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Abstract: Previous studies have suggested that Crown-of-Thorns starfish (COTS) larvae may be able
to survive in the absence of abundant phytoplankton resources suggesting that they may be able to
utilize alternative food sources. Here, we tested the hypothesis that COTS larvae are able to feed on
coral-derived organic matter using labeled stable isotope tracers (13C and 15N). Our results show
that coral-derived organic matter (coral mucus and associated microorganisms) can be assimilated
by COTS larvae and may be an important alternative or additional food resource for COTS larvae
through periods of low phytoplankton biomass. This additional food resource could potentially
facilitate COTS outbreaks by reducing resource limitation.
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1. Introduction

Outbreaks of Crown-of-Thorns starfish (COTS), Acanthaster spp., can have devastating effects
on coral reefs throughout the Pacific and Indian Oceans [1,2]. Determining the causes and spatial
variability of COTS outbreaks has proven to be a major challenge for coral reef managers [2,3]. Efforts to
determine the causes of COTS outbreaks on the Great Barrier Reef have identified anthropogenic
eutrophication as an important correlate [3–6]. The increased phytoplankton concentrations that result
from high inorganic nutrient concentrations in the water are thought to promote abnormally high
survival rates of COTS larvae by acting as an important food resource [4–6]. However, most coral
reefs are often considered oligotrophic systems with low phytoplankton biomass, which may help
keep COTS populations stable in unperturbed conditions [4]. Maximal survival of COTS larvae has
been directly linked to specific concentrations of food resources [6–9]. In the studies using natural
phytoplankton assemblages as food sources, COTS larvae have been found to benefit from increasing
food availability from 0.25 to 0.8 µg chl-a L−1, with the highest growth rates observed at concentrations
of >0.8 µg chl-a L−1 and resource limited mortality occurring below 0.25 µg chl-a L−1 [6,8]. Furthermore,
Wolfe et al. [7] recently reported using a single microalgae species that phytoplankton levels of 1 µg
chl-a L−1 were optimal for COTS larval development success.

On many coral reefs, typical concentrations of chl-a are approximately 0.2–0.6 µg chl-a L−1

(Table 1), which may be limiting to the survival of COTS larvae [6,8]. In Okinawa, chl-a concentrations
often fall below 0.25 µg chl-a L−1, the critical concentration for COTS larval survival [10–14].
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However, local abundance of COTS suggests their larvae may be able to survive under low chl-a
conditions, possibly by utilizing additional food sources [15,16]. Recent studies have reported
that naturally-occurring COTS larvae were in the advanced developmental stages in the vicinity
of coral communities [17–19], suggesting the utilization of organic matter derived from coral reefs by
COTS larvae.

Table 1. Chlorophyll-a (Chl-a) concentrations in various coral reef waters. Some values were visually
interpreted from figures. The values in parenthesis are the mean of several data in the study. GBR,
Great Barrier Reef.

Site Chl-a (µg·L−1) Reference

Miyako Island (Okinawa, Japan) 0.10–0.15 [10]
Miyako Island (Okinawa, Japan) 0.1–0.4 [11]
Sesoko Island (Okinawa, Japan) 0.11–0.77 (0.45) [12]

West coast of Okinawa Island (Japan) <0.05–1.79 (0.17) [13]
Ishigaki Island (Okinawa, Japan) 0.09–0.55 [14]

Princess Charlotte Bay (GBR, Australia) 0.06–0.28 (0.16) [20]
Princess Charlotte Bay (GBR, Australia) 0.40 [21]
Cairns-Innisfail sector (GBR, Australia) 0.03–0.64 (0.25) [20]

Wet Tropics (GBR, Australia) 0.70 [21]
Central GBR (Australia) 0.19–0.72 (0.38) [22]

Whitsunday Islands (GBR, Australia) 0.31–1.21 (0.79) [23]
Uvea Atoll (New Caledonia) 0.23 [24]

The Southwest lagoon (New Caledonia) 0.25–2.14 (0.60) [25]
Maître Island (New Caledonia) 0.26–0.42 (0.30) [26]

Tikehau Atoll (Tuamotu, French Polynesia) 0.17 [27]
Takapoto Atoll (Tuamotu, French Polynesia) 0.23 [27]
Takapoto Atoll (Tuamotu, French Polynesia) 0.21–0.23 (0.22) [28]

Fakarava/Rangiroa Atolls (French Polynesia) 0.008–0.25 [29]
Ahe Atoll (French Polynesia) 0.08–0.85 (0.34) [30]

Tioman Island (Malaysia) 0.20–0.24 (0.22) [31]
Bidong Island (Malaysia) 0.28–0.30 (0.29) [32]

Scleractinian corals release a large amount of organic matter in the form of mucus [33] as a result
of basic metabolic activities and as a protective mechanism against various stresses [34]. Coral mucus
particles contain carbohydrates, proteins, lipids, and numerous microorganisms [33,35]. When coral
mucus particles become suspended in the water column it aggregates various organic particles (such
as microbes and phytoplankton) and becomes more enriched in organic matter over time [33,36,37].
These coral mucus aggregates are considered to be one of the major contributors to the origin of
particulate organic matter (POM) in reef waters [36,38]. These mucus aggregates have also been
reported as an important food source for various reef animals, such as fish, zooplankton, and
several benthic taxa, such as coral crabs and brittle stars [39]. Experimental evidence has shown
that copepods and mysids, two common zooplankton taxa, directly utilize coral mucus aggregates as
a food resource [40,41]. The release of mucus by corals increases with increasing ambient light and
water temperature [42] as it originates from by-products of the photosynthesis of zooxanthellae [43].
Thus, mucus production is likely to be maximized in summer (July–August in Okinawa) which
corresponds with the peak spawning of COTS (July in Okinawa). Coral mucus could, therefore, be an
important food source for COTS larvae that develop on or near coral reefs during periods of low
phytoplankton biomass.

Here, we examined whether COTS larvae are able to feed on coral-derived organic matter. Since
understanding the key food sources of COTS larvae is critical for determining future recruitment of
adults [7], it is important to investigate all possible food sources in the natural environment. If COTS
larvae feed on organic matter released by corals, this would represent an additional food source not
previously considered. This additional food resource may enhance the survival of COTS larvae and
subsequent recruitment of adults in areas that are naturally low in phytoplankton abundance and/or
during times of reduced phytoplankton biomass.
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2. Materials and Methods

2.1. Collection of COTS Larvae

Adult COTS (ca. 25 cm diameter) were collected on shallow reefs around Onna Village
(N26.508496; E127.854283), Okinawa, Japan, in June 2015. Individuals were immediately transferred to
the flow-through indoor aquaria at the Sesoko Station, Tropical Biosphere Research Center (University
of the Ryukyus). We refer to the individuals from the Pacific Ocean clade COTS used in this study as
Acanthaster cf. solaris [44,45].

COTS larvae were obtained using the method of Birkeland and Lucas [1]. Several mL of
1-methyladenine solution (1 × 10−3 M) were added to a crystallization dish with mature ovary lobes
from the collected adults to release the oocytes. The oocytes released were pipetted into a separate
glass dish filled with filtered seawater. Two drops of dense spermatozoa suspension were then added
and gently stirred to fertilize oocytes. Fertilized oocytes were repeatedly rinsed with filtered seawater
and introduced into a 9 L cylindrical plastic container with filtered seawater. After approximately 24 h,
actively swimming gastrula larvae were transferred to another container where they were reared in
filtered seawater at 28 ◦C with enriched phytoplankton using Dunaliella tertiolecta at a cell density of
500 cells mL−1 (= 0.9–1.0 µg chl-a L−1), until they reached the advanced bipinnaria stage. The algae
D. tertiolecta (NRIA-0109) was provided by GeneBank of the Japan Fisheries Research and Education
Agency (Yokohama, Japan). Daily seawater changes were carried out by gentle reverse filtration using
a 60 µm mesh screen.

2.2. Collection of Coral Mucus

Colonies of the branching corals, Acropora muricata and A. intermedia were collected from the reefs
of Sesoko Island, and raised in the outdoor aquaria facility at the Sesoko Station for more than a year.
Two weeks before the experiment, the coral colonies were transferred to a 30 L flow-through outdoor
aquarium tank. Fresh seawater was directly pumped from the reef to the aquaria at the flow rate of
2.5 L·min−1.

The corals were labeled with enriched concentrations of stable carbon and nitrogen isotopes by
incubating corals in isotopically-enriched seawater following the methods of Naumann et al. [46].
The water inflow was stopped at 1000 h, and the aquarium was treated with NaH13CO3 and Na15NO3

(Cambridge Isotope Laboratories, MA, USA, 98 atom %) to a final concentration of 20 mg·L−1 and
1 mg·L−1, respectively. After a 5 h (at 1500 h) incubation, the flow-through seawater was resumed.
The tank was aerated with a powerful air-pump for sufficient seawater agitation during each of the
incubation periods. The labeling procedure was repeated for three days. On the final incubation day,
labeled mucus was collected at 1600 h, one hour after the incubation period. To collect the mucus,
corals were removed from the tank and washed with unlabeled filtered seawater [46]. The corals were
then exposed to air and hung in direct sunlight to trigger mucus production [33]. The released mucus
was collected in sterilized 50 mL Corning tubes. The collection of the labeled mucus was conducted
twice, on July 18 and 25. The mucus was used immediately after each collection for the following
feeding experiments. Triplicate subsamples of the labeled mucus from each collection period were
placed in pre-weighed tin capsules and dried for 24 h at 60 ◦C, then stored in a desiccator until isotopic
analysis was performed.

2.3. Feeding Experiments

Feeding experiments were conducted following each of the mucus collections using bipinnaria
larvae. During the first feeding experiment, five-day-old (fertilized on 13 July) and 14-day-old
(fertilized on 4 July) larvae were used (Experiment 1). For the second feeding experiment only
five-day-old larvae (fertilized on 20 July) were used (Experiment 2). Prior to the experiments,
actively-swimming larvae were gently siphoned out, concentrated, and rinsed thoroughly with GF/F
(Whatman, NJ, USA) filtered seawater. These larvae were kept in GF/F filtered seawater for 24 h
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to empty their guts. Feeding incubations were conducted using 12 polycarbonate bottles filled with
1 L of GF/F filtered seawater. In Experiment 1, six bottles were used for five-day-old larvae and the
other six for 14-day-old larvae. In each set of six bottles, three bottles treated with 2 mL of labeled
mucus and the other three bottles were used as controls (without mucus). The feeding experiments
contained approximately 300 starved larvae in each bottle. All bottles were incubated in the laboratory
for 24 h keeping the water temperature at 28 ◦C. The bottles were rotated on a plankton wheel (Model
II, Wheaton Instruments, NJ, USA) during the incubation to keep larvae and coral mucus particles in
suspension. In Experiment 2, five-day-old larvae were introduced to all 12 bottles (300 individuals
per bottle) and filled with 1 L of GF/F filtered seawater. Of these 12 bottles, six were used for the
feeding treatment (with mucus) and the other six were used for the control treatment (without mucus).
This second incubation was conducted for 48 h, and three bottles were collected from each treatment
at 24 and 48 h.

After the incubations, the COTS larvae were collected on a 60 µm mesh screen and washed with
unlabeled Milli-Q water (Whatman, NJ, USA) 10 times to remove remaining labeled external mucus
material. The larvae were then transferred into 15 mL Corning tube full of Milli-Q water. These tubes
were refrigerated until the larvae settled to the bottom. The settled larvae were gently pipetted out
(this procedure allowed for the collection of all larvae within a sample in a small volume of water),
then placed into a tin capsule, dried (40 ◦C, 24 h), and stored in a desiccator until isotopic analysis
was performed. Due to low biomass, COTS larvae collected from triplicate bottles for each feeding
treatment were pooled to ensure a good signal. Therefore, only four samples for each feeding treatment
were analyzed. Samples were not acidified with HCl to remove possible inorganic carbon because the
acid could have damaged the larvae and altered their isotopic signature.

2.4. Analysis

Carbon- and nitrogen-stable isotope ratios of the larvae were determined by elemental
analysis/isotope ratio mass spectrometry (EA/IRMS) using a Flash EA1112-DELTA V PLUS ConFlo III
System (Thermo Fisher Scientific, MA, USA) at SI Science Co., Ltd. (Saitama, Japan). The carbon and
nitrogen isotopic ratios are expressed in δ notation (Vienna-PeeDee Belemnite limestone for carbon
and atmospheric nitrogen for nitrogen) as the deviation from standards in parts per mill (h) using
the following equation: δX (h) = [(Rsample/Rstandard) − 1] × 1000, where X is 13C or 15N and R is the
ratio of 13C/12C or 15N/14N. The analytical error was less than ± 0.13h for carbon and ± 0.61h for
nitrogen. Significant differences (at the p < 0.05 level) of δ13C and δ15N values between control and
mucus were determined using Student’s t-test.

3. Results and Discussion

The average value (± SE) of δ13C and δ15N of labeled coral mucus was 358.5h ± 92.7h and
1683.4 ± 112.1h for the first experiment and 707.4h ± 31.2h and 1983.8h ± 111.1h for the second
experiment, respectively (Table 2). The δ13C and δ15N ratios of the labeled mucus showed higher values
in the second experiment, likely because of label accumulation in coral tissue and/or the biological
community in the mucous on the coral surface (e.g., bacteria and zooxanthellae) [46]. We measured the
δ13C and δ15N values of raw coral mucus, which could contain bacteria and zooxanthellae. Therefore,
we are not able to offer direct evidence of mucus labeling via coral tissue but rather the labeling of the
aggregation of organic matter within the mucus particles. However, Naumann et al. [46] measured the
δ15N of coral mucus that was filtered through 0.2 µm filter to remove microorganisms, and showed
coral mucus had been labeled successfully. Considering the δ15N value in our labeled raw coral mucus
(1.68h–1.98h) are similar to values reported in other studies ([46] ca. 2.00h), we consider that the
coral mucus in our experiment was successfully labeled.
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Table 2. δ13C and δ15N signatures of labeled mucus released by Acropora corals. C/N ratios were
determined as %C/%N of the samples. Bold values indicate mean (± SE) of triplicate measurements.

Collection Day (mm/dd/yy) δ13C (h) δ15N (h) C/N

07/18/2015 288.9 1562.5 6.7
463.7 1783.9 7.7
322.9 1703.7 7.2

358.5 ± 53.5 1683.4 ± 64.7
07/24/2015 690.6 2091.3 7.8

688.1 1869.4 7.2
743.3 1990.6 7.3

707.4 ± 18.0 1983.8 ± 64.1

After both the 24 and 48 h incubations, the COTS larvae in the mucus addition treatments
exhibited highly-enriched δ13C and δ15N values compared to those in control treatments (Figure 1).
The average value of δ13C (40.7h ± 34.9h) and δ15N (133.4h ± 55.9h) of larvae in the mucus
treatments (n = 4) was significantly (P = 0.017 for δ13C and 0.0040 for δ15N) higher than those in
controls (δ13C, −16.8h ± 0.3h; δ15N, 7.1h ± 0.2h, n = 4) (Figure 1). Since δ13C and δ15N of the
labeled mucus in the second experiment showed higher values, the following δ13C and δ15N values
of COTS larvae also showed higher values compared to those in the first experiment. These results
indicate that δ13C- and δ15N-labeled mucus are transferred into COTS larvae, providing further
evidence for the potential use of organic matter derived from corals as a food source.
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This is the first study to show that COTS larvae can take up organic matter derived from corals.
However, the raw coral mucus we provided to the COTS larvae may contain zooxanthellae and other
microorganisms as mentioned above. Therefore, whether COTS larvae fed on whole coral mucus
aggregates or selectively fed on the associated microorganisms remains unclear. Regardless, it is
evident that the COTS larvae, in our feeding experiments, assimilated organic matter derived from
corals, either directly (i.e., pure mucus), or indirectly via the associated microorganisms in/on the coral
mucus aggregates (i.e., bacteria and zooxanthellae). It is also unclear whether COTS larvae fed on the
particulate and/or dissolved fraction of the coral mucus, as we did not size-fractionate the coral mucus.
Previous reports have shown that COTS larvae can utilize both POM and dissolved organic matter
(DOM) [8,47,48]. Naumann et al. [46] also reported that coral associated epizoic acoelomorph Wamioa
worms utilized both the particulate and dissolved fraction of mucus released by corals. Thus, it is
possible that COTS larvae are capable of feeding on both POM (mucus particles) and DOM released
by corals.

Previous studies that have observed high survival rates of COTS larvae even when exposed to
low concentrations of phytoplankton, suggesting that they may utilize other food sources (e.g., [8,9]).
For COTS larvae in near-reef waters, organic matter derived from corals may provide an important and
previously underappreciated source of nutrition. Peak spawning for COTS tends to occur in summer
(July in Japan). During this period, elevated water temperature and light intensity may also cause
higher organic matter release by corals [42]. In Okinawa, numerous advanced COTS brachiolaria larvae
were found near coral communities [19] and it appears that some populations of COTS larvae are
retained in near-shore waters due to prevailing along-shore currents in the archipelago in summer [17].
If COTS larvae are entrained near-shore they are more likely to encounter coral-derived organic matter.
When the reef water residence time is short and the net transport of water is offshore, some fraction of
coral mucus may be physically transported offshore before this material settles or is consumed within
the reef environment [39,49]. Thus, coral-derived organic matter may also provide an important food
source to COTS larvae in pelagic habitats adjacent to coral reefs. Consequently, coral mucus and its
aggregates may provide one of the energy pathways for the conversion of coral primary production to
COTS larvae.

Coral-derived organic matter may be a particularly important resource for COTS larval under
oligotrophic conditions typical of many coral reefs where nutrients and phytoplankton biomass are low.
While phytoplankton can be ephemerally high in areas with internal tidal influence or with episodic
upwelling events, coral-derived organic matter may be a more consistent source of nutrition to COTS
larvae on most reefs. Further, these larvae may be able to extend their planktonic durations during
times of low phytoplankton biomass using endogenous nutrients, or by increasing their capacity for
food capture by extending ciliary bands [50]. Although it is not likely that coral mucus, alone, is a
direct causal factor of COTS outbreaks, it does seem likely that coral-derived organic matter could be
an important food source, especially during periods of low phytoplankton levels. In sum, while more
data are needed to understand the quantitative importance of coral-derived organic matter to COTS
population dynamics, our results suggest that the feeding ecology of this species is more complex
than previously thought. Given the nutritional quality of coral mucus and associated material, it is
not surprising that COTS larvae, as well as many other species, take advantage of this resource in an
ecosystem where nutrients are often limiting.
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