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Abstract: Pseudogymnoascus is a psychrophilic fungus, which is a genus widely distributed in cold
regions around the world. Recently, the presence of Pseudogymnoascus destructans (Pd), the causative
agent of white-nose syndrome (WNS) belonging to Pseudogymnoascus, has been reported in neigh-
boring countries of Korea. However, no investigation on Pd has been reported in Korea. In this
study, cave-inhabiting bats and their habitats were investigated in terms of the diversity of cave
fungi, and we tried to confirm the presence of Pd. Three caves suspected of hosting Pd were selected,
and 83 environmental and 53 bat samples were collected. A total of 154 fungal strains belonging
to 31 different genera were isolated, and 20 of 154 were confirmed to belong to Pseudogymnoascus.
Pd-diagnostic PCR was performed to check whether Pd was present in the isolated Pseudogymnoascus,
and seven positives were confirmed. However, phylogenetic analyses revealed that no isolates
belonged or were closely related to the clade with Pd. Although samples were collected from limited
areas, undescribed Pseudogymnoascus species were isolated, and it was confirmed that Korean isolates
were distributed in various clades. In conclusion, it is hypothesized that Korean Pseudogymnoascus
presents high diversity.

Keywords: fungal diversity in caves; Pseudogymnoascus; multi-locus phylogenetic analyses; fungal
pathogens; white-nose syndrome

1. Introduction

Fungi are organotrophic microorganisms and the second-largest eukaryote with an
estimated 11.7 million to 13.2 million species [1]. Fungi are most commonly associated
with terrestrial ecosystems, but they are present in almost every environment on Earth,
from deep-sea deposits to animal skin [2–6]. Among fungal habitats, caves are generally
considered an extreme environment for life because of the lack of organic carbon inflow
through photosynthesis [7,8]. In these stringent environments, fungal diversity is generally
considered to be low. However, several papers underline that caves harbor unexpectedly
high diversity [9,10]. Previous studies have suggested that some of the fungal communities
in caves were introduced from the outside [11–14]. They have been reported to be affected
by external factors, such as airflow, water movement, and visitors [11,12,15,16]. Among
these, cave-inhabiting bats are estimated to be one of the most important factors in the
inflow of fungal spores [17,18].

Pseudogymnoascus is one of the fungal genera most closely related to bats [19,20]. In
addition, the genus Pseudogymnoascus is a keratolytic and psychrophilic fungus that has
a wide geographic distribution in cold regions worldwide [21–23]. The genus Pseudogym-
noascus was established by Raillo to encompass the species Pseudogymnoascus roseus and
Pseudogymnoascus vinaceus; decades later, Samson integrated P. vinaceus into P. roseus [24,25].
Attention to cave fungi has soared since 2009 when the pathogen Geomyces destructans,
responsible for the fatal white-nose syndrome (WNS) disease, was identified [19,20,26].
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Minnis and Lindner reorganized Geomyces and allied species after a multi-locus analysis.
Geomyces destructans has been included in the Pseudogymnoascus genus [26], and many other
species have been described in recent years [22,26–28].

Traditional classifications in taxonomy and systematics were mainly based on mor-
phological approaches [29]. However, there may be limitations in systematically classifying
fungal species because the morphological characteristics are not observed to be as diverse
as numerous fungal species [1,30]. To redeem these limitations, molecular methods using a
DNA barcode have emerged [31–33]. However, each gene marker used has different ad-
vantages and limitations [34–37]. Hence, multi-locus sequence typing, which uses multiple
gene markers to redeem for the limitations, is used in fungal phylogeny [38,39].

Research on fungi associated with caves and bats in Korea is insufficient. In addition,
the presence of Pd, the causative agent of WNS, has been reported in countries around
Korea recently [40,41]. However, no studies on Pseudogymnoascus, including Pd, have been
conducted. Therefore, the investigation of fungi present in bats and bat caves in Korea
and the diversity of Pseudogymnoascus species is required. In this study, samples collected
from bats and bat caves were used to cultivate fungi and to conduct Pd-specific diagnostic
PCR and phylogenetic analyses to assess the diversity of Korean Pseudogymnoascus and the
presence of Pd.

2. Materials and Methods
2.1. Sample Collection and Laboratory Processing

In 2018, we were provided information about a bat showing WNS-like symptoms
in Geum cave by a bat ecologist (Dr. Chung CU, personal communication). Based on
this information, we investigated the presence of Pd infection in bat caves and the sur-
rounding environment. Environmental and bat samples were collected from three karst
caves (Geum: 36◦59′ N, 128◦21′ E; Eun: 37◦00′ N, 128◦21′ E; and Handemy: 36◦59′ N,
128◦26′ E) in Danyang, Republic of Korea, during September 2019 to April 2020 (Figure 1).
The temperature of the caves was 6–15 ◦C and the humidity was 50–83%. The bat guano
and cave wall samples were collected using sterilized cotton swabs. Bats were captured
using a bat mist net within the caves and were immediately released after oral and skin
swab collection using sterilized cotton swabs. All bats in the caves were examined for the
presence of Pd using ultraviolet (UV) light at a wavelength of 365 nm (Analytik Jena, Jena,
Germany) [42,43]. All bats showed negative results for the UV light test. Skin swabs were
stroked approximately 10 times, focusing on the bat’s wing membrane, ears, nose, and side
of the mouth. Furthermore, oral swabs were obtained from the tongue and palate mainly.
Bat guano (1 g) was suspended in 10 mL phosphate-buffered saline (PBS), containing
100 µg/mL of gentamycin and chloramphenicol. The swab samples were suspended in
1 mL of the mixture of antibiotics in PBS. A total of 83 environmental samples (Geum: 52;
Eun: 14; Handmy: 17) and 53 bat samples (Geum: 15; Eun: 20; Handmy: 18) were collected.
All samples were transported to the laboratory in a cooler and stored at 4 ◦C in the fridge
until processed (three days).

2.2. Culture and Isolation of Fungi

To isolate fungi, 83 environmental samples (44 cave wall swabs and 39 bat guano) and
53 bat samples (19 oral swabs and 34 skin swabs) were cultured on Sabouraud dextrose
agar (Becton Dickinson Co., Sparks, NV, USA), containing 100 µg/mL gentamycin and
chloramphenicol (MBcell, Seoul, Republic of Korea). The supernatants of environmental
samples, skin and oral swabs were collected through centrifugation at 3000 rpm for 1 min
at 4 ◦C and then diluted to 1 × 105 fold using PBS. Diluted sample supernatants (100 µL)
were inoculated onto the media, and PBS was used as a negative control. The inoculated
media were divided into samples at room temperature (20 ◦C) and at low temperature
(6 ◦C) groups, and dark incubation was performed at room temperature for two weeks and
at low temperature for 40 days. Media were checked daily. To obtain fungal cultures, the
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single-spore isolation method was used [44]. Single fungal cells were washed once with
distilled water and harvested in 2 mL of PBS.
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Figure 1. Map of the sample collection sites for this study. The picture is a magnification of the gray
area of the South Korean map, and the location of the three caves within Danyang is marked with
yellow crosses. The environmental samples, bat skin swabs, and oral swabs samples were collected
from each site.

2.3. Genomic DNA Extraction, PCR Amplification, and Sequencing

Genomic DNA from pure fungal colonies was extracted using the i-genomic BYF DNA
Extraction Mini Kit (iNtron Biotechnology, Seongnam, Republic of Korea) according to the
manufacturer’s instructions. The isolates were first identified at genus level by internal
transcribed spacer (ITS) sequencing and BLASTn comparison. The strains belonging to
the Pseudogymnoascus genus were furtherly processed for the 28S large subunit rRNA
gene (LSU), translation elongation factor 1 alpha (TEF1-α), minichromosomal maintenance
protein 7 (MCM7), and RNA polymerase II second-largest subunit (RPB2) [22,26–28]. In
addition, amplification was performed using nu-SSI(1506)-184-5′-Gd and nu5.8S-144-3′-Gd
primer pair for Pd diagnosis [45]. The primer sequences used to amplify the markers are
listed in Table S2. This amplification was performed using Maxime™ PCR Premix i-StarTaq
(iNtron Biotechnology) according to the manufacturer’s instructions. The PCR mixture
(20 µL) contained 50 ng of DNA template and 10 pmol of each primer. Sequencing was per-
formed by barcode-tagged sequencing (BTSeqTM; CELEMICS, Seoul, Republic of Korea).
All sequences generated in this study were deposited in the GenBank database, and their
accession numbers are listed in Table S3.

2.4. Strain Identification and Phylogenetic Analysis

The sequences generated in this study were combined with the ones downloaded from
GenBank to generate a sequence dataset (Table S3). Available reference sequences were
retrieved from the NBCI database, and fungal sequences were aligned with the reference
sequences using MAFFT v7.3113. Both sequence editing and concatenation were performed
using MEGA 7.0.26 [46]. Minnis and Lindner observed that LSU and TEF1 introns have
limited phylogenetic value because they are present and scattered among unrelated Pseudo-
gymnoascus members [26]. Therefore, homologous gaps corresponding to LSU and TEF1
introns were excluded. In addition, the non-overlapping ends of the sequences in each
alignment were trimmed. Phylogenetic analysis was conducted using maximum likelihood
(ML) and Bayesian inference (BI) methods. ML analyses were performed using IQ-TREE
v 1.6.8 [47]. The best-fit nucleotide substitution model for each locus was estimated us-
ing IQ-TREE’s Model Finder function [48] following the Bayesian information criterion
(BIC). Bootstrap analyses were performed using ultrafast bootstrap approximation with
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1000 replicates [49]. BI analyses were performed using MrBayes v.3.2.6 [50]. The analyses
included two independent runs of five million generations with four chains each. The
substitution model was set to K2 + I + G, and the first 25% of the samples and trees were
discarded as burn-ins. The remaining trees were used to construct a 50% majority rule
consensus tree.

3. Results
3.1. Fungus Isolation

Fungal colonies were cultivated from 31 of 83 environmental samples, 17 of 19 oral
swab samples, and 13 of 34 skin swab samples. A total of 154 fungi were isolated, including
100 from the environment, 22 from oral swabs, and 32 from skin swabs.

3.2. Identification of Isolated Fungi

In the identification of isolated fungi using the ITS region molecular marker, the
occurrence of isolated fungi from environmental samples by family level was as shown in
Table 1. The occurrence of isolated fungi from bat samples by family level was as shown
in Table 2. The occurrence frequencies of total isolated fungi by phylum level were as
follows: Ascomycota (83.8%); Basidiomycota (14.3%); and Mucoromycota (1.9%). The most
abundantly isolated family was Saccharomycetaceae (32.5%), followed by Trichocomaceae
(22.1%), Pseudeurotiaceae (15.6%), and Cladosporiaceae (2.6%). The highest-frequency genera
were Debaryomyces (40 strains), Penicillium (33 strains), and Pseudogymnoascus (20 strains)
(Table S1).

Table 1. Fungal diversity frequencies by phylum and family level of isolated from cave environmental
samples at each cave: (a) Geum; (b) Eun; (c) Handemy. Trichocomaceae was most abundantly isolated.

Phylum Family No. Isolates Isolates
%

(a)

Ascomycota

Trichocomaceae 17 27.4
Pseudeurotiaceae 16 25.8

Saccharomycetaceae 2 3.2
Clavicipitaceae 2 3.2
Hypocreaceae 1 1.6
Nectriaceae 1 1.6

Cladosporiaceae 1 1.6
Myxotrichaceae 1 1.6

Plectosphaerellaceae 1 1.6
Sordariomycetes 1 1.6

Basidiomycota
Mrakiaceae 8 12.9

Trichosporonaceae 7 11.3
Tremellaceae 1 1.6

Mucoromycota Mucoraceae 3 4.8
(b)

Basidiomycota Trichosporonaceae 3 42.9

Ascomycota
Trichocomaceae 2 28.6
Chaetomiaceae 1 14.3

Torulaceae 1 14.3
(c)

Ascomycota

Trichocomaceae 10 32.3
Saccharomycetaceae 9 29.0

Pseudeurotiaceae 3 9.7
Cladosporiaceae 2 6.5
Didymellaceae 1 3.2

Nectriaceae 1 3.2
Incertae sedis 1 3.2
Microascaceae 1 3.2

Basidiomycota Mrakiaceae 2 6.5
Trichosporonaceae 1 3.2
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Table 2. Fungal diversity frequencies by phylum and family level of isolated from bat samples (oral
and skin swab) at each cave: (a) Geum; (b) Eun; (c) Handemy. Saccharomycetaceae was the most
frequently isolated.

Phylum Family No. Isolates Isolates
%

(a)

Ascomycota Saccharomycetaceae 14 72.2
Cladosporiaceae 1 1.9

(b)

Ascomycota

Saccharomycetaceae 4 36.4
Pseudeurotiaceae 4 36.4
Trichocomaceae 2 18.2
Pleosporaceae 1 9.1

(c)

Ascomycota

Saccharomycetaceae 21 75.0
Dothioraceae 3 10.7

Trichocomaceae 3 10.7
Pseudeurotiaceae 1 3.6

3.3. Pd-Specific Diagnosis

A total of Pseudogymnoascus samples were confirmed from 16 environmental samples,
1 oral sample, and 3 skin samples (Figure 2 and Table S1). Pd-diagnostic PCR results
revealed that 7 out of 20 isolates tested positive for a 650 bp size (skin swab: 3 isolates;
environment: 4 isolates) (Figure 3).
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3.4. Phylogenetic Analysis of Pseudogymnoascus

After excluding non-overlapping ends and LSU and TEF1 introns, the concatenated
alignment contained 3199 nucleotides (ITS, 486; LSU, 934; MCM7, 503; RPB2, 526; and
TEF1, 750). The BI and ML trees showed identical topologies. Therefore, only the BI tree is
shown (Figure 4).
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Figure 4. Bayesian inference phylogenetic tree of Pseudogymnoascus generated from the concatenated
dataset of five loci (ITS, LSU, TEF1, RPB2, and MCM7) [22,26–28]. Bayesian posterior probabilities
(BPPs) and significant ML bootstrap (BS) values are indicated with branches. Only clades that
received 0.70 BPP and 70% BS simultaneously were considered to be strongly supported and are
presented at the branches. Clades are identified using clade nomenclature (A to M), formally defined
by Minnis and Lindner [26]. The scale bar indicates 0.02 nucleotide changes per site. Isolated strains
in this study are highlighted in bold and red.
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The clades achieved by the BI method were named A to M, as defined by Minis and
Lindner [26]. The Pseudogymnoascus isolates fell in clades A (4), B (5), C (1), D (4), H (3), and
J (2) (Figure 4). None of the Pseudogymnoascus isolates fell into Pd as clade F.

4. Discussion

A total of 154 fungi were isolated from the bat and habitat environment samples. The
most dominant family of isolated fungi from environmental samples was Trichocomaceae,
which includes Penicillium and Aspergillus (Tables 1 and S1). These two genera have been
reported as the most common fungi in the cave environment, along with Cladosporidium [51].
The most abundant family of isolated fungi from bat samples was Saccharomycesaceae,
which includes Debaryomyces and Candida (Tables 2 and S1). To begin with, there was a
report that Candida and Debaryomyces were identified in bat feces [52,53]. In addition,
Debaryomyces is known as a common yeast found in bat skin [54,55]. In conclusion, it
is assumed that these fungi continue to circulate in bat-dwelling environments and bats.
Except for these two families, the notable one was the family Pseudeurotiaceae (24), which
was abundantly isolated in both environmental and bat samples (Tables 1 and 2). This
family contains Pseudogymnoascus (20) and Leuconeurospora (4) (Figure 2 and Table S1). The
genus that constituted the most significant proportion of Pseudeurotiaceae was Pseudogym-
noascus, which is abundantly present as a keratolytic fungus in cave environments and
as a saprophyte in cold soils and tree roots [4,21,23]. In addition, the high abundance of
Pseudogymnoascus is assumed to be caused by the fact that the cave environment is suitable
for its growth. The optimal temperature for Pseudogymnoascus growth is 15 ◦C [22], and the
average temperature in the cave from which the samples were collected was 11 ◦C.

A Pd-diagnostic test using Pd-specific primers showed that 7 out of 20 Pseudogym-
noascus species were positive. However, the phylogenetic tree revealed they were not
located within clade F where Pd belongs. Lorch reported a 100% Pd-specific diagnostic
PCR primer specificity [28]. However, in this study, a 35% false positive rate was observed
(Figures 3 and 4). The Pd-diagnostic primer described by Lorch contains a portion of the
intron of SSU and the ITS1 5.8 s region [28]. SSU is used to analyze high taxonomic levels
(family, order, class, and phyla) due to low variation between taxa [56]. In addition, ITS is
a region used to analyze low taxonomic levels due to relatively high variations between
taxa groups, but it does not work well in some fungal genera, and it was reported that
the intergenomic ITS variation does not occurs largely in 3–5% of Ascomycota and Basid-
iomycota [37,56]. Considering this information, false positive results were presumed to
be because Pd and the isolates were of the same genus. Even when isolates were not Pd
(Figure 4), because this region is analogous to Pd, it is assumed that the diagnostic PCR
result was positive (Figure 3). Further studies, such as improving the false positive rate
of diagnostic primers for fungi in the same genus or developing new diagnostic methods
using other target regions, are required.

Isolates 19BE01LM3, 20BE01LM1, and 19BE05LM1 fell in clade A. 19BG05LM3,
20BE09LM2, 20BE10LM1, and 20BE20LM3 were located in clade D. However, they were in
independent branches of previously known species (Figure 4) [22,26–28]. These isolates are
new undescribed species, which require future morphological analyses.

Pseudogymnoascus isolates known to date are predominantly from the United States
and China, except for some from Antarctica (Table S3). Most studies have been conducted
in North America and China, and recent studies in Antarctica have been reported [22,26–28].
Pseudogymnoascus species have been isolated several times throughout the United States
and constitute an entire clade, most of which have been isolated from bat caves [22,26].
Furthermore, the Pseudogymnoascus species reported from urban soil in various regions of
China were located in clades B, E, H, and J [27,28]. In this study, Pseudogymnoascus species
were isolated from samples collected from bat caves in limited areas, but isolates were
located in various clades (A, B, C, D, H, and J). Some of those isolated are new undescribed
species. Samples collected from more regions in the future may contribute more to the
study of Pseudogymnoascus.
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Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/d15020198/s1: Table S1: Identification of isolated fungi and
percentage at phylum, family, and genus level; Table S2: Primer information and PCR protocols used
in this study; and Table S3: GenBank accession numbers of the sequences used in this study [57–65].
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