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Abstract: Glomalin-related soil protein (GRSP), an important arbuscular mycorrhizal (AM) fungal
by-product, plays a key role in preserving or sequestrating soil organic carbon (C). Silver nanoparti-
cles (AgNPs) have become an emerging contaminant and their impacts on soil ecosystems attract
increasing concerns. The dynamics of AM fungi and GRSP could therefore form the basis for an
in-depth exploration of the influences of AgNPs on soil ecosystems. This study investigated the
effects of AgNPs on mycorrhizal growth and AM fungal communities, as well as the GRSP contents
in maize (Zea mays L.) soils, with a pot experiment. The contributions of GRSP to soil organic C
and the correlations of GRSP with soil organic C were also evaluated. The results indicated that
AgNPs decreased the mycorrhizal colonization, AM fungal biomass, and diversity indices, and
strongly shifted the community composition of AM fungi with a reduction in Acaulosporaceae and
an enrichment in Glomeraceae. Additionally, AgNPs also decreased the soil’s easily extractable (EE)
GRSP and total (T) GRSP contents, resulting in lower contributions of EE-GRSP-C and T-GRSP-C to
the soil organic C. Linkage analyses revealed that AM fungal abundances have positive correlations
with EE- and T-GRSP, and EE- and T-GRSP also positively correlated with soil organic C, indicating
that the negative effects of AgNPs on AM fungal abundances and communities were extended to
AM-fungal-associated C processes. Altogether, our study found that AgNPs decreased the AM
fungal abundances shaped AM fungal communities, and reduced the soil GRSP content, which might
subsequently be unfavorable for soil C storage.

Keywords: nanoparticles; AM fungal community; glomalin; soil organic carbon

1. Introduction

Glomalin-related soil protein (GRSP) is an important component of soil carbon (C)
pools. It can promote soil aggregate formation and soil C accumulation, thus benefiting
soil fertility and plant productivity [1,2]. GRSP is a complex mixture of glomalin, lipids,
and humic matter or other heat-stable proteins [3]. Glomalin has long been recognized as
a glycoprotein produced by arbuscular mycorrhizal (AM) fungi [4]. AM fungi can form
mutual associations with more than 85% of land plants that utilize approximately 4–20% of
plant-derived C and then excrete recalcitrant C products such as chitin and glomalin to soils
as well as providing C to the microbial community [5]. Therefore, AM fungi are well known
to participate in soil C cycles [1,6]. Environmental changes could alter plant growth and
thus substantially affect AM fungi growth and community, which might further influence
soil GRSP contents.

Engineered nanoparticles are becoming potential environmental contaminants due
to the increasing usage of nanoparticle products in a series of technical applications [7].
Silver nanoparticles (AgNPs) are one of three commonly used engineered nanoparticles
in the world [8]. Previous studies have found that the biological effects of AgNPs were
complex and depended on the AgNP dose, the treatment duration, and the soil type [9–11].
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For example, AgNPs at appropriate doses were found to prime biological defense path-
ways and thus stimulate the growth of plants and microbes [12,13]. Alternatively, when
present at high doses, AgNPs can exert oxidative stresses on plants and microbes, re-
sulting in decreases in plant biomasses [10,14], reductions in microbial biomasses and
activities [9], and variations in microbial community composition [15,16]. Changes in
plant and AM fungal growth might affect the contents of soil GRSP by altering glomalin
production. Previous studies have found that heavy metals (e.g., molybdenum, cad-
mium) decreased the GRSP contents, and the reduction was positively related to heavy
metal levels [17,18]. Other works have observed that cadmium stimulated the secre-
tion of GRSP and increased soil GRSP contents [19,20]. These inconsistent responses
of GRSP to heavy metals might be attributed to the different heavy metal levels and
soil conditions. AgNPs are also expected to influence soil GRSP contents directly via
AM fungi–nanoparticle interactions or indirectly through plant–AM fungi interactions
as AM fungi are an important C route from plants to soils. However, few investiga-
tions have focused on the effects of AgNPs on GRSP contents and AM-fungal-associated
soil C processes.

Maize is one of the most important agricultural crops in the world and can form strong
mutual interactions with AM fungi [21]. In this study, a pot experiment was conducted to
explore the effects of AgNPs on AM fungal abundances, communities, and GRSP contents
in the rhizosphere of maize seedlings. Previous studies found that AgNPs significantly
decreased plant biomasses [9,22] and mycorrhizal colonization [15,23]. Because decreased
plant growth might lead to a lower allocation of photosynthates to belowground mycor-
rhizas, it was hypothesized that AgNPs would decrease the soil GRSP contents. Moreover,
fungal-associated soil C accumulation has been found to closely correlate with AM fungal
communities since AM fungal species possess different abilities to produce glomalin [1,6].
Thus, we further assumed that the effects of AgNPs on AM fungal abundances and commu-
nities would extend to their associated soil C processes. The results will aid in systematic
evaluations of the ecological effects of nanoparticles on soil systems, which are important
for scientific applications of nanoproducts. The correlations between GRSP and soil C
contents were also estimated.

2. Materials and Methods
2.1. Soil and AgNPs Preparation

Soil was collected from an agricultural field at the Fengqiu Agro-ecological experi-
mental station of the Chinese Academy of Sciences, Fengqiu County (35◦00′ N, 114◦24′ E),
Henan Province, northern China. The crop succession has been winter wheat and summer
maize since 1989. The soil is categorized as an Aquic Inceptisol (a calcareous fluvo-aquic
soil) with sandy loam texture. Soil was air-dried, sieved (2 mm), and then stored for the
pot experiment. Commercial AgNPs were purchased from Shanghai Aladdin Biochemical
Technology Co., Ltd. (Shanghai, China). The particle’s average diameter was approximately
20.6 ± 3.1 nm.

2.2. Pot Experiment and Sample Collection

Previous studies have set up wide ranges of AgNP concentrations to evaluate the ef-
fects on soil ecosystems due to the increasing usage and inevitable release of AgNPs [15,24].
Therefore, nanoparticle-amended soils were prepared by adding 1, 2.5, 5, and 10 mg AgNPs
to 500 g soil to reach a wide range of NP levels of 1, 5, 10, and 20 mg kg−1 air-dried soil.
Soil without AgNPs was used as the control. AgNP solution was diluted in water and
then added drop by drop to the soil surface [25]. There were five treatments with three
replicates, resulting in a total of 15 pots.

Maize seeds were sterilized with sodium hypochlorite, washed with distilled water,
and germinated at a temperature of 28 ◦C for 2 days. Two germinated seeds of uniform
size were sowed into each pot (10 cm diameter × 8 cm depth) filled with AgNP-amended
soil. All maize seedlings were grown in a natural and full-sunlight greenhouse. During
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the entire pot experiment period, maize seedlings were irrigated to maintain 70% of the
field water-holding capacity. After 30 days, a time at which the impacts of AgNPs on plants
were visible, maize seedlings were harvested and soil samples were collected as previously
reported [26]. Soil samples were separated into two subsamples and stored at 4 ◦C and
−20 ◦C for soil property determination and DNA extraction, respectively.

2.3. Soil Property Determination

Soil pH and electrical conductivity (EC) were measured using a pH meter and EC me-
ter, respectively, with a soil/water suspension (1:5, w/v). Dissolved organic carbon (DOC)
was measured using an elemental analyzer (Skalar, The Netherlands) after extraction with
potassium sulfate. Nitrate (NO3

−-N) and ammonium (NH4
+-N) contents were measured

by a continuous-flow analyzer (San++, Breda, Netherlands). Available phosphorus (AP)
was extracted with sodium bicarbonate and determined using a spectrophotometer with
the molybdenum method [27]. Available potassium (AK) was extracted using ammonium
acetate and tested using a flame photometer [27]. Soluble Ag content was analyzed with an
inductively coupled plasma atomic emission spectrophotometer (ICP-AES) after extraction
by diethylene triamine penta-acetic acid (DTPA) [28].

2.4. Mycorrhizal Colonization and AM Fungal Biomass Analyses

Fresh roots were washed with water, cleared with potassium hydroxide and hydrochloric
acid, and stained with trypan blue for mycorrhizal colonization determination. One hundred
root fragments were randomly selected and counted to determine the proportion of roots
colonized by AM fungi via the gridline intersect technique with a stereomicroscope [29].

According to the protocols described by Frostegård et al. [30], lipids were extracted
using a chloroform–methanol–citrate buffer from soils. The phospholipid fatty acids
(PLFAs) were separated from extracted lipids using silica acid columns and then quantified
using gas chromatography (6890N, Agilent, Santa Clara, CA, USA) using C19:0 as an
internal reference. The 16:1ω5c was used to evaluate the biomass of AM fungi [31,32].

2.5. GRSP and SOC Contents Determination

GRSP can be categorized into easily extractable (EE) GRSP, difficult to extract (DE)
GRSP, and total (T) GRSP [33]. In brief, 1.0 g soils were used to extract EE-GRSP and
T-GRSP with sodium citrate (pH 7.0 or pH 8.0) at 121 ◦C for 30 min and at 121 ◦C for 60 min,
respectively. The extraction program of T-GRSP was repeated until the supernatant was
straw-colored. The soil GRSP amount was determined by the Bradford protein method
using bovine serum albumin as the standard [34]. DE-GRSP content was calculated as
T-GRSP minus EE-GRSP. Moreover, the C contribution of GRSP was evaluated using a
coefficient of 45% C [35,36]. Soil organic carbon (SOC) content was determined after
oxidizing by K2CrO7 with an oil bath [37].

2.6. Soil DNA Extraction and AM Fungal Community Sequencing

Soil genomic DNA was extracted with a FastDNA SPIN Kit for soil (MP Biomedi-
cals, Santa Ana, CA, USA) and then stored at −20 ◦C until further amplification. The
primer pairs of AMV4.5NF and AMDGR were used to amplify the target AM fungal gene
fragment [38]. The PCR was conducted with 50 µL reaction mixtures containing 2 U Taq
DNA polymerase, 20 µmol L−1 each primer, DNA template, and sterile deionized water.
The program of PCR amplifications was performed at 94 ◦C for 5 min, and then 35 cycles
of 94 ◦C for 30 s, 55 ◦C for 30 s, and 72 ◦C for 30 s, and finally at 72 ◦C for 7 min on a
thermal cycler (Bio-Rad, Hercules, CA, USA). All PCR products were purified and mixed at
equimolar concentrations. Finally, sequencing was performed on an Illumina MiSeq PE250
platform (Illumina, San Diego, CA, USA).

All generated raw reads were processed by the QIIME pipeline [39]. First, low-
quality sequences with ambiguous nucleotides, lower quality scores (<20), or short lengths
(<200 bp) were removed with USEARCH. The high-quality sequences were then clustered
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into Operational Taxonomic Units (OTUs) at a 97% similarity level with UPARSE. All
singletons and chimeras were detected and removed. Taxonomy was assigned by blasting
the most abundant sequence in each OTU against the MaarjAM database [40]. To correct
the sampling effort, the smallest sample size was selected for downstream analyses [41].
Sequences were deposited in the NCBI (SRP071033).

2.7. Statistical Data Analysis

Data were displayed as means with standard deviation (SD). The statistical analyses
were conducted based on Tukey’s multiple range tests at the p < 0.05 using SPSS 18.0 (SPSS
Inc., Chicago, IL, USA). Linkages between GRSP and mycorrhizal colonization or PLFA,
as well as between GRSP and SOC, were determined using linear regression analyses.
The phylogenetic diversity (PD), Chao1, and observed OTUs were estimated to test the
diversity of AM fungal communities. Principal coordinates analysis was used to analyze
the community composition of AM fungi based on the Unifrac distance matrix in R [42].
The response ratio method was used to analyze the changes in AM fungal abundances at
the OTU level under AgNPs [43]. The mantel test was used to investigate the correlations
between soil properties and the diversity and community composition of AM fungi under
AgNPs [44]. The variations in potential markers in AM fungal communities under AgNPs
were analyzed with the randomForest package in R [45].

3. Results
3.1. Mycorrhizal Colonization Rate, AM Fungal Biomass, and GRSP Content

Compared to the control, AgNPs at different concentrations decreased the mycor-
rhizal colonization rate (Figure 1a), AM fungal biomass (as indicated by PLFA 16:1ω5c)
(Figure 1b), EE-GRSP, and T-GRSP (Figure 1c), with greater decreases occurring under
higher concentrations of AgNPs. AgNPs at 20 mg kg−1 significantly decreased the mycor-
rhizal colonization rate, AM fungal biomass, EE-GRSP, and T-GRSP contents. AgNPs at
20 mg kg−1 also decreased the EE-GRSP/T-GRSP ratio (Figure 1d). However, regardless
of the doses, the soil DE-GRSP content was not changed by AgNPs. AgNPs also had a
negative influence on the SOC content. AgNPs at 20 mg kg−1 significantly decreased the
SOC content (Figure S1).

The mycorrhizal colonization and AM fungal biomass were positively correlated with
the soil EE-GRSP and T-GRSP contents but did not significantly correlate with the soil
DE-GRSP content (Figure 2).

3.2. Contribution of GRSP to SOC

Compared to the control, the EE-GRSP/SOC ratio was decreased with the increase in
AgNP concentrations. AgNPs at 10 mg kg−1 and 20 mg kg−1 significantly decreased the
EE-GRSP/SOC ratio by 22.2% and 30.9%. The highest concentration of AgNPs significantly
decreased the T-GRSP/SOC ratio. In contrast, AgNPs at either concentration did not show
any influence on the DE-GRSP/SOC ratio (Table 1).

Both the soil EE-GRSP and T-GRSP contents were positively correlated with soil
organic C (Figure 3a,b). However, no significant correlation between DE-GRSP and SOC
was observed (Figure S2a). Compared to the control, AgNPs showed negative effects
on GRSP-C’s contribution to SOC, decreasing the EE-GRSP–C from 0.19% ± 0.01% to
0.13% ± 0.01% and T-GRSP-C from 0.50% ± 0.003% to 0.46% ± 0.01% (Figure 3c,d). AgNPs
did not show any influences on the DE-GRSP-C (Figure S2b).
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Table 1. Ratios of EE-GRSP, DE-GRSP, and T-GRSP to soil organic C (SOC) under different concentra-
tions of AgNPs.

AgNPs (mg kg−1) EE-GRSP/SOC DE-GRSP/SOC T-GRSP/SOC

Control 0.426 ± 0.022 a 0.679 ± 0.018 a 1.105 ± 0.007 ab
1 0.438 ± 0.021 a 0.711 ± 0.077 a 1.145 ± 0.056 a
5 0.386 ± 0.014 ab 0.716 ± 0.052 a 1.101 ± 0.066 ab
10 0.332 ± 0.045 bc 0.723 ± 0.047 a 1.055 ± 0.005 ab
20 0.295 ± 0.019 c 0.723 ± 0.032 a 1.018 ± 0.030 b

Values are mean ± SD. Different letters in the same column indicated significant differences between treatments
(p < 0.05).
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3.3. Taxonomic Distribution and Community Composition of AM Fungal Communities

In general, the rarefaction curves across all treatments achieved smooth stages
(Figure S3), suggesting that the number of sequenced reads was enough to analyze the
fungal communities. Most sequences were assigned to the family of Glomeraceae (89.3% of
all reads) at 97% similarity. Acaulosporaceae and Gigasporaceae accounted for 5.87% and
0.15% of all sequences, respectively (Figure 4a). Compared to the control, the differences
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in AM fungal profiles increased along with the increase in AgNP concentrations. AgNPs
strongly shifted the community composition of AM fungi. The AM fungal communities
in the control and in soil with 1 mg kg−1 and 5 mg kg−1 of AgNPs were clustered into
one group, apart from the communities in soil with 10 mg kg−1 and 20 mg kg−1 of AgNPs
(Figure 4b).

Diversity 2024, 16, x FOR PEER REVIEW 8 of 17 
 

 

group, apart from the communities in soil with 10 mg kg−1 and 20 mg kg−1 of AgNPs (Fig-
ure 4b). 

 
Figure 4. Taxonomic composition of soil AM fungal communities at the family level (a), PCoA plot 
of AM fungal community dissimilarities (b) in in the rhizosphere of maize seedlings under different 
concentrations of AgNPs. 

Compared to the control, AgNPs at 20 mg kg−1 significantly decreased the phyloge-
netic diversity, Chao1, and observed OTUs. The PD, Chao1, and observed OTUs were 
marginally decreased by 5 mg kg−1 and 10 mg kg−1 of AgNPs. AgNPs at 1 mg kg−1 also 
marginally decreased the Chao1 (Table 2). 

Table 2. The AM fungal diversity indices in in the rhizosphere of maize seedlings under AgNP 
treatments. 

AgNPs (mg kg−1) PD Chao1 Observed OTUs 
Control 2.23 ± 0.09 a 47.92 ± 8.06 a 35.60 ± 4.93 a 

1 2.30 ± 0.12 a 44.83 ± 5.01 ab 36.13 ± 7.03 a 
5 1.99 ± 0.22 ab 46.45 ± 3.98 ab 32.67 ± 5.76 ab 

10 2.03 ± 0.24 ab 37.89 ± 3.24 ab 29.03 ± 3.85 ab 
20 1.66 ± 0.19 b 33.00 ± 3.61 b 20.73 ± 3.31 b 

Values are mean ± SD. Different letters in the same column indicated significant differences between 
treatments (p < 0.05). 

Compared to the control, the relative abundance of Glomeraceae increased and the 
relative abundance of Acaulosporaceae decreased along with the increase in AgNP con-
centrations (Figure 5). AgNPs at 20 mg kg−1 significantly increased Glomeraceae abun-
dance and decreased Acaulosporaceae abundance. AgNPs at 5 mg kg−1 and 10 mg kg−1 
marginally influenced the relative abundances of Glomeraceae and Acaulosporaceae. In 
contrast, AgNPs at 1 mg kg−1 did not lead to significant changes in Glomeraceae and 
Acaulosporaceae (Figure 5). Scutellosporaceae was only detected in the control and the 
soil with 1 mg kg−1 of AgNPs (Table S1). 

Figure 4. Taxonomic composition of soil AM fungal communities at the family level (a), PCoA plot of
AM fungal community dissimilarities (b) in in the rhizosphere of maize seedlings under different
concentrations of AgNPs.

Compared to the control, AgNPs at 20 mg kg−1 significantly decreased the phylo-
genetic diversity, Chao1, and observed OTUs. The PD, Chao1, and observed OTUs were
marginally decreased by 5 mg kg−1 and 10 mg kg−1 of AgNPs. AgNPs at 1 mg kg−1 also
marginally decreased the Chao1 (Table 2).

Table 2. The AM fungal diversity indices in in the rhizosphere of maize seedlings under AgNP treatments.

AgNPs (mg kg−1) PD Chao1 Observed OTUs

Control 2.23 ± 0.09 a 47.92 ± 8.06 a 35.60 ± 4.93 a
1 2.30 ± 0.12 a 44.83 ± 5.01 ab 36.13 ± 7.03 a
5 1.99 ± 0.22 ab 46.45 ± 3.98 ab 32.67 ± 5.76 ab
10 2.03 ± 0.24 ab 37.89 ± 3.24 ab 29.03 ± 3.85 ab
20 1.66 ± 0.19 b 33.00 ± 3.61 b 20.73 ± 3.31 b

Values are mean ± SD. Different letters in the same column indicated significant differences between treatments
(p < 0.05).

Compared to the control, the relative abundance of Glomeraceae increased and the
relative abundance of Acaulosporaceae decreased along with the increase in AgNP con-
centrations (Figure 5). AgNPs at 20 mg kg−1 significantly increased Glomeraceae abun-
dance and decreased Acaulosporaceae abundance. AgNPs at 5 mg kg−1 and 10 mg kg−1

marginally influenced the relative abundances of Glomeraceae and Acaulosporaceae. In
contrast, AgNPs at 1 mg kg−1 did not lead to significant changes in Glomeraceae and
Acaulosporaceae (Figure 5). Scutellosporaceae was only detected in the control and the soil
with 1 mg kg−1 of AgNPs (Table S1).
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Moreover, correlation analyses found that the AM fungal community composition, the
diversity, and the relative abundance of Glomeraceae were positively correlated with soil
EE-GRSP and T-GRSP contents. The relative abundances of Acaulosporaceae and Scutel-
losporaceae were negatively related to soil EE-GRSP and T-GRSP contents. In contrast,
there was no significant correlation between the DE-GRSP and AM fungal community com-
position, the diversity, and the abundance of AM fungal families. The relative abundance
of Gigasporaceae did not significantly correlate with the soil GRSP contents (Table 3).

Due to the lack of influence of 1 mg kg−1 and 5 mg kg−1 AgNPs on AM fungal
communities, the effects of 10 mg kg−1 and 20 mg kg−1 AgNPs on the dominant AM
fungal OTUs were further evaluated according to the response ratio method (Figure 6).
AgNPs at 10 mg kg−1 decreased the relative abundances of four OTUs in Glomeraceae
and increased three OTUs in Glomeraceae and one OTU in Gigasporaceae. AgNPs at
20 mg kg−1 decreased the relative abundances of six OTUs in Glomeraceae and one OTU
in Acaulosporaceae and increased two OTUs in Glomeraceae and one OTU in Gigaspo-
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raceae. In contrast, AM fungal OTUs in Glomeraceae or Acaulosporaceae families were not
significantly influenced by AgNPs (Figure 6).

Table 3. Correlations between soil GRSP contents and the AM fungal community composition and
abundance of AM fungal families.

Matrix EE-GRSP DE-GRSP T-GRSP

Community composition a 0.711 ** −0.001 0.623 *
Diversity b 0.772 ** 0.042 0.695 **
Glomeraceae 0.623 * 0.020 0.556 *
Acaulosporaceae −0.694 * 0.079 −0.576 *
Archaeosporaceae −0.139 0.203 −0.039
Gigasporaceae −0.216 0.373 −0.040
Scutellosporaceae 0.794 ** 0.118 0.743 **

a: PCoA axis1; b: PD; significant values are shown in bold. *, p < 0.05; **, p < 0.01.
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Figure 6. Significant changes in the dominant AM fungal OTUs under different concentrations of
AgNPs using the response ratio method.

The potential AM fungal biomarkers were changed by AgNPs. The top 25 AM fungal
members were selected to represent the important biomarker taxa. In the control, there
were twenty OTUs in Glomeraceae, two OTUs in Acaulosporaceae, and one OTU in
Gigasporaceae as biomarkers. In contrast, there were twenty-one Glomeraceae OTUs,
one Acaulosporaceae OTU, and one Gigasporaceae OTU as biomarkers in 10 mg kg−1

and 20 mg kg−1 of AgNPs. The importance of the OTU in Acaulosporaceae decreased
under AgNPs, especially in 20 mg kg−1 of AgNPs. Moreover, the Acaulosporaceae was
less important in AgNPs. In contrast, Glomeraceae was more important under AgNPs
(Figure 7).
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3.4. Correlations between AM Fungal Communities and Soil Properties and Plant Biomasses

Soil DOC, pH, and soluble Ag have significant correlations with the community
composition and diversity indices of AM fungi (Figure 8). The relative abundances of
Glomeraceae and Acaulosporaceae were also significantly related to the soil DOC, pH, and
soluble Ag. Specifically, the AM fungal community’s composition, the diversity indices,
and the relative abundances of Acaulosporaceae and Scutellosporaceae were positively
correlated with the soil pH and DOC, but negatively related to the DTPA-Ag. In contrast,
the relative abundance of Glomeraceae was negatively related to the soil pH and DOC, but
positively related to the soil-soluble Ag. Moreover, the AM fungal community composition
was also positively related to the soil AP content. However, the soil TN, AK, EC, and shoot
biomass did not show significant influences on the community composition and diversity
indices of AM fungi, or on the relative abundances of AM fungal families (Figure 8).
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4. Discussion

Previous studies have shown that AgNPs not only adversely affect the growth and
production of aboveground plants but also negatively influence the activities and commu-
nity composition of belowground microbes [7,9]. In this study, we observed that AgNPs
decreased the mycorrhizal colonization rate and AM fungal biomass. Correspondingly,
the AM fungal diversity was also lower under AgNPs. The toxicity of AgNPs in AM
fungi was consistent with that of those in bacteria [10,46] due to the excellent antimicrobial
activity of AgNPs [47]. There were negative correlations between the AM fungal diversity
indices and soil-soluble Ag content. Moreover, AgNPs also strongly shifted the soil AM
fungal community’s composition. Specifically, AgNPs significantly increased the relative
abundance of Glomeraceae, implying that Glomeraceae might have a relative tolerance to
AgNPs. This is not surprising because the relative abundance of Glomeraceae was also
found to increase under heavy metal stresses [48], climate changes [49], and fertilizer en-
richments [50] in forest and grassland ecosystems. Glomeraceae could reproduce through
root or mycelium fragments rather than spores [51,52]. They also can grow faster via the
more easily utilized recently fixed C in the plant and thus might outcompete other fungi
like Acaulosporaceae [53,54]. Therefore, the Glomeraceae abundance increased and the
Acaulosporaceae abundance decreased under AgNPs, similar to what was reported in
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previous works [15]. As possible evidence of this, the soluble Ag was shown to have a
significant influence on the relative abundances of Glomeraceae and Acaulosporaceae. At
a higher resolution, AgNPs increased, decreased, or had no influence on the AM fungal
OTUs in the Glomeraceae family, implying that survival abilities vary among OTUs within
a fungal family.

The variations in soil conditions under AgNPs may also contribute to the shifts in AM
fungal community structure, since AM fungal groups usually have different niches and dis-
tinct growing strategies. A significant correlation was recorded between the soil AM fungal
community composition and diversity and DOC content, as well as between the AM fungal
diversity and root biomass. It has been reported that plants might allocate 4–20% of their
photosynthetic products to AM fungi to maintain mycorrhizal growth and survival [55].
Thus, decreases in plant biomasses might lead to a decrease in DOC, which might be unfa-
vorable for AM fungal growth, resulting in a reduction in AM fungal diversity indices and
changes in AM fungal community composition. It has been documented that AM fungal
families possess different abilities to utilize recently fixed plant carbohydrates; for example,
Glomeraceae can more easily obtain plant carbohydrates [53,54]. Previous studies have also
observed that changes in the plant growth or DOC content have significant correlations
with the bacterial and AM fungal communities [56,57]. Moreover, soil pH significantly in-
fluenced both the AM fungal community composition and diversity. It is likely that a higher
soil pH may lead to the selection of AM fungal taxa, forming more mycelia networks [58].
The oxidization of Ag can consume H ions, thus changing soil pH [59]. Changes in soil pH
or pH-driven properties can influence the composition and diversity of the soil AM fungal
community under heavy-metal-contaminated conditions [60,61] or climate changes [62]. In
natural ecosystems, the variability in soil pH also plays an important role in influencing
the structure and composition of AM fungal communities [63,64]. Collectively, our results
emphasize that AgNPs might directly, via their antimicrobial ability, and indirectly, through
plant growth and soil properties, influence the mycorrhizal fungal communities.

The negative effects of AgNPs are not limited to belowground microorganisms but
also extend to soil biochemical processes. It is well known that AM fungi have different
abilities to form hyphal networks [65,66] and secrete hyphal products like glomalin [4,34].
Thus, it is speculated that the variation in the community composition of AM fungi induced
by AgNPs could induce changes in AM fungal-associated C processes [6,64]. The present
study found that both the mycorrhizal colonization rate and biomass were positively
correlated with the soil EE-GRSP and T-GRSP contents, and there was also a strong linkage
of community composition with soil EE-GRSP and T-GRSP. This result supports our initial
speculation that changes in the abundances and community composition of AM fungi
induced by AgNPs could extend to their related C sequestration functions. Previous studies
also found that the AM fungal biomass and community composition significantly correlated
with soil GRSP contents [64,67]. It was demonstrated that Acaulosporaceae members could
produce more glomalin relative to Glomeraceae [4]. The decrease in the relative abundance
of Acaulosporaceae and the increase in the relative abundance of Glomeraceae under
AgNPs may be a possible reason for the reduction in the soil GRSP contents. Similarly,
Lee et al. [68] found that Acaulospora inoculation exerted a greater increase in soil GRSP
contents than Glomus. Another study also reported that mycorrhizal colonization increased
soil GRSP contents and found that the increases in GRSP contents were varied among AM
fungal species [69,70].

Soil GRSP has long been recognized as an important composite of soil C pools [1,71].
Our study found that soil GRSP-C represented about 0.56% of SOC, similar to that found
in tropical orange forests (~0.27%) [72]. However, other studies found that soil GRSP
contributed to approximately 4.75% of SOC in tropical broad-leaved forests [36] or 9.9%
in tropical rainforests [1]. The discrepancy in the C contribution of soil GRSP is possibly
due to the differences in plants and soil environments, as well as in climate conditions [73].
The C contributions of EE-GRSP and T-GRSP decreased along with increases in AgNP
concentrations. Moreover, AgNPs also decreased the EE-GRSP/T-GTSP ratio, indicating a
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higher reduction or decomposition of EE-GRSP under AgNPs. This result is consistent with
the previous finding showing that the soil GRSP contents and EE-GRSP/T-GRSP ratio re-
duced in cadmium-contaminated soils [19]. Soil EE-GRSP is newly secreted by mycorrhizas
and more active than DE-GRSP [74], which means that EE-GRSP contents would be more
closely related to the C allocated by plants to mycorrhizas. AgNPs have been documented
to inhibit plant growth and decrease plant biomasses [9,46]; thus, AgNPs would reduce
the C allocation from plants to soils. Correlation analyses observed that both EE-GRSP
and T-GRSP contents were positively correlated with SOC contents, suggesting that the
decreased soil GRSP contents could be unfavorable for soil C accumulation. Moreover,
GRSP also can provide physical protection for soil C by stimulating soil aggregation [75].
Many studies have observed positive correlations among GRSP, soil aggregation, and SOC
contents [67]. Therefore, the negative effects of AgNPs on soil GRSP contents might be
extended to soil C processes. Given the relatively long residence time of GRSP in soil, a
lower accumulation could unfavorable for soil C storage under AgNPs.

5. Conclusions

The study reveals that AgNPs negatively influenced AM fungal abundances and
communities, decreasing the mycorrhizal colonization, biomass, and diversity, and shifting
the community composition of AM fungi. Moreover, AgNPs reduced the soil EE-GRSP
and T-GRSP contents, which were positively correlated with soil organic C. AgNPs also
decreased the C contribution of GRSP to soil organic C. Together, it seems that the adverse
effects of AgNPs on AM fungi could be extended to soil C accumulation. These findings
have deepened our knowledge of the ecological toxicity of AgNPs to AM fungal growth
and function and provided a scientific basis for a systematic evaluation of the effects of
AgNPs on soil ecosystems. It should be noted that the studies described in this paper were
conducted in both a short-term pot experiment and in a specific soil type. Considering
the continuously increased concentration of NPs, the complex interactions between NPs
and soil components, and the host-specific nature of the plant–AM fungi symbiosis, future
investigations need to take into account plant and soil physico-chemical diversities and
include long-term experiments to produce an integrative evaluation of the effects of AgNPs
on soil ecosystems.
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