cop-
ulatory tube varies from minimally 25 µm in France to maximally 63 µm in the Black
Sea; of the dorsal anchor, from 37 µm to 57 µm, and of the ventral anchor, from 25 µm
to 45 µm (each time the minimal size in the French population and the maximal size
in that of the Black Sea). Dmitrieva et al. [17] mentioned the geographical origin of
the parasite populations, and the different sizes of the hosts studied from the Mediter-
ranean compared to the Black Sea localities, as potential explanations for the size dif-
ference in the parasites. Measurements performed on the specimens from Greece fit
within the ranges mentioned by Dmitrieva et al. [17]. It is noteworthy that the average
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value for most hard-part measurements is higher for the parasites collected at Kryoneri
Estuary in comparison to their conspecifics in the Acheloos Delta (Table 3). The Kry-
oneri host specimen (total length = 88.9 mm, standard length = 72.1 mm + caudal fin
length 16.8 mm) was larger than the one from the Acheloos (total length = 35.6 mm,
standard length = 28.1 mm + caudal fin length 7.5 mm). Despite the limitations of our sam-
ple size, given the fact that these two Greek localities are only about 65 km apart, this could
suggest an influence of host size on the size of the hard parts of X. cobitis. Morphological
differences in various haptoral structures correlating with host size have been reported
in other dactylogyrid monogeneans (e.g., [40]) though other studies did not find such
correlations (e.g., [45] for a gill-infecting polyopisthocotylean monogenean). An increasing
size of the gill lamellae in larger host specimens, potentially rendering larger haptoral
hard parts an advantage for attachment to bigger-sized hosts, has been cited as a potential
explanation for the link between host size and haptor morphology in monogeneans ([46]
and references therein).

We consider the variation found in the ITS rDNA sequences of our specimens of
X. cobitis to be intraspecific, as it remains below the threshold of 1% divergence, for this
marker often associated with a difference between species (in Gyrodactylus: [47]). In contrast
to the Sardinian and Black Sea populations sequenced by Dmitrieva et al. [17], all parasites
in our sample sequenced for 28S rDNA yielded a single identical genotype. This contrasts
with the diversity found by Dmitrieva et al. [17], where all five specimens from a single
site in Sardinia and all four specimens from a single site in the Black Sea had a unique
genotype (Figure 3).

Based on phylogenetic analyses by Dmitrieva et al. [17] using 28S rDNA, the species
most similar to X. cobitis all seemed to share a marine lifestyle, belonging to Ergenstrema
Paperna, 1964, Ligophorus Euzet et Suriano, 1977, Euryhaliotrema Kritsky et Boeger, 2002,
and Haliotrematoides Kritsky, Yang et Sun, 2009. Our BLAST analyses based on the ITS
and COI markers pointed towards similarities with both marine (e.g., Euryhaliotrema) and
freshwater (e.g., Kapentagyrus Kmentová, Gelnar et Vanhove, 2018) genera. We consider our
BLAST results a consequence of the scarcity of barcoding data for monogenean flatworms.
Hopefully, the advent of mitochondrial genomes of an ever-increasing phylogenetic range
of monogeneans (e.g., [48,49]) will help alleviate this important data gap in the near future.

The most recent and much more comprehensive phylogeny of dactylogyrids [23]
placed all above-mentioned genera under Dactylogyrinae, but did not confirm a close
relationship between any of them and X. cobitis. This dactylogyrid phylogeny also positions
the members of Gobioecetes Ogawa et Itoh, 2017, infecting freshwater and diadromous
gobies, in the Palearctic Far East [50], in Dactylogyrinae. Gobioecetes, with its sister taxon
Ancyrocephalus mogurndae (Yamaguti, 1940) that is known to infect the Asian freshwater
goby Gymnogobius urotaenia (Hilgendorf, 1879) among other hosts (see [51]), belonged to
an entirely different clade than X. cobitis, indicating that gobies have been colonized by
members of Dactylogyrinae at least twice independently.

Kmentová et al. [23] could not suggest a lineage closely related to Xenoligophoroides.
Hence, it is impossible to propose a scenario of how (and when) this monogenean, currently
the only known dactylogyrid from European gobies, colonized its host. Additionally,
the host phylogeny adds little information: as the “Gobius-lineage” also includes eastern
Atlantic genera from Norway to South Africa, Ponto–Caspian freshwater representatives,
and even has affinities with tropical Pacific and neotropical gobies [4,52], we cannot reliably
hypothesize where this lineage first infected gobies, and whether this happened in a marine
or freshwater environment.

In contrast to the species-rich assemblage of Gyrodactylus on European (sand) gobies,
only a single species of Xenoligophoroides is known. Although one has to caution against
overinterpretation as many more goby species should be studied for parasites, this dif-
ference in species richness between goby-infecting monogenean lineages could be due to,
for example, a recent colonization of the “Gobius-lineage” (long after it diversified) from
another host lineage, or to “missing the boat” of diversification of these gobies, i.e., the
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absence on the founder populations of diverging goby lineages (see [53]). In order to favor
any of these scenarios, identifying the sister group relationships of Xenoligophoroides would
be key, as would inspecting fish species occurring in sympatry with G. cobitis. It would
perhaps allow the inference of host-switching events such as those proposed by Huyse
et al. [54], who studied sand goby-infecting members of Gyrodactylus. These authors sug-
gested recent host-switches between sand gobies and sticklebacks, and between sand gobies
and eels. In this respect, it may be useful to reflect on the former taxonomic affinities of
X. cobitis. This species was previously assigned to Haliotrema and to Ancyrocephalus Creplin,
1839. Although no other Mediterranean monogeneans are classified under Haliotrema,
other monogeneans occurring in the Mediterranean (e.g., Ancyrocephalus salinus Paperna,
1964 infecting Aphaniops dispar (Rüppell, 1829)) currently belong to Ancyrocephalus, which
can safely be assumed to be a catch-all taxon (see [51,55]). Therefore, we concur with
Dmitrieva et al. [17] that it will be fruitful to verify their systematic position in general,
and their potential affinity to X. cobitis in particular. Apart from, e.g., the killifish host of A.
salinus, further screening of gobiids and fishes occurring sympatrically with gobiids seems
a fruitful approach to increase our understanding of the Mediterranean gyrodactylid and
dactylogyrid fauna.
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37. Renoult, J.P.; Pillon, R.; Kovačić, M.; Louisy, P. Frontiers in Fishwatching Series—Gobies of the North-eastern Atlantic and the

Mediterranean: Gobius and Thorogobius. In Les Cahiers de la Fondation Biotope; Fondation Biotope: Cayenne, France, 2022; Volume
37, pp. 1–237.
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