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Abstract: A Gram-negative, strictly aerobic, non-motile, slightly curved rod-shaped bacterial strain,
designated as HL-RS19T, was isolated from a sea surface microlayer (SML) sample of the brackish
Lake Shihwa. Here, we characterized the new strain HL-RS19T using a polyphasic approach to
determine its taxonomic position. A phylogenetic analysis of its 16S rRNA gene sequence revealed
that strain HL-RS19T belonged to the genus Lacinutrix and was closely related to L. mariniflava
AKS432T (97.9%), L. algicola AKS293T (97.8%), and other Lacinutrix species (<97.3%). The complete
genome sequence of strain HL-RS19T comprised a circular chromosome of 3.9 Mbp with a DNA
G+C content of 35.2%. Genomic comparisons based on the average nucleotide identity and digital
DNA-DNA hybridization showed that strain HL-RS19T was consistently discriminated from its
closely related taxa in the genus Lacinutrix. Strain HL-RS19T showed optimal growth at 20–25 ◦C,
pH 6.5–7.0, and 3.0–3.5% (w/v) sea salts. The major fatty acids (>5%) of strain HL-RS19T were
identified as iso-C15:1 G (16.5%), iso-C16:0 3-OH (12.9%), anteiso-C15:1 A (9.9%), anteiso-C15:0 (9.7%),
iso-C15:0 (9.0%), and iso-C15:0 3-OH (8.3%). The polar lipids consisted of phosphatidylethanolamine,
three unidentified aminolipids, an unidentified phospholipid, and two unidentified lipids. The major
respiratory quinone was MK-6. Based on phylogenetic, genomic, phenotypic, and chemotaxonomic
data, strain HL-RS19T represents a novel species belonging to the genus Lacinutrix, for which the
name Lacinutrix neustonica sp. nov. is proposed. The type strain is HL-RS19T (=KCCM 90497T = JCM
35710T). The genome sequence analysis of strain HL-RS19T suggests that it may be well adapted to
a harsh SML environment and is likely involved in arsenic cycling, potentially contributing to the
bioremediation of anthropogenic arsenic pollution.

Keywords: Lacinutrix neustonica sp. nov.; Lake Shihwa; neuston; new species; sea surface microlayer

1. Introduction

The sea surface microlayer (SML) represents the uppermost boundary layer of the
ocean, where the exchange of gases and particles takes place between the ocean and the
atmosphere [1,2]. With a total thickness ranging from 1 to 1000 µm, the SML exhibits
distinct physicochemical and biological characteristics compared to the underlying water
(UW) [3,4]. The unique characteristics of the SML can be attributed to several factors,
including strong ultraviolet (UV) irradiation, the high activity of photoreactions, and the
intense accumulation of autochthonous/allochthonous organic or inorganic matter [5,6].
Previous studies have reported the significant enrichment of anthropogenic pollutants, such
as hydrocarbon compounds and heavy metals, in the coastal SML near urban, agricultural,
and industrial areas [1,5,7–9]. Therefore, the bacterial inhabitants of the SML, known
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as bacterioneuston, present an intriguing natural model for studying the restoration of
damages caused by UV radiation or radical oxidants, as well as for obtaining valuable
biological resources for the bioremediation of toxic substances. In fact, a new bacterial
species in diverse lineages has been successfully isolated from SML samples collected from
pristine to industrial environments [10–15].

The genus Lacinutrix was first described alongside Lacinutrix copepodicola [16], and it
currently belongs to the family Flavobacteriaceae in the phylum Bacteroidota. At the time of
writing, twelve species of Lacinutrix have been reported, with validly published names [17].
Members of the genus Lacinutrix are known to be neutrophilic, Gram-negative, non-motile
or motile by gliding, strictly aerobic, straight, slightly rod-shaped, or coccoid cells that
are catalase- and oxidase-positive and that produce golden-yellow, orange, or orange-
yellow pigments [18–20]. The type strains of the genus Lacinutrix have been isolated from
diverse marine habitats, such as seawater, sediment, macroalgae, copepod, clam, crab,
and flounder, from temperate to polar environments [16,19–28]. During a year-round
investigation of the SML at a temperate coast near an industrial complex, we isolated a
neustonic bacterium identified as belonging to the genus Lacinutrix and designated as
HL-RS19T. In this study, we conducted a comprehensive characterization of strain HL-
RS19T, including its phylogenetic, genomic, phenotypic, and chemotaxonomic properties
to accurately position it within the genus Lacinutrix in terms of taxonomic classification.

2. Materials and Methods
2.1. Habitat, Isolation and Cultivation Conditions

The SML sample was collected using a glass plate sampler [4] in the brackish Lake
Shihwa (37◦18′3.6′′ N, 126◦43′58.8′′ E), South Korea, in January 2020. This research area
receives the riverine discharge from a nearby industrial complex. During the sampling,
the water temperature and salinity were 3 ◦C and 36.3 ‰, respectively. For cultivation, an
aliquot (100 µL) of the SML sample was spread onto a saline Reasoner’s 2A agar (R2A; BD
Difco, Franklin Lakes, NJ, USA) medium supplemented with 3% (w/v) sea salts (Sigma-
Aldrich, St. Louis, MO, USA). The saline R2A medium was incubated aerobically at 25 ◦C
for 4 days. Strain HL-RS19T was isolated and purified via subculturing more than four
times. In a preliminary test, strain HL-RS19T grew better on the marine agar (MA; BD Difco,
Franklin Lakes, NJ, USA) than on the saline R2A agar. After, strain HL-RS19T was routinely
cultivated on an MA at 25 ◦C. The strain was preserved in a marine broth (MB; BD Difco,
Franklin Lakes, NJ, USA) supplemented with 20 % (v/v) glycerol and stored at −70 ◦C.
Over the course of four seasonal surveys conducted throughout a year in the study area,
212 bacterial strains were isolated from SML samples, and identified by the sequencing the
16S rRNA genes, as detailed in Section 2.2. Among them, strain HL-RS19T was discovered
as a singular occurrence in the genus Lacinutrix, appearing only once during the entire
sampling period.

2.2. 16S rRNA Gene Sequencing and Phylogenetic Analysis

Genomic DNA was extracted from a single colony using the boiling method as previ-
ously described [29]. The 16S rRNA gene of the strain HL-RS19T was amplified through
polymerase chain reaction (PCR) utilizing the universal primers 27F and 1492R [30]. Subse-
quently, the PCR product was subjected to purification using ExoSAP-IT (ThermoFisher
Scientific, Waltham, MA, USA). Direct sequencing of the purified PCR products was per-
formed using four sequencing primers—27F, 337F, 907R, and 1492R [30,31]—via an Applied
Biosystems sequencer (ABI 3730XL) at Cosmo Genetech (Seoul, Republic of Korea). Almost
the full length of the 16S rRNA gene sequence of strain HL-RS19T (1419 bp) was assem-
bled with CodonCode Aligner version 10.0.2 (CodonCode Co., Centerville, OH, USA) and
analyzed using GenBank BLAST searches and EzBioCloud databases [32]. The validly
published phylogenetic neighbors and the complete 16S rRNA gene sequences of strain
HL-RS19T were aligned using the EzEditor2 [33] considering the secondary structure of the
bacterial 16S rRNA. Subsequently, the phylogenetic analyses were performed using MEGA
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version 11 [34]. A neighbor-joining (NJ) tree [35] was reconstructed using the Jukes-Cantor
model [36] with uniform rates and pairwise deletion options. A maximum-likelihood
(ML) tree [37] was reconstructed using the Kimura two-parameter model [38] with gamma
distributed with invariant sites (G+I), using all sites option for gaps/missing data. A
maximum-parsimony (MP) tree [39] was constructed using the Subtree-Pruning-Regrafting
(SPR) search method [40] with the number of initial trees (random addition) as 10, using
all sites options. The robustness of the phylogenetic trees was evaluated by performing a
bootstrap analysis based on 1000 replicates [41].

2.3. Genome Sequencing, Assembly, Annotation, and Phylogenomic Analysis

For genome comparison, the genomic DNA of strain HL-RS19T was extracted fol-
lowing the manufacturer’s protocol using a DNeasy Blood & Tissue kit (Qiagen, Hilden,
Germany). The whole genome sequencing was performed using a sequencing library for
the MinION Mk1C sequencer (Oxford Nanopore Technologies; ONT, Oxford, UK) with a
native barcoding expansion kit 13-24 (EXP-NBD114; ONT, Oxford, UK) and the ligation se-
quencing kit (SQK-LSK109; ONT, Oxford, UK). Raw reads were base-called, demultiplexed,
and adapter-trimmed using MinKNOW version 22.05.6 and Guppy version 6.3.8. De novo
genome assembly was performed using Flye version 2.9.1 [42] and polished using Medaka
version 1.7.2 https://github.com/nanoporetech/medaka (accessed on 21 November 2022).
The genome size, N50, and DNA G+C content were calculated using QUAST version
5.2.0 [43]. Genome coverage was measured using SAMtools version 1.11 [44]. The overall
genome relatedness index (OGRI) values, including average nucleotide identity (ANI) [45]
and digital DNA-DNA hybridization (dDDH) by the genome-to-genome distance calcula-
tor (GGDC) [46], were obtained for all pairwise comparisons. Additionally, a complete 16S
rRNA gene sequence was retrieved from the genome sequence of strain HL-RS19T using
the ContEst16S program [47].

A phylogenomic analysis of strain HL-RS19T and the type strains of related species
was performed based on the Genome Taxonomy Database (GTDB) taxonomy using GTDB-
Tk [48]. The genome of strain HL-RS19T was compared with the type strains of related
species, including six validly named Lacinutrix species and other taxonomically differenti-
ated Flavobacteriaceae family members, which were available in the NCBI Genome database
(Table S1). The amino acid sequences of 120 concatenated marker genes from the genomes
were detected and aligned using the GTDB-Tk tool. Phylogenomic trees were reconstructed
using the NJ, MP, and ML methods, with 1000 replications of the bootstrap analysis using
MEGA version 11 [34].

A genome annotation was performed using the NCBI Prokaryotic Genome Annotation
Pipeline (PGAP) [49]. The Metabolic Pathway/Genome Database (PGDB) was generated
computationally using the PathoLogic component of Pathway Tools software version 26.0
and MetaCyc version 23.0 [50,51]. A search for the biosynthetic gene clusters of secondary
metabolites was performed using antiSMASH version 6.1.1 [52] with the option of strict de-
tection. For a comparative genomic investigation, genome sequences of Lacinutrix available
in the NCBI Genome database were retrieved and analyzed to search for protein-coding
genes using tBLASTn version 2.9.0 with an e-value threshold of 1e−5. The genomic struc-
ture and variations within the Lacinutrix genus were evaluated by utilizing the Integrated
Prokaryotes Genome and Pan-genome Analysis (IPGA) web server https://nmdc.cn/ipga
(accessed on 25 May 2023) [53] with default settings.

2.4. Physiological, Morphological and Biochemical Characteristics

Based on its 16S rRNA gene sequence, Lacinutrix mariniflava AKS432T (=KCCM
42306T) [25], which was most similar to strain HL-RS19T by 97.9%, was purchased from the
Korean Culture Center of Microorganisms (KCCM) and used as a reference strain. Unless
otherwise specified, L. mariniflava KCCM 42306T and strain HL-RS19T were incubated
on an MA for 3–4 days at 20 ◦C and 25 ◦C, respectively, for phenotypic tests under the
exponential growth phase. According to the minimal standards for describing a new taxon
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of the family Flavobacteriaceae [54], all experiments for the physiological characteristics of
strain HL-RS19T were carried out in duplicates, along with the type strain of L. mariniflava
KCCM 42306T.

The temperature range for growth was tested on an MA at 5–40 ◦C (5 ◦C intervals)
for 2 weeks. A salt-tolerance test was carried out using synthetic ZoBell broth (Bacto
peptone 5 g, yeast extract 1 g, and ferric citrate 0.1 g per liter of distilled water) [55]
supplemented with 0–4% (0.5% intervals), 5–10% (1% intervals), 12%, and 15% (w/v) of
sea salts (Sigma-Aldrich, St. Louis, MO, USA). The growth under different pH values (pH
5.0–10.0) was investigated via inoculation in MB adjusted using pH buffer systems (MES,
pH 5.0–6.5; MOPS, pH 7.0–7.5; AMPD, pH 8.0–9.5; CAPS, pH 10.0). Growth was monitored
by measuring the optical density at 600 nm (SPECTRostar Nano spectrophotometer, BMG
Labtech, Ortenberg, Germany) at 1–3 days intervals for 2 weeks. Anaerobic growth was
assessed on both the MA and MA supplemented with potassium nitrate (0.1%, w/v) as
an electron acceptor [56] and incubated in an anaerobic jar with AnaeroPack (Mitsubishi
Gas Chemical Co., Tokyo, Japan) for 2 weeks. Gram-staining was performed using a
Gram-Staining kit (Sigma-Aldrich, St. Louis, MO, USA) according to the manufacturer’s
instructions. Motility was tested using a semi-solid MA (0.4% agar, w/v) method [57]
and the hanging drop method [54,58]. Cell morphology and size were examined via
transmission electron microscopy (LIBRA 120; Carl Zeiss, Oberkochen, Germany) using the
strain grown on an MA at 25 ◦C for 3 days. The presence of carotenoid for the cells incubated
in both light and dark conditions for 3 days was examined using the spectrophotometric test,
as previously described [59]. Flexirubin-type pigments were determined using two different
methods, as previously described [59,60].

In addition, the biochemical test and enzyme activities of strain HL-RS19T and
L. mariniflava KCCM 42306T were determined by using API 20E, API 20NE, and API
ZYM kits (bioMérieux) according to the manufacturer’s recommendations, except that the
cells were resuspended in distilled water containing 3% (w/v) sea salts and were incubated
at the optimal growth temperature for each bacterial strain. Catalase and oxidase tests
were performed as previously described [61]. The hydrolysis of starch; Tweens 40, 60,
80; casein; gelatin; and urea was tested on an MA supplemented with the corresponding
substrates [62]. The hydrolysis of xanthine, hypoxanthine, and L-tyrosine was examined
using the method as described [63]. The hydrolysis of aesculin and the nitrate reduction test
was determined by the method as described [64]. The ability to utilize a sole carbon source
was tested by inoculating bacterial suspension into the basal medium consisting of NaCl
2.36 g, KCl 0.06 g, MgCl2·6H2O 4.5 g, MgSO4·7H2O 5.9 g, CaCl2·2H2O 1.3 g, NaNO3 0.2 g,
NH4Cl 0.2 g, and yeast extract 0.05 g per liter of distilled water, supplemented with a final
concentration of 0.4% (w/w) tested carbon sources [11]. Carbon utilization was determined
as being negative when the growth was equal to or less than that in the negative control
without a carbon source. The growth was determined by monitoring changes in the OD600
for 3 weeks.

The chemotaxonomic characteristics of strain HL-RS19T and L. mariniflava KCCM 42306T

were determined using the cells grown on the MA for 3 days at 20 ◦C. The cellular fatty acid
composition was analyzed via gas chromatography based on the Microbial Identification
System (MIDI, Microbial ID) and RTSBA 6 version 6.21 at the KCCM. The polar lipids of
strain HL-RS19T and L. mariniflava KCCM 42306T were identified via thin-layer chromatogra-
phy (TLC) followed by spraying with appropriate detection reagents [65,66] at the KCCM.
The isoprenoid quinone composition of strain HL-RS19T was determined as previously
described [66,67] and analyzed via HPLC at the KCCM.

3. Results and Discussion
3.1. 16S rRNA Gene Sequencing and Phylogenetic Analysis

The 16S rRNA gene sequence of strain HL-RS19T (1419 bp), determined via direct
sequencing, was almost identical (99.8–99.9%) to the three copies of the complete 16S rRNA
gene sequences (1518 bp) retrieved from the genome sequence of strain HL-RS19T. At the
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16S rRNA gene sequence level, strain HL-RS19T was most closely related to L. mariniflava
AKS432T with a similarity of 97.9% and followed by Lacinutrix algicola AKS293T with a
similarity of 97.8%. The 16S rRNA gene similarity values between strain HL-RS19T and
other type strains of Lacinutrix species were below 97.3%. The phylogenetic analyses of
the 16S rRNA gene sequences revealed that strain HL-RS19T formed a robust clade with
L. mariniflava AKS432T and L. algicola AKS293T, which was consistently recovered in all
phylogenetic trees (NJ, ML, and MP) (Figure 1 and Figure S1). Therefore, the phylogenetic
position of strain HL-RS19T showed that the strain could be assigned to a novel species in
the genus Lacinutrix.

Diversity 2023, 15, x FOR PEER REVIEW 5 of 15 
 

 

3. Results and Discussion 
3.1. 16S rRNA Gene Sequencing and Phylogenetic Analysis 

The 16S rRNA gene sequence of strain HL-RS19T (1419 bp), determined via direct 
sequencing, was almost identical (99.8–99.9%) to the three copies of the complete 16S 
rRNA gene sequences (1518 bp) retrieved from the genome sequence of strain HL-RS19T. 
At the 16S rRNA gene sequence level, strain HL-RS19T was most closely related to L. ma-
riniflava AKS432T with a similarity of 97.9% and followed by Lacinutrix algicola AKS293T 
with a similarity of 97.8%. The 16S rRNA gene similarity values between strain HL-RS19T 
and other type strains of Lacinutrix species were below 97.3%. The phylogenetic analyses 
of the 16S rRNA gene sequences revealed that strain HL-RS19T formed a robust clade with 
L. mariniflava AKS432T and L. algicola AKS293T, which was consistently recovered in all 
phylogenetic trees (NJ, ML, and MP) (Figures 1 and S1). Therefore, the phylogenetic posi-
tion of strain HL-RS19T showed that the strain could be assigned to a novel species in the 
genus Lacinutrix. 

 
Figure 1. Neighbor-joining tree based on the 16S rRNA gene sequences of HL-RS19T and related 
taxa in the family Flavobacteriaceae. Flavobacterium fluvii H7T was used as an outgroup. Bootstrap 
values at nodes indicate a percentage higher than 70% (based on 1000 replicates). Filled circles indi-
cate that the corresponding nodes were recovered in the maximum-likelihood and the maximum-
parsimony trees. Bar, 0.01 substitutions per nucleotide position. The asterisk mark in the parenthe-
ses indicates 16S rRNA gene sequence retrieved from the genome sequence of the type strain. 

3.2. Genome Analysis and Genomic Features 
The complete genome size of strain HL-RS19T was 3.9 Mbp, with a DNA G+C content 

of 35.2 mol% (Table S1). The ANI values between strain HL-RS19T and the closely related 
Lacinutrix species (i.e., L. mariniflava AKS432T and L. algicola AKS293T) were 75.2–75.3% 
(Table 1). The genomic relatedness analysis based on genome-to-genome distance showed 
that HL-RS19T was related to L. mariniflava AKS432T and L. algicola AKS293T via dDDH 
values of 19.7% and 20.2%, respectively (Table 1). This level is obviously below the pro-
posed ANI and dDDH cut-off values (95–96% and 70%, respectively) for delineating bac-
terial species [45,68]. These results indicate that strain HL-RS19T is a new member of a 
distinct species of the genus Lacinutrix. 
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3.2. Genome Analysis and Genomic Features

The complete genome size of strain HL-RS19T was 3.9 Mbp, with a DNA G+C content
of 35.2 mol% (Table S1). The ANI values between strain HL-RS19T and the closely related
Lacinutrix species (i.e., L. mariniflava AKS432T and L. algicola AKS293T) were 75.2–75.3%
(Table 1). The genomic relatedness analysis based on genome-to-genome distance showed
that HL-RS19T was related to L. mariniflava AKS432T and L. algicola AKS293T via dDDH
values of 19.7% and 20.2%, respectively (Table 1). This level is obviously below the proposed
ANI and dDDH cut-off values (95–96% and 70%, respectively) for delineating bacterial
species [45,68]. These results indicate that strain HL-RS19T is a new member of a distinct
species of the genus Lacinutrix.

In the phylogenomic tree, strain HL-RS19T formed a discriminated clade with L. algicola
AKS293T, L. mariniflava AKS432T, L. jangbogonensis PAMC 27137T, and L. venerupis DSM
28755T (Figures 2 and S2), which were differed in the phylogenetic trees of the 16S rRNA
gene sequences (Figure 1), resulting in somewhat different tree topologies. An incongruity
between 16S rRNA gene- and genome-based trees in the genus Lacinutrix was found in
this study.
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Figure 2. Maximum-likelihood tree based on the amino acid sequences for 120 concatenated marker
genes of strain HL-RS19T and related taxa in the family Flavobacteriaceae. Flavobacterium fluvii H7T

was used as an outgroup. Bootstrap values at nodes indicate a percentage higher than 70% (based
on 1000 replicates). Filled circles indicate that the corresponding nodes were recovered in the
neighbor-joining and the maximum-parsimony trees. Bar, 0.05 substitutions per amino acid position.

Table 1. Results of genomic relatedness analyses based on the average nucleotide identity
(ANI) and digital DNA–DNA hybridization (dDDH) values. 1, Lacinutrix neustonica HL-RS19T

(GCA_026625145.1); 2, Lacinutrix mariniflava KCCM 42306T (GCA_001418015.1); 3, Lacinutrix algicola
AKS293T (GCA_001418085.1); 4, Lacinutrix jangbogonensis PAMC 27137T (GCA_000797445.1); 5, Lacin-
utrix venerupis DSM 28755T (GCA_003663945.1); 6, Lacinutrix himadriensis E4-9aT (GCA_001418105.1).
The ANI values are indicated in the region above the diagonal grey area (values of 100%). The dDDH
values are depicted below the diagonal grey area (values of 100%).

ANI/dDDH Value (%)

dDDH\ANI 1 2 3 4 5 6
1 − 75.2 75.3 75.5 75.3 73.5
2 19.7 − 86.5 82.0 80.6 75.8
3 20.2 31.8 − 81.8 80.7 76.0
4 20.1 25.9 25.6 − 80.2 75.4
5 19.6 23.5 23.7 23.4 − 75.5
6 19.8 21.2 21.5 20.6 19.9 −

The genomic analyses revealed that strain HL-RS19T possesses genes that might in-
crease its fitness to a harsh SML environment at a coastal industrial complex, such as strong
UV irradiation and the relative enrichment of the heavy metals from anthropogenic and/or
natural sources [4,5]. A carotenoid biosynthetic gene cluster (BGC) was detected in the
genome sequence of strain HL-RS19T (Figure 3), and the production of a carotenoid pig-
ment was experimentally confirmed in the present study (Figure S3). Carotenoid pigments
are known to be effective in UV absorption and screening in heterotrophic bacteria [69,70].
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In addition, the carotenoid biosynthetic gene cluster was identified in all Lacinutrix
species through the analysis of genomic sequences using tBLASTn (Figure 3). The genus
Lacinutrix was speculated to possess the capability to biosynthesize β-carotene through the
utilization of key genetic elements, namely phytoene synthase (crtB), phytoene desaturase
(crtI), and lycopene cyclase (crtY). The initial step in carotenoid production involves the
enzymatic conversion of the immediate precursor, geranylgeranyl diphosphate (GGPP) [71],
into phytoene via the activity of crtB [72]. Subsequently, the crtI gene facilitates the synthesis
of lycopene from phytoene [72], and ultimately, the crtY gene governs the conversion
of lycopene into β-carotene [72]. Although certain Lacinutrix species may lack specific
components of the carotenoid gene cluster, the majority of them possess the essential
crtB, crtI, and crtY genes. The presence of these carotenoid biosynthetic genes in their
genomes indicates the presumed production of β-carotene as the ultimate product of the
biosynthetic pathway.

Multiple DNA repair systems to restore UV-induced DNA damage were found in
strain HL-RS19T, including light-dependent photoreactivation (DNA photolyase), nu-
cleotide excision repair (UvrABC excinuclease complex), and homologous recombination
repair (Holliday junction helicase complex) [73,74]. To cope with arsenic-rich conditions
in an SML environment, strain HL-RS19T has an arsenic detoxification system, which
comprises essential genes encoding ArsR transcriptional regulator, arsenate reductase
(ArsC), and arsenite efflux transport protein ArsB [75], suggestive of its participation in
the biogeochemical cycling of arsenic in such an environment. In practical applications,
arsenic-resistant bacteria have been utilized for bioremediation as effective agents for re-
ducing harmful metal concentrations [76–79]. The existence of the ars operon (arsRCB) in
strain HL-RS19T potentially signifies its capability as a promising bioremediation tool [76],
whether deployed as a wild-type strain or as genetically engineered microbes, to address
environmental arsenic contamination across a broad spectrum of salinity levels.

The orthologous genes present in six genomes of Lacinutrix species were systematically
classified into core, accessory, and unique gene clusters using IPGA (Figure 4). Among these,
8.4% were classified as core gene clusters, indicating their presence across all genomes,
while 70.8% were classified as unique gene clusters specific to particular genes in different
genomes (Figure 4). Notably, strain HL-RS19T exhibited the highest number of unique gene
clusters (3214) among all currently known species within the genus Lacinutrix. Most of
the unique genes were classified as unknown, with only 263 genes (8%) being annotated.
Specifically, genes associated with antimicrobial resistance (tetM and catB), restriction and
modification system (hsdS, yhdJ, and mcrC), and DNA repair and recombination proteins
(uvrA, uvrC, recN, and gyrB) are present in strain HL-RS19T.
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3.3. Physiological, Morphological and Biochemical Characteristics

Strain HL-RS19T grew at 10–30 ◦C, with its optimum at 20–25 ◦C (Table 2). In addition,
strain HL-RS19T was able to grow at pH 6.0–8.5, with its optimum at pH 6.5–7.0. Strain
HL-RS19T required salt to grow and was tolerant up to 7.0% (w/v) (Table 2). Strain HL-
RS19T was strictly aerobic, Gram-negative, non-motile, and slightly curved rod-shaped
cells (Figure 5) that displayed activities of catalase and oxidase, and were capable of
carotenoid formation, which are common properties of the genus Lacinutrix [18–20]. Its
other physiological and biochemical characteristics are summarized in Table 2, along with
the species description.

The major fatty acids (>5%) of strain HL-RS19T were iso-C15:1 G (16.5%), iso-C16:0
3-OH (12.9%), anteiso-C15:1 A (9.9%), anteiso-C15:0 (9.7%), iso-C15:0 (9.0%), and iso-C15:0
3-OH (8.3%); a detailed fatty acid composition is given in Table S2. The fatty acid profile
of strain HL-RS19T was very similar to that of L. mariniflava KCCM 42306T (Table S2),
except some minor fatty acids (cyclopropane fatty acids and some unsaturated fatty acids)
were not detected in strain HL-RS19T. The polar lipids of strain HL-RS19T were phos-
phatidylethanolamine (PE), three unidentified aminolipids (AL1–3), an unidentified phos-
pholipid (PL), and two unidentified lipids (L1–2), which were nearly identical to those of L.
mariniflava KCCM 42306T, except for the absence of an unidentified lipid (L3) (Figure S4).
MK-6 was identified as the only menaquinone present in strain HL-RS19T, which is the
same as that found in other Lacinutrix spp. [16,19–22,24–28].
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Table 2. Physiological characteristics that distinguish strain HL-RS19T from other closely related
species of the genus Lacinutrix. 1: Lacinutrix neustonica HL-RS19T (this study), 2: Lacinutrix mariniflava
KCCM 42306T (this study), and 3: Lacinutrix algicola AKS293T [25]. +, Positive; −, negative.

Characteristics 1 2 3

Growth temperature range (optimum; ◦C) 10–30 (20–25) 5–20 (15–20) 0–25 (17.5)
Salt tolerance range (optimum;%, w/v) 1.0–7.0 (3.0–3.5) 1.5–6.0 (2.5–3.0) 0–2.5 (0.5)

pH range (optimum) 6.0–8.5 (6.5–7.0) 6.0–8.5 (6.5–7.0) 5.5–8.5 (6.5)
Hydrolysis of:

Casein − + +
Gelatin − * + * +

Tween 40 − + −
Tween 80 + + −

Urea − − +
Utilization as sole carbon source:

N-Acetyl-D-glucosamine − − +
D-Glucose − + −
D-Maltose + + −
Mannitol − − +

D-Mannose + − −
Enzymatic activity (API ZYM) of:

β-Galactosidase − − +
DNA G+C content (mol%) 35.2 34.7 ** 37.0

* API 20E and API 20NE assays showed the congruent results. ** Data from Nedashkovskaya et al. [25].

Strain HL-RS19T could be phenotypically differentiated from its most closely related
phylogenetic neighbor L. mariniflava KCCM 42306T as follows: The temperature range for
the growth of strain HL-RS19T (10–30 ◦C) was higher than that of L. mariniflava KCCM
42306T (5–20 ◦C; Table 2). The salt tolerance range of strain HL-RS19T (1.0–7.0%) was
broader than that of L. mariniflava KCCM 42306T (1.5–6.0%; Table 2). In addition, strain
HL-RS19T could not hydrolyze casein, gelatin, and Tween 40, which were different charac-
teristics from those of L. mariniflava KCCM 42306T (Table 2). Strain HL-RS19T could also



Diversity 2023, 15, 1004 10 of 14

be distinguished from its other phylogenetical relative L. algicola AKS293T, for example,
the inability to grow at 0–5 ◦C, the ability to grow in the presence of 3–7% (w/v) sea salts,
the ability to hydrolyze Tween 80, the inability to hydrolyze urea, and the absence of
β-galactosidase activity (Table 2).

4. Conclusions

Based on the phylogenetic, genomic, phenotypic, and chemotaxonomic characteristics
described above, strain HL-RS19T should be placed in the genus Lacinutrix as representing
a novel species, for which the name Lacinutrix neustonica sp. nov. is proposed. The pres-
ence of a suite of essential genes encoding arsenic detoxification processes in the genome
of strain HL-RS19T displays its potential for bioremediation in arsenic-contaminated
saline environments.

Description of Lacinutrix neustonica sp. nov.:
Lacinutrix neustonica (neus.to’ni.ca. N.L. fem. adj. neustonica pertaining to and living

in the neuston).
Cells are strictly aerobic, Gram-negative, non-motile, and slightly curved rod-shaped

(0.3–0.8 µm wide and 1.4–4.2 µm long. Colonies are circular, shiny, golden-yellow, and
convex with entire margins after 7 days of incubation on MA plates. They are positive
for oxidase and catalase activities. Growth occurs at 10–30 ◦C (optimum at 20–25 ◦C), at
pH 6.0–8.5 (optimum at 6.5–7.0), and in the presence of sea salts with a concentration of
1.0–7.0% (w/v) (optimum 3.0–3.5%). Starch, aesculin, Tweens 60 and 80 are hydrolyzed,
but casein, gelatin, hypoxanthine, xanthine, L-tyrosine, Tween 40, and urea are not. Ni-
trate is not reduced. Carotenoid pigments are produced. Flexirubin-type pigments are
not produced. In the API ZYM system, they are positive for acid phosphatase, alkaline
phosphatase, α-chymotrypsin, cystine arylamidase, esterase (C4), esterase lipase (C8),
leucine arylamidase, naphthol-AS-BI-phosphohydrolase, trypsin, and valine arylamidase,
but negative for N-acetyl-β-glucosaminidase, α-fucosidase, α- and β-galactosidases, α-
and β- glucosidases, β-glucuronidase, lipase (C14), and α-mannosidase. In the API 20E
system, they are positive for the Voges-Proskauer test, but negative for arginine dihydrolase,
β-galactosidase, gelatinase, lysine decarboxylase, ornithine decarboxylase, citrate utiliza-
tion, urease, tryptophan deaminase, and the production of hydrogen sulfide and indole.
In the API 20NE system, they are positive for esculin hydrolysis and paranitrophenyl-
β-D-galactopyranosidase (weakly), but negative for glucose fermentation, hydrolysis of
L-arginine, gelatin, urea, indole production, and nitrate reduction. D-Maltose, D-mannose,
L-proline, and trisodium citrate are utilized as sole carbon sources, but acetate, N-acetyl-D-
glucosamine, L-arabinose, D-glucose, inositol, L-lysine, malic acid, mannitol, potassium
gluconate, pyruvate, and raffinose are not utilized. The major fatty acids are iso-C15:1 G, iso-
C16:0 3-OH, anteiso-C15:1 A, anteiso-C15:0, iso-C15:0, and iso-C15:0 3-OH. The polar lipids are
phosphatidylethanolamine, three unidentified aminolipids, an unidentified phospholipid,
and two unidentified lipids. The menaquinone present is MK-6.

The type strain HL-RS19T (=KCCM 90497T = JCM 35710T) was isolated from the
surface microlayer sample of brackish Lake Shihwa. The GenBank/EMBL/DBBJ accession
numbers for the 16S rRNA gene sequence and the genome sequence of strain HL-RS19T

are MZ820004 and CP113088, respectively. The DNA G+C content is 35.2%, determined via
genome analysis.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/d15091004/s1, Figure S1: (a) Maximum-likelihood (ML)
and (b) maximum-parsimony (MP) phylogenetic tree based on 16S rRNA gene sequences of strain
HL-RS19T and related taxa in the family Flavobacteriaceae; Figure S2: (a) Neighbor-joining (NJ) and
(b) maximum-parsimony (MP) phylogenomic tree based on the amino acid sequences for 120 con-
catenated marker genes of strain HL-RS19T and related taxa in the family Flavobacteriaceae; Figure S3:
UV-VIS spectra of diverse carotenoids detected in strain HL-RS19T incubated under light and dark
conditions; Figure S4: Two-dimensional thin-layer chromatography (TLC) of the polar lipids of (a)
Lacinutrix neustonica HL-RS19T and (b) Lacinutrix mariniflava KCCM 42306T; Table S1: List of whole
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genome sequences of Lacinutrix spp.; Table S2: Cellular fatty acid composition (%) of strain HL-RS19T

and L. mariniflava KCCM 42306T.
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