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Abstract: South Africa is recognised for its high reptile diversity and endemism, specifically among
lizards. Phylogenetic diversity, endemism, and richness can have clear implications or raise important
questions in a range of fields, and most urgently in conservation. Among squamate reptiles, these
indices are very commonly associated with high temperatures and topographic heterogeneity. Indeed,
mountainous biogeography has been a critical driver in the radiation of the family Gekkonidae within
the subregion. Here, we assess the species richness, diversity, and endemism of Gekkonidae species
inhabiting South Africa, Lesotho, and Eswatini, accounting for phylogenetic relationships. We also
employ the CANAPE method to identify regions that have neo- and/or paleoendemics. Southern
African gekkonids appear to be most diverse and show high levels of endemism in three regions of
Southern Africa: the northwestern Richtersveld, the escarpment running west to southeast, and the
northeastern escarpment in the Limpopo province. Implications for conservation priorities are discussed.

Keywords: CANAPE; escarpment; phylogenetic diversity; phylogenetic endemism

1. Introduction

Historical climatic and geological events and phylogenetic biogeography have played
essential roles in driving the large-scale distribution or isolation of organisms [1,2]. High-
lighting specific regions harbouring exceptional phylogenetic diversity, endemism, and
richness can have clear and fundamental conservation implications [3] or raise important
questions for investigating major evolutionary and biogeographic events [4] and ecological
drivers [5,6]. Squamate reptiles are a diverse group, with approximately 9850 species
distributed throughout the globe [7]. Correlations of species richness and diversity among
reptiles are commonly associated with high temperatures and topographic heterogene-
ity [8–10]. Squamate reptiles make excellent models for investigating the evolutionary and
biogeographical drivers of species richness and diversification due to their significant range
in habitat utilisation, habitat specialisation, and limited dispersal abilities [11,12].

South Africa is a megadiverse country with three global biodiversity hotspots: the
Cape Floristic Region, the Maputaland-Pondoland-Albany Hotspot, and the Succulent Ka-
roo. Regarding reptile distributions, compared to other African countries, South Africa has
been relatively comprehensively sampled [13]. This area, including Lesotho and Eswatini,
is also recognised for its high reptile diversity and endemism [14]. Mountainous biogeogra-
phy has been a critical driver in the radiation of many reptiles within the subregion [15–18].
The complex topographic landscape has primarily been driven through two unrelated
major geological events, namely the upliftment of the Great Escarpment and the Fold
Mountains [19,20].
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1.1. Gekkonid Diversity

The Southern African gekkonids are one of the most diverse and highly endemic
groups of reptiles within the region, consisting of 86 recognised species from 12 genera
(Figure 1). Of these, ~75% species and 5 genera are thought to be endemic or near-endemic
to the region [14,15].

Afroedura Loveridge 1944 is a species-rich genus distributed throughout Southern Africa,
extending northwards into Angola. Currently, there are 34 species [21], with several awaiting
description. The genus primarily comprises rock-dwelling, montane species, except for a few
arboreal species (e.g., Afroedura loveridgei and Afroedura marleyi) [14,21,22]. Three major clades
are present within Afroedura, predominantly along the isolates of the Great Escarpment, with
some members occupying coastal plains or the Cape Fold Mountains [15].

A monotypic genus, Afrogecko Bauer, Good & Branch, 1997, has a unique taxonomic
past. Two subspecies, Phyllodactylus porphyreus cronwrighti and Phyllodactylus porphyreus
namaquensis, neither of which is currently recognised [14], require further investigation due
to strong genetic differences, thus making Afrogecko porphyreus a species complex [23]. There
remains a strong likelihood of cryptic taxa within the Afrogecko porphyreus complex [23].
No new material on the P. p. namaquensis has been collected to confirm its status. Afrogecko
porphyreus is restricted to southwestern South Africa. It is predominantly rupicolous;
however, some populations occupy vegetation within the coastal plains [22].

The genus Chondrodactylus W. Peters, 1870 consists of large geckos, most of which are
rupicolous, with some also displaying arboreal behaviour. Four species are present within
South Africa [24], predominantly distributed inland of the Great Escarpment. A single
member of the genus, Chondrodactylus angulifer, is a terrestrial burrower and has evolved
accordingly [25,26].

The monotypic genus of leaf-toed geckos, Cryptactites Bauer et al., 1997 is a low-
altitude coastal endemic. Its only species, Cryptactites peringueyi, is a small terrestrial
and semi-arboreal gecko utilising coastal vegetation in a small range of the Eastern Cape
province [27]. Its restricted range and poor phylogenetic diversity make this lineage the
country’s most range-restricted gecko genus.

Another group of small leaf-toed geckos are from the genus Goggia Bauer, Good &
Branch, 1997. This near-endemic group consists of 10 species restricted to southern and
northwestern South Africa. The genus consists of rupicolous and often mountainous genera,
except for two species, G. lineata and G. incognita, which are found in shrub or fynbos in
open vegetation types [22,28].

The most species-rich genus, Hemidactylus Oken, 1817, is widely distributed through-
out the globe. Despite high diversification of Hemidactylus across the Afrotropic and
subtropical regions, only a single species, Hemidactylus mabouia, is found within the borders
of South Africa. The species is a generalist and occupies mountainous, inland, and coastal
habitats [14,22]. They are successful invaders throughout the country and on a global
level [12,14]. It is predominantly rupicolous; however, as with most rupicolous species
within the region, it displays arboreal behaviour, and is, additionally, well-adapted to urban
environments [22].

The genus Homopholis Boulenger, 1885 consists of four large-bodied, soft-skinned
species. They are widely distributed, except for Homopholis mulleri, which is restricted to
the northern extent of the Soutpansberg Mountains in Limpopo, South Africa.

Within the region, Lygodactylus Gray, 1864 consists of 11 species [22]. Many species have
limited ranges, with several restricted to a single massif or mountaintop [14,22]. Radiation
among Lygodactylus took place in two major clades, an Afromontane (greater Drakensberg)
clade and a savanna-dwelling clade (except for a single montane species, L. bernardi, from
Zimbabwe) [16]. Lygodactylus capensis, a widespread species from the savanna clade, is one
of the most successful invaders within the country. The species has successful colonies
throughout many western cities and towns far outside its natural range [29].

The most species-rich gekkonid genus within the region is that of Pachydactylus Wieg-
mann, 1834, which consists of 29 species. Radiation and endemism within the group
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were likely driven due to substrate specialisation in many species and historical vicariant
events [30]. This group displays major differences in size [31], morphology [25,32], and
geographical and environmental niches among species [28].

A single species of Ptenopus Gray, 1866 occurs within South Africa, with the remaining
two species restricted to Namibia. The genus is known to predominantly occupy savanna,
scrubland, and desert habitats [14,22]. They are commonly known to utilise characteristic bur-
rows, often within loose soils, from where males call [33]. Intraspecific diversity among South
Africa’s only species, Ptenopus garrulus, is likely, with two subspecies currently recognised.

The genus Ramigekko Heinicke et al., 2014 consists of a single species, Ramigekko swart-
bergensis, which is a sizable rupicolous gekkonid restricted to the high mountain tops of the
Klein and Groot Swartberg Mountains, within the Cape Fold mountain range [14,34–36]. The
genus, which forms part of the circum-Indian Ocean leaf-toed geckos, was elevated from the
now monotypic genus Afrogecko by Heinicke et al. [23]. Its closest living relative is the coastal
endemic and monotypic genus, Cryptactites. The entire geographic range of the genus occurs
in a predominantly inaccessible protected area, thus facing no major anthropogenic threats.

Another monotypic gecko, Rhoptropella Hewitt, 1937, a close relative of the Day
Geckos—Lygodactylus, is another rupicolous genus. The small Namaqua Day Gecko—
Rhoptropella ocellata, is restricted to mountain ranges in northwestern South Africa and
southern Namibia [14]. This species is the only naturally-occurring diurnal gekkonid
within this far-western arid region [22].

It is evident that there is exceptional diversity and endemism of gekkonids within the
Southern African countries. Furthermore, with the group comprising several monotypic
genera and genera with few species, it is essential that conservation measures are put in
place to conserve phylogenetic diversity.
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Figure 1. Representations of gekkonid genera within South Africa: (A) Simplified phylogenetic represen-
tation of the genera, constructed from the phylogeny produced in this study and from various published
gekkonid phylogenies [15,37–41]. Numbers at the nodes indicate the Clade number (as in Figure S1). Pie
charts at the tips indicate the number of species within the genus that inhabit various altitudes (green
pie charts), the general habitat in which the species are found (biotopical preferences, blue pie charts),
and the habitat specialisation of the species (orange pie charts). Genera that are underlined have species
that enter in Red List (https://www.iucnredlist.org/; accessed on 17 December 2022). (B) Donut chart
to the urban environment. Information for the pie charts was obtained from the species accounts in
the IUCNshowing the number of species from each genus present in South Africa, Lesotho, and Eswatini. The
illustration below details the biotopical preferences and altitudinal zone distinctions.

1.2. Conservation

A comprehensive assessment [42] estimating the extinction risk of reptiles found that
~21% are threatened with extinction. Conservation measures are often implicated in areas
of high diversity and species richness [43,44], or specifically implemented for species of
conservation concern (e.g., the establishment of the Mountain Zebra National Park (South
Africa) in 1937, to protect the Mountain Zebra). However, phylogenetic diversity is often
overlooked when assessing and planning conservation networks. Protected areas are critical
for mitigating further biodiversity loss [45,46]. South Africa is a global leader in science-
based conservation strategies [47–50]. The protected area network covers approximately
9% of South Africa’s mainland surface area [51], and it is essential for conserving the

https://www.iucnredlist.org/
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diverse fauna and flora, maintaining livelihoods, economic development, and preserving
many ecological services. Despite the sizable protected area network and protected area
expansion plan [52], it is insufficient in protecting South Africa’s threatened reptiles [53].
Fortunately, despite the high endemism and restricted distribution of many South African
gekkonids [14], only a few taxa are listed under a threatened category in the IUCN Red List,
these being Afroedura multiporis [54] and Homopholis mulleri [55], which are listed as Near
Threatened, and a single Endangered species, Lygodactylus methueni [56].

1.3. Study, Research Question, and Aims

Due to the substantial diversity, habitat specialisation, and endemism within this
group, gekkonids are an ideal biological model to assess the spatial pattern of diversity
and endemism associated with elevation in the region. Sampling from Southern African
countries (South Africa, Lesotho, and Eswatini), the phylogenetic relationships, diversity,
and endemism of the sampled gekkonid species were investigated. We aimed to (1) identify
areas of significant gekkonid species richness and phylogenetic diversity, and (2) assess
which areas are protected or are important to conserve gekkonid species richness and
phylogenetic diversity.

2. Materials and Methods
2.1. Map Production

Data for the distribution of gekkonids within South Africa, Lesotho, and Eswatini
(hereafter referred to as Southern African countries) were obtained from the literature,
GBIF (https://www.gbif.org/, accessed on 17 December 2022), museum data, and citizen
science platforms, such as the Animal Demography Unit’s Virtual Museum (https://vmus.
adu.org.za/, accessed on 17 December 2022) and iNaturalist (https://www.inaturalist.
org/, accessed on 17 December 2022). A dataset was compiled for each species and the
corresponding Quarter degree Squares (QDSs) in which they occur. A single shapefile per
species of the 12 genera occurring within the sub-region and their corresponding QDS in
which they are found were imported into QGIS (QGIS LTR) [57]. The shapefiles of each
species were given an opacity of 15, which allowed for species richness maps of each genus
to be generated.

The centroid GPS points for each QDS for the Southern African countries were com-
piled. Surface plots of elevation and species numbers were created in RStudio v.2022.07.2
and R v.4.2.1 [58]. The elevation at each of those GPS coordinates was obtained (package:
elevatr; function: get_elev_point; prj: EPSG:4326; src: aws) [59]. The GPS points that were
located below sea-level were removed from the DataFrame. A surface plot was created,
plotting the elevation or the number of gecko species at each GPS point for the three
countries (package: plotly; functions: plot_ly, add_surface) [60].

2.2. Phylogenetic Tree Construction

A phylogenetic tree of the gekkonid species found in the Southern African countries
was constructed using a concatenated dataset of nucleotide sequences obtained from
GenBank (https://www.ncbi.nlm.nih.gov/, accessed on 17 December 2022; Table S1).
Three partial-coding gene regions were used: (1) mitochondrial NADH dehydrogenase
subunit 2 (ND2), (2) nuclear recombination-activating gene 1 (RAG1), and (3) nuclear
phosducin (PDC) genes. The sequences were aligned using ClustalW within MEGA X [61].
No saturation was found using the program DAMBE v.6.4.81 [62], so each gene region was
used as a separate partition in the dataset. The GTR+G+I model of nucleotide substitution
was used for each gene region. The phylogenetic tree was estimated using Bayesian
inference in MrBayes v.3.2.7 [63]. Two chains were run for 10 million generations, at a
sampling frequency of 1000, and the trees were summarised using a 10% burn-in. The
ESS values were checked in Tracer v.1.6.0. [64]; all values were above 200, and the runs
reached convergence.

https://www.gbif.org/
https://vmus.adu.org.za/
https://vmus.adu.org.za/
https://www.inaturalist.org/
https://www.inaturalist.org/
https://www.ncbi.nlm.nih.gov/


Diversity 2023, 15, 306 6 of 17

2.3. Diversity and Endemism Estimates

Traditional diversity estimates utilise species counts and richness estimates; however,
they do not take the evolutionary history of the species into account. Thus, estimates of
diversity and endemism that consider evolutionary relationships and time since divergence
into account have become popular in the past few decades (phylogenetic diversity [65] and
phylogenetic endemism [66]). By using a phylogenetic estimate of divergences between
taxa, we can determine areas that have a diversity that is either newly originated (neoen-
demics have shorter branch lengths) and range-restricted, or older range-restricted groups
(paleoendemics have longer branch lengths) [67]. See [68] for descriptions of each index.

Diversity estimates were mapped using the program BioDiverse v.4.0 [69]. Various
blog posts and instructions can be found on the software developer’s website: https:
//shawnlaffan.github.io/biodiverse/. The phylogenetic tree produced in this study was
exported from Figtree v.1.4.3 (http://tree.bio.ed.ac.uk/software/figtree/, accessed on
17 December 2022) in Newick format and imported into BioDiverse. The presence of
each species was indicated by the QDS centroid GPS point, and the tabulated list of GPS
coordinates for each species (86 species out of 91 Southern African gecko species) was
imported into BioDiverse, resulting in 1504 equal-area square grid cells (250 × 250 km)
covering the Southern African countries. Diversity and endemism indices were esti-
mated: Taxonomic Richness (TR), Shannon Diversity Index (SD), Weighted Endemism
(WE), and Corrected Weighted Endemism (CWE) [70]. Diversity and endemism indices,
taking phylogeny into account, were estimated: phylogenetic diversity (PD) [65], phy-
logenetic endemism (PE) [66], relative phylogenetic diversity (RPD) [67], and relative
phylogenetic endemism (RPE) [67]. Phylogenetic diversity and endemism estimates on
their own are not very informative, and thus a total of 999 iterations were run using the
rand_structured model, recalculating the PD, PE, RPD, and RPE surfaces for each iteration.
Indices in the highest 2.5% or the lowest 2.5% of the distribution were considered significant
(two-tailed test). The QDSs that had significant neoendemics, paleoendemics, or a mixture
of both were identified by using the Categorical Analysis of Neo- and Paleo-Endemism
(CANAPE) [67] method conducted in the BioDiverse program from the iterations run using
the rand_structured model.

3. Results
3.1. Generic Distribution

The 12 gekkonid genera that inhabit the Southern African countries tend to be dis-
tributed along the coastal plains (e.g., Cryptactites, Afrogecko, and Goggia), along the es-
carpment (Afroedura, Goggia, and Homopholis), and more widely distributed on the inte-
rior plateau (the remaining genera) (Figure 2). Three genera (Afrogecko, Cryptactites, and
Ramigekko) are monotypic, range-restricted, and endemic to the region (Figure 2), and,
interestingly, they are sisters (Figures 1 and S1). These three genera occur along the coastal
plains and the fold mountains in the south and west of South Africa (known as the Cape
Fold Mountains). The other monotypic genus, Rhoptropella, is also range-restricted although
it does occur near the border of South Africa, and it enters into Namibia. There appears to
be an evident east–west divide between and within the genera, with few species inhabiting
the grassland biome in the central part of South Africa and the high elevation Lesotho
region in the east (Figures 2 and 3). QDS squares that had a centroid >2000 masl tended
to have fewer than 5 species, and those at >2200 masl had either 1 or 2 species (species of
Afroedura and Pachydactylus). Species richness is highest in the western and eastern extent of
the Great Escarpment, with similar, yet less impressive, species richness being found across
the Cape Fold Mountains in the southwest of South Africa (Figure 3). Species richness is
largely derived from four speciose genera, namely Afroedura and Lygodactylus in the east,
and Goggia and Pachydactylus in the west and south. However, radiation from Afroedura in
the southern Great Escarpment did contribute to the diversity of this region. Less species-
rich genera (Chondrodactylus, Hemidactylus, Homopholis, and Ptenopus) were found to be

https://shawnlaffan.github.io/biodiverse/
https://shawnlaffan.github.io/biodiverse/
http://tree.bio.ed.ac.uk/software/figtree/
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widely distributed, while monotypic genera (Cryptactites, Ramigekko, and Rhoptropella), with
the exception of the Afrogecko species complex, had restricted ranges.
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3.2. Phylogenetic Relationships between Southern African Gekkonids

Phylogenetic relationships between gekkonid species inhabiting South Africa, Lesotho,
and Eswatini in this study match previously published phylogenies of lizards (e.g., [15,37–41];
Figures 1 and S1). As with most phylogenies of gecko taxa (e.g., [41]), the deeper nodes could
not be resolved, and form a polytomy. The nodes basal to the genera are resolved, making the
genera monophyletic, and there are only a few unresolved relationships within the genera
Pachydactylus and Afroedura. Pachydactylus and Chondrodactylus are sisters, and they are sisters
to Goggia (Clade 1). Afroedura and Homopholis are sisters (Clade 2), and this clade is sister to
Clade 1. Lygodactylus and Rhoptropella are sisters (Clade 3), and Clade 4 contains the monotypic,
range-restricted, and endemic genera Cryptactites, Ramigekko, and Afrogecko. Hemidactylus and
Ptenopus are sisters (although this relationship is not supported).

3.3. Gekkonid Diversity and Endemism

There is a high diversity of gekkonids in the northeast of South Africa (in the Limpopo
province) in terms of species numbers (Figure 3), species richness (Figure 4A), traditional di-
versity (Figure 4B), and phylogenetic diversity (Figure 4C). This region also has a relatively
high number of endemic species (Figure 5), and parts of this region have a number of QDSs
that have mixed endemism, and there is a hotspot of neoendemics in the lower-elevation
areas between the Soutpansberg range and the northern extent of the Drakensberg moun-
tain range. The interior plateau has poor species richness, diversity, and phylogenetic
diversity (Figures 3–5), and, in fact, lower-than-expected endemism (Figure 5E,F), with no
endemics (neither neo- nor paleoendemics; Figure 6) found in this region. While the eastern
escarpment does not have a high species richness, diversity, or phylogenetic diversity,
the region near the Amathole–Stormberg mountain range in the southeastern escarpment
has a high level of mixed endemics (Figure 6). The south coast near Port Elizabeth (now
called Gqeberha) exhibits high levels of diversity (Figure 4), endemism (Figure 5), and
mixed endemism (Figure 6). The escarpment running along the south and west of South
Africa appears to have a high diversity (Figure 4B) and relatively high levels of endemics
(Figure 5A–C), with a few areas exhibiting high levels of mixed endemism. The Richtersveld
in the northwest of South Africa appears to have high levels of diversity and endemism
(Figures 3–5). Most of the region exhibits mixed levels of endemism, and the only QDS in
Southern Africa found to have paleoendemics is located within this region.
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and (F) RPE. The red values indicate grid cells that contain significantly less PE/RPE than expected;
the blue values indicate grid cells that contain significantly more PE/RPE than expected.

Diversity 2023, 15, x FOR PEER REVIEW 13 of 18 
 

 

  
Figure 6. CANAPE results: Map showing QDGS squares within the Southern African countries that 
exhibit neoendemism (red), paleoendemism (blue), and mixed endemism (purple) levels of gek-
konids. Topographical map of the Southern African countries shown on the right (created by 
G.K.N.). 

4. Discussion 
Spatial gradients of species richness, diversity, and endemism in gekkonids that in-

habit the Southern African countries appear largely driven by historical, geological, and 
ecological factors, such as topology and climate. Endemism is present predominantly 
among rupicolous species in heterogeneous mountainous landscapes formed through the 
upliftment of the Great Escarpment and the Cape Fold Mountains. The areas highlighted 
with high endemism and diversity are critical areas for investigating ecological drivers in 
macroecology. More information collected regarding our threatened geckos and areas of 
importance allow for thorough and decisive conservation decision making and can act 
towards protecting the broader ecosystems in which these organisms occur [71]. 

4.1. Diversity, Species Richness, and Endemism 
It has long been recognised that merely using a measure of diversity by counting 

species numbers is not adequate to accurately ensure that evolutionarily significant spe-
cies are conserved, and that the diversity of a region should be investigated taking evolu-
tionary history into account, using, for example, a measure of phylogenetic diversity (PD) 
[65,72–74]. By incorporating species differences, not just species numbers, into conserva-
tion priorities, those species that are evolutionarily distinct are prioritised—i.e., the “qual-
ity” (i.e., taxonomic distinctiveness), not quantity, of species are conserved [74,75]. In ad-
dition, the degree of endemism of a group has been a major consideration in biogeo-
graphic studies [76,77], as endemism relates to the idea of irreplaceability [78]. Endemism 
has been measured initially as the restriction of a taxon to a particular region (traditional 
endemism), the degree of restriction of a taxon-range on a quantitative scale (relative en-
demism) [70], and the geographic restriction of clades at any taxonomic level (phyloge-
netic endemism (PE) [66-68]. 

For the most part, investigations into neo- and paleoendemism have been performed 
on flora assemblages; however, a global assessment of land vertebrates using the 
CANAPE method highlighted the squamate hotspots along the southern African escarp-
ment (Figure 1E in [79]). These hotspots have been retrieved in the southern African gek-
konid diversity analyses done in this study. In addition, the diversity pattern found in this 
study for gekkonids reflects that which is found for all lizards in southern Africa (Figure 
3.12 in [14]), though highly endemic gekkonid species were not found in the Western Cape 
province, as found when investigating all southern African lizards (Figure 3.13 in [14]). 

Figure 6. CANAPE results: Map showing QDGS squares within the Southern African countries that
exhibit neoendemism (red), paleoendemism (blue), and mixed endemism (purple) levels of gekkonids.
Topographical map of the Southern African countries shown on the right (created by G.K.N.).
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4. Discussion

Spatial gradients of species richness, diversity, and endemism in gekkonids that
inhabit the Southern African countries appear largely driven by historical, geological, and
ecological factors, such as topology and climate. Endemism is present predominantly
among rupicolous species in heterogeneous mountainous landscapes formed through the
upliftment of the Great Escarpment and the Cape Fold Mountains. The areas highlighted
with high endemism and diversity are critical areas for investigating ecological drivers
in macroecology. More information collected regarding our threatened geckos and areas
of importance allow for thorough and decisive conservation decision making and can act
towards protecting the broader ecosystems in which these organisms occur [71].

4.1. Diversity, Species Richness, and Endemism

It has long been recognised that merely using a measure of diversity by counting species
numbers is not adequate to accurately ensure that evolutionarily significant species are
conserved, and that the diversity of a region should be investigated taking evolutionary
history into account, using, for example, a measure of phylogenetic diversity (PD) [65,72–74].
By incorporating species differences, not just species numbers, into conservation priorities,
those species that are evolutionarily distinct are prioritised—i.e., the “quality” (i.e., taxonomic
distinctiveness), not quantity, of species are conserved [74,75]. In addition, the degree of
endemism of a group has been a major consideration in biogeographic studies [76,77], as
endemism relates to the idea of irreplaceability [78]. Endemism has been measured initially as
the restriction of a taxon to a particular region (traditional endemism), the degree of restriction
of a taxon-range on a quantitative scale (relative endemism) [70], and the geographic restriction
of clades at any taxonomic level (phylogenetic endemism (PE) [66–68].

For the most part, investigations into neo- and paleoendemism have been performed
on flora assemblages; however, a global assessment of land vertebrates using the CANAPE
method highlighted the squamate hotspots along the southern African escarpment
(Figure 1E in [79]). These hotspots have been retrieved in the southern African gekkonid
diversity analyses done in this study. In addition, the diversity pattern found in this study
for gekkonids reflects that which is found for all lizards in southern Africa (Figure 3.12
in [14]), though highly endemic gekkonid species were not found in the Western Cape
province, as found when investigating all southern African lizards (Figure 3.13 in [14]).
Globally, elevation range as a proxy of habitat heterogeneity was the second strongest
predictor of, and significantly positively correlates with, phylogenetic endemism, especially
for amphibians and reptiles [79], which corroborates the understanding that elevation pro-
motes endemism due to spatial divergence and habitat heterogeneity [80,81]. It is, therefore,
perhaps not surprising that high levels of endemism in southern African gekkonids are
found in association with the escarpment and the Snowberg mountain range although the
hotspot of neoendemics in the lower elevation region between two mountain ranges in the
Limpopo province warrants further investigation.

4.2. Conservation Considerations

A recent conservation status assessment shows that, within South African borders,
there is very little protection regarding species of conservation concern, and the future of
many threatened taxa is exceptionally tentative [54]. Species diversity and distribution is
often relative to abiotic factors, such as topography and climate [82,83]. Changes in global
temperatures, and the subsequent effects on ectothermic organisms, are predicted to be
substantial [83]. The restricted distribution of the region’s geckos (and especially of the
range-restricted monotypic genera), the lack of conservation efforts towards threatened
reptiles, and the predicted impacts from climate change make it fundamental that we
clearly understand critical biodiversity areas and gaps in our current body of knowledge.

For the most part, reptiles have generally not been considered in the greater conser-
vation network in South Africa, and many threatened species remain unprotected [54].
Identifying critical biodiversity areas (CBA) or key biodiversity areas (KBA) with high
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gecko diversity would aid in safeguarding the greatest diversity. We have identified three
major mountainous areas critical for conserving gekkonid diversity. These areas of high
species richness and endemism fall within the Succulent Karoo (the greater Richtersveld re-
gion in northwestern South Africa), the Cape Floristic Biodiversity Hotspot (in several areas
of the Cape Fold Mountains), and isolated mountains in northeastern South Africa. Many
of these areas already fall within formally protected areas. Species of conservation concern
(Afroedura multiporis (NT); Homopholis mulleri (NT); and Lygodactylus methueni (EN)) all
occur within the areas of high gekkonid diversity (>7 species per QDS) in the northeastern
part of South Africa. Thus, conservation efforts in the Limpopo province for these species
would lower their threat status and indirectly assist in conserving significant gekkonid
diversity. Conservation of critical biodiversity areas, looking at diverse, restricted, and
threatened organisms, such as our geckos, is a crucial aspect of identifying priority areas.
In South Africa, the National Protected Area Expansion Strategy (NPAES) was proposed
in 2008, and in the subsequent decade, an expansion of protected areas was implemented,
expanding the areas protected from ~3% to ~9.2% of the mainland (Figure 7). While the
northeastern escarpment was identified in the NPAES, given the results of the gekkonid
diversity assessment performed here, it would be worth focussing on protection for this
region in future expansions. The paleoendemic gekkonids found in the northwestern
parts of South Africa could also be used as a reason for the southward expansion of the
/Ai/Ais-Richtersveld Transfrontier Park.
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