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Abstract: Simultaneous Localization and Mapping (SLAM) is perhaps the most 

fundamental problem to solve in robotics in order to build truly autonomous mobile robots. 

The sensors have a large impact on the algorithm used for SLAM. Early SLAM 

approaches focused on the use of range sensors as sonar rings or lasers. However, cameras 

have become more and more used, because they yield a lot of information and are well 

adapted for embedded systems: they are light, cheap and power saving. Unlike range 

sensors which provide range and angular information, a camera is a projective sensor 

which measures the bearing of images features. Therefore depth information (range) 

cannot be obtained in a single step. This fact has propitiated the emergence of a new family 

of SLAM algorithms: the Bearing-Only SLAM methods, which mainly rely in especial 

techniques for features system-initialization in order to enable the use of bearing sensors 

(as cameras) in SLAM systems. In this work a novel and robust method, called Concurrent 

Initialization, is presented which is inspired by having the complementary advantages of 

the Undelayed and Delayed methods that represent the most common approaches for 

addressing the problem. The key is to use concurrently two kinds of feature representations 

for both undelayed and delayed stages of the estimation. The simulations results show that 

the proposed method surpasses the performance of previous schemes. 
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1. Introduction  

 

Simultaneous Localization and Mapping (SLAM) is perhaps the most fundamental problem to solve 

in robotics in order to build truly autonomous mobile robots. SLAM treats of the way how a mobile 

robot can operate in an a priori unknown environment using only onboard sensors to simultaneously 

building a map of its surroundings which uses to track its position. 

The robot’s sensors have a large impact on the algorithm used for SLAM. Early SLAM approaches 

focused on the use of range sensors as sonar rings or lasers e.g., [1]. Nevertheless there are some 

disadvantages with the use of range sensors in SLAM: correspondence or data association is difficult; 

they are expensive and some of them are limited to 2D maps and computational overhead due to large 

number of features (see [2,3] for a complete review).  

The aforementioned issues have propitiated that recent work moves towards the use of cameras as 

the primary sensing modality. Cameras have become more and more interesting for the robotic 

research community, because they yield a lot of information for data association, although this 

problem remains latent. Cameras are well adapted for embedded systems: they are light, cheap and 

power saving. Using vision, a robot can localize itself using common objects as landmarks. 

On the other hand, while range sensors (i.e., laser) provide range and angular information, a camera 

is a projective sensor which measures the bearing of images features. Therefore depth information 

(range) cannot be obtained in a single frame. This fact has propitiated the emergence of a new family 

of SLAM methods: The Bearing-Only SLAM methods, which mainly rely in especial techniques for 

features system-initialization in order to enable the use of bearing sensors (as cameras) in  

SLAM systems. 

In this context, a camera connected to a computer becomes a position sensor which could be applied 

to different fields such as robotics (motion estimation for generally moving robots humanoids), 

wearable robotics (motion estimation for camera equipped devices worn by humans), tele-presence 

(head motion estimation using an outward-looking camera), or television (camera motion estimation 

for live augmented reality) [4]. 

Usually the Bearing-Only SLAM has been associated with vision-based SLAM systems, possibly 

because cameras are by far the most popular bearing sensor used in robotics. In that sense, the use of 

alternative bearing sensors (i.e., auditory sensing) for performing SLAM has been much less explored. 

Nevertheless in an authors’ previous work [5], a Sound-Based SLAM system is proposed where sound 

sources are used as map features and thus showing the viability on the inclusion of the hearing sense in 

SLAM and the use of alternative bearing sensors. 

In recent years several important improvements and variants to this kind of methods have  

appeared [6,7]. Also different schemes for increasing the number of features managed into the map 

have appeared [8]. Nevertheless the initialization process of new features is still the most important 

problem for addressing in Bearing-Only SLAM in order to improve the robustness.  

In this work a novel and robust method called Concurrent Initialization is presented which is 

inspired by having the complementary advantages of the Undelayed and Delayed methods, which 

represent the most common approaches for addressing the problem of initializing new features in 

bearing-only SLAM. 

2. Related Work 
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Bearing-Only SLAM has received most attention in the current decade. Therefore many of the 

related approaches are actually very recent. In [9] Deans proposes a combination of a global 

optimization BA, (Bundle Adjustment) for feature initialization and Kalman Filter for state estimation. 

In this method, due to the limitation on the baseline on which features can be initialized and depending 

on the camera motion and the landmark location, some features cannot be initialized. Strelow proposes 

in [10] a similar method but mixing camera and inertial sensors measurements in an Iterated Extended 

Kalman Filter (IEKF). In [11] Bailey proposes a variant of constrained initialization for bearing-only 

SLAM, where past vehicle pose estimates are retained in the SLAM state so that feature initialization 

can be deferred until their estimates become well-conditioned. In that sense the past poses of the robot 

are stacked in the map, together with associated measures, until base-line is sufficient to permit a 

Gaussian initialization. The criteria used for determining whether the estimation is well-conditioned 

(Gaussian) is the Kullback distance. The complexity of the proposed sampling method to evaluate this 

distance is very high. 

Also there are some works that use other estimation techniques (apart to the EKF) in Bearing-Only 

SLAM like the Particle Filters (PF) based methods. In a series of papers, Kwok uses Particle Filters:  

in [12] variations to standard PF are proposed to remedy the sample impoverishment problem in  

bearing-only SLAM. In [13] initial state of features is approximated using a sum of Gaussians, which 

defines a set of hypothesis for the position of the landmark, and includes all the features inside the map 

from the beginning. On successive observations, sequential radio test (SRT) based on likelihoods is 

used to prune bad hypothesis. The way these hypotheses are initialized is not detailed, and 

convergence and consistency issues are not discussed. In [14] Kwok extends the algorithm using a 

Gaussian Sum Filter, with an approach similar to the proposed in [15] for bearing-only tracking. This 

method is perhaps the first undelayed feature initialization method. The main drawback of this 

approach is that the number of required filters can grow exponentially, and therefore computational 

load grows exponentially with the number of landmarks. 

Some of the most notably advances on Bearing-Only SLAM have been presented by  

Davison [4,16], who shows the feasibility of real-time SLAM with a single camera, using the  

well-established EKF estimation framework. In this work a Bayesian partial-initialization scheme for 

incorporating new landmarks are proposed where a separate Particle Filter is used for estimating the 

feature depth which is not correlated with the rest of the map. In that sense it maintains a set of depth 

hypotheses uniformly distributed along the viewing ray of a new landmark, with a particle filter in one 

dimension. Each new observation is used to update the distribution of possible depths, until the 

variance range is small enough to consider a Gaussian estimation, in this point the estimation is added 

to the map as a three-dimensional entity. Until this initialization occurs, the ray estimation is 

maintained in the system`s single Extended Kalman Filter. A drawback of this approach is that the 

initial distribution of particles has to cover all possible depth values for a landmark, this fact makes it 

difficult to use when the number of detected features is large or when there are far features in the 

scene. As a result, its application in large environments is not straightforward, as it would require a 

huge number of particles.  

Jensfelt in [17] presents a method where the idea is to let the SLAM estimation lag behind N frames 

and using these N frames to determine which points are good landmarks and find an estimate of  
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their 3D location. Mainly the focus in this work is on the management of the features to achieve  

real-time performance in extraction, matching and loop detection. 

In [18] Sola presents a method based on Federate Kalman Filtering technique. With initial 

Probability Distribution Function (PDF) for the features, a geometric sum of Gaussians is defined. The 

method is an approximation of the Gaussian Sum Filter (GSF), which was used in [14], that permits 

undelayed initialization with simply an additive growth of the problem size. A drawback of this 

approach is that it does not cope with features at very large depths. In [19] Sola presents a similar 

method to the presented one in [18] but features are initialized with a delayed method.  

In [20] a FastSLAM [21] based approach is proposed by Eade. Here the pose of the robot is 

represented by particles and a set of Kalman Filters refines the estimation of the features. When the 

inverse depth collapses, the feature is converted to a fully initialized standard Euclidean 

representation. This approach for features initialization seems appropriate within a FastSLAM 

implementation, but it lacks for a more general framework. 

Table 1. Summary of methods. 

Approach Delayed / Undelayed Initial representation Estimation

Deans [9] Delayed Bundle adjustment  EKF 

Strelow [10] Delayed Triangulation IEKF 

Bailey [11] Delayed Triangulation EKF 

Davison [16] Delayed Multi-Hypotheses EKF 

Kwok (a) [13] Delayed Multi-Hypotheses PF 

Kwok (b) [14] Undelayed Multi-Hypotheses PF 

Sola [18] Undelayed Multi-Hypotheses EKF 

Lemaire [19] Delayed Multi-Hypotheses EKF 

Jensfelt [17] Delayed Triangulation EKF 

Eade [20] Delayed Single Hypotheses FastSLAM 

Montiel [22] Undelayed Single Hypotheses EKF 

Munguía[23] Delayed Triang.- S. Hypotheses EKF 

This work Delayed-Undelayed KF-Triang.- S. 
h

EKF 

 

Montiel et al. in [22] presented a method, where the transition from partially to fully initialized 

features does not need to be explicitly tackled, making it suitable for direct use in EKF framework for 

sparse mapping. In this approach the features are initialized in the first frame observed with an initial 

fixed inverse depth and uncertainty, determined heuristically to cover range from nearby to infinity, 

therefore distant points can be coded. Due to the clarity and scalability, this approach is a good option 

to be implemented.  

On the other hand, experiments show that initial fixed parameters can affect the robustness of the 

method, especially when an initial metric reference is used in order to recover/set the scale of the map. 

This fact motivated the authors to develop in [23] a delayed version of the above method. In this case, 

initial depth and uncertainty of each feature are dynamically estimated prior to add this new landmark 
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in the stochastic map. The works [22] and [23] are analyzed in the next sections. Table 1 shows a 

summary of the above methods. 

 

3. Problem Statement  

 

3.1. Sensor motion model 

 

Let us consider a bearing sensor, with a limited field of view, moving freely in 2DOF. The sensor 

state x̂v is defined by: 

  Tyxvvvv vvvyx  ,,,,,x̂   (1) 

where [xv,yv,θv] represents the center position and orientation of the sensor and [vx ,vy ,vθ] denoting 

linear and angular velocity.  

At every step it is assumed an unknown linear and angular acceleration with zero mean and known 

covariance Gaussian processes, aW and αW, producing an impulse of linear and angular velocity: 
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The sensor motion prediction model is: 
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An Extended Kalman Filter propagates the sensor pose and velocity estimates, as well as  

feature estimates. 

 

3.2. Features definition and measurement model  

 

The complete state x̂ that includes the features ŷ is made of: 

 Tn21v ŷ,...ŷ,ŷ,x̂x̂   (4) 

where a feature ŷ represents a feature i defined by the 4-dimension state vector:  

 Tiiiii ,,y,xŷ   (5) 

which models a 2-D point located at: 
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where xi,yi is the sensor center coordinates when the feature was first observed; and θi represents the 

azimuth (respect to the world reference W) for the directional unitary vector m(θi). The point depth di 

along the ray is coded by its inverse ρi = 1/di (Figure 1). 

Figure 1. Inverse depth parameterization.  

 
 

The use of an inverse depth parameterization for bearing-only SLAM can improve the linearity of 

the measurement equation even for small changes in the sensor position (corresponding to small 

changes in the parallax angle), this fact allows a Gaussian distribution to cover uncertainty in depth 

which spans a depth range from nearby to infinity. It is well known the relevance of a good uncertainty 

Gaussian representation in a scheme based in EKF [24].  

Figure 2 shows a simulation for a point reconstruction from noisy bearing measurements at different 

parallax (upper plot), using both, the Euclidean and the Inverse Depth parameterization. The location 

of the vehicle is known. A Gaussian error θ = 1º (degrees) is introduced in bearings. Lower plots 

show the evolution of the likelihood for depth and inverse depth as the parallax in the observation 

grows: in (a), the estimates of depth likelihood converge to a Gaussian-like shape, but the initial 

estimates are highly non-Gaussian, with heavy tails. In contrast, likelihoods of inverse depth (b) 

(abscissa in inverse meters) are nearly Gaussian, even for low parallax. Therefore it can be clearly 

appreciated how the uncertainty can be represented by a Gaussian using the inverse depth 

parameterization over whole parallax range, whereas the Euclidean representation converges to a 

Gaussian-like shape only to the final estimates. For the Euclidean representation, the parallax needed 

for the likelihood converges to a Gaussian-like shape, depending on the sensor noise, and thus the 

noisier the sensor the more parallax is needed for convergence. 

The different locations of the sensor, along with the location of the already mapped features, are 

used to predict the feature angle hi (angle describing the direction of the feature in the sensor 

coordinate frame). The measurement model is defined by: 
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1 1
atan2 sin , cosi i i v i i v

i i

h y y x x 
 

 
     

 
 (7) 

atan2 is a two-argument function that computes the arctangent of y/x given y and x, within a range 

of [–π, π]. At this stage it is assumed that the bearing sensor is capable of tracking and discriminating 

between the landmarks, in other words, the data association problem is obviated.  

Figure 2. Simulation of a point reconstruction from observations with different parallax.  

 
 

In implementation using real data, features search could be constrained to regions around the 

predicted hi. These regions are defined by the innovation covariance matrix Si = HiPk+1Hi´ + R where 

Hi is the Jacobian of the sensor model with respect to the state, Pk+1 is the prior state covariance, and 

measurements z are assumed corrupted by zero mean Gaussian noise with covariance R. 

As it was stated before, depth information cannot be obtained in a single measurement when 

bearing sensors are used. To infer the depth of a feature, the sensor must observe it repeatedly as the 

sensor freely moves through its environment, estimating the angle from the feature to its center. The 

difference between angle measurements is the feature parallax. Actually, parallax is the key that allows 

to estimating features depth. In the case of indoor sequences, centimeters are enough to produce 

parallax, on the other hand, the more distant the feature, the more the sensor has to travel to produce 

parallax. Therefore, in order to incorporate new features to the map, special techniques for features  

system-initialization are needed in order to enable the use of bearing sensors in SLAM systems. 

Let us consider two methods, which represent the main approaches (undelayed and delayed) for 

addressing the initialization problem.  
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3.3. ID-Undelayed initialization 

 

For the Inverse depth (ID) undelayed method presented in [22], transition from partially to fully 

initialized features do not need to be explicitly tackled; this means that the feature is added to the map 

in its final representation since the first frame was observed. The initialization includes both the 

feature state initial values and the covariance assignment. The initial uncertainty region covers a huge 

range depth [dmin, ∞] as Gaussian because the low linearization errors, due to the inverse depth 

parameterization. Once initialized, the feature is processed with the standard EKF  

prediction-update loop. 

Using the inverse depth parameterization, while the feature is observed at low parallax, the feature 

will be used mainly to determine the sensor orientation but the feature depth will be kept quite 

uncertain; if the sensor translation is able to produce a parallax big enough then the feature depth 

estimation will be improved. 

For the ID-Undelayed method (Figure 1), a new feature y ̂new (Equation 5) is initialized, when is 

detected the first time k, as follows: 

i v

i v

i v

x x

y y

z 

   
      
      

 (8) 

where xv, yv, θv are taken directly from the current state x ̂v and zθ is the initial bearing measurement. 

The initial value for ρi is derived heuristically to cover in its 95% acceptance region, a working space 

from infinity to a predefined close distance dmin expressed as inverse depth: 

min min
i min

min min

1 1
,0  so:    

2 4d d
   

 
   

 
 (9) 

In [22] the parameters are set as dmin = 1, ρi = 0.5, σρ = 0.25. The new system state x̂ is conformed 

simply adding the new feature y ̂i to the final of the vector state: 

v
v

1
1 new

2
2

i

x̂
x̂

ŷ
ˆ ˆ ˆx y      x  

ŷ
ŷ

ŷ

 
   
       
    

 

 (10) 

The state covariance after feature initialization is defined by: 

(k)

new j
2

P 0 0

P 0 R 0

0 0

J J



 
    
  

 (11) 

being J the Jacobian for the initialization function. 
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Figure 3. Some issues of the ID-Undelayed initialization. 

 

3.4. ID-Delayed initialization 

 

In experiments using the undelayed initialization, it often happens that the inverse depth becomes 

negative after a Kalman update, due to the observation noise that predominates over the update of the 

depth, but there are simple solutions to solve this problem. Moreover, when an initial metric reference 

is used in order to recover/set the scale of the map (very relevant for robotics applications), initial 

fixed parameters (inverse depth and uncertainty) must be tuned in order to ensure convergence. 

Figure 3 illustrates the SLAM process using the ID-Undelayed following a simple straight 

trajectory for 5 features, (4 of them near to the vehicle and the other more distant). In upper plots (a,b 
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and c) the initial parameters (ρo = 0.01, ρ = 0.005) are set in order to initialize the features at the 

middle of the distance between the vehicle and the more distant feature, and therefore far enough 

respect to the nearby features (plot a). In this case we found in almost every case a huge drift in the 

estimates (plot c), and it can be appreciated that initializing the features far away from the sensor fails 

if there are some closest landmarks. If other values (ρo = 0.5, ρ = 0.25) are used (near to the sensor), 

(central plots d, e and f) then the percentage of convergence is poor (approx 50%) (plot f), due to the 

influence of the distant feature. In this case if the distant feature is removed from the map (not 

illustrated here) then a percentage of convergence of 80% is achieved. In the last series (lower plots g, 

h and i) we combine both initial values: ρo = 0.01, ρ = 0.005 for the distant landmark and ρo = 0.5, ρ = 

0.25 for the all the nearby ones. In this case an effectiveness of 90% was achieved for the algorithm. 

The issues mentioned above suggest us that the initial inverse depth and their associated initial 

uncertainty of the new features added to the map could be treated before to be added to the system 

state instead of use fixed initial depth and uncertainty. In [23] a delayed version of an undelayed 

method is proposed. In this case, initial depth and uncertainty of each feature are dynamically 

estimated prior to adding the new landmark in the stochastic map. 

Figure 4. ID-Delayed parameterization. 

 
 

For the ID-Delayed method, a new feature y ̂new (Equation 5) is initialized as follows: 

When a feature is detected the first time k, some part of the current state x̂ and covariance matrix P 

together with the sensor measurement are stored, this data λ (called candidate points) is composed by: 

i 1 1 1 1 1 1 1, , , , , ,x yx y z          (12) 

The values x1, y1 and θ1 represent the current robot position; σ1
x, σ1

y and σ1
θ represent their 

associated variances taken from the state covariance matrix Pk and z1 is the first bearing measurement 

to the landmark. In subsequent instants k, the feature is tracked until a minimum parallax threshold αmin 
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is reached. Figure 4 shows that a few degrees of parallax are enough to reduce the uncertainty in  

the estimation. 

The parallax α is estimated using: 

(i) The base-line b.  

(ii) λi, using its associated data (x1, y1, θ1, z1, σ
x
1, σ

y
1, σ

θ
1). 

(iii) The current state (xv, yv, θv, z, σx
v, σ

y
v, σ

θ
v). 

For each candidate point λi, every time that a new bearing measurement z is available, the parallax 

angle α can be estimated as (Figure 4): 

 =   +      (13) 

The angle β is determined by the directional unitary vector h1 and the vector b1 defines the base-line 

b in the direction of the sensor trajectory. 

The angle γ is determined in a similar way as β but using the directional unitary vector h2 and the 

vector b2 defining the base line in the opposite direction of the sensor trajectory by:  

1 11 1 2 2

1 1 2 2

cos         cos
h b h b

h b h b
      
       

   
 (14) 

where (h1 · b1) is the dot product between h1 and b1. The directional vector h1, expressed in the 

absolute frame W, points from the sensor location to the direction when the landmark was observed for 

the first time, and is computed using the data stored in λi denoting the bearing zi. The directional vector 

h2 expressed in the absolute frame W is computed in a similar way as h1 but using the current sensor 

position x ̂v and the current measurement zi.  

 
 

 
 

1 1
1 2

1 1

cos cos
    

sin sin
v i

v i

z z
h h

z z

 
 
    

        
 (15) 

b1 is the vector representing the robot base-line between the robot center position x1, y1 stored in λi 

where the point was first detected and the current sensor center (xv, yv). b2 is equal to b1 but pointing to 

the opposite direction. The base-line b is the module of b2 or b1: 

       1 2 1 1 1 2 1 1    ,   ,v v v vb b b b x x y y b x x y y               (16) 

If α > αmin then λi is initialized as a new feature ŷi. The threshold αmin can be established depending 

on the accuracy of the bearing sensor. Depth uncertainty is reasonably well minimized when α = 10º.  

For a new feature ŷi, values of xi, yi, θi are defined in the same way as Equation 8. For the delayed 

approach the dynamical estimation of ρi is derived from: 

sin

sini b




  (17) 

The variance σρ for the inverse depth ρ is calculated now from the initialization process, instead of a 

variance predefined heuristically as it was made in the undelayed method, therefore the covariance for 
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the new feature ŷnew is derived from the error diagonal covariance matrix Ri measurement and the state 

covariance matrix P. 

2 2
1 1 1, , , ,x y

i z zR diag          (18) 

For reasons of simplicity Ri is defined as a diagonal matrix (cross-covariances are not taken into 

account) and is now conformed by the error variance of the standard deviation of the bearing sensor σz 

(one for each bearing estimation z1 and z) and the variances stored in λi (σ1
x, σ1

y and σ1
θ). Note that the 

value of σz is constant and is not stored previously in Equation 12.  

The new state covariance matrix, after initialization, is: 

k

new
j

P 0
P

0 R
J J
 

  
 

 (19) 

Note that unlike the ID-Undelayed method there is not an implicit initial uncertainty in depth σρ 

(Equation 11). In the ID-Delayed method the complete covariance for the new feature is fully 

estimated by the initialization process. 

 

3.5. Undelayed vs. Delayed 

 

In an Undelayed approach, when a feature is added to the map the first time that it has been 

observed, its depth is modeled with a huge uncertainty. In that sense, this new feature does not provide 

any depth information. However, at this stage the benefit of the Undelayed approach is that features 

provide information about the sensor orientation from the beginning. 

On the other hand, it can be useful to wait until the sensor movement produces some degrees of 

parallax, (gathering depth information) in order to improve robustness, especially when an initial 

metric reference is used for recovering scale. Moreover, when cameras are used in real cluttered 

environments, the delay can be used for efficiently reject weak features, thus initializing only the best 

features as new landmarks to the map.  

 

4. Concurrent Initialization 

 

This section presents a novel and robust method, called Concurrent Initialization, for initializing 

new features in bearing-sensor-based SLAM systems. The method takes advantage of both, undelayed 

and delayed approaches. When a feature is detected for the first time, it is immediately initialized in 

the map (undelayed) as a directional vector which contributes since the beginning to the estimation of 

the sensor orientation. After that, while the sensor moves freely through its environment, the incoming 

measurements are incorporated via an uncorrelated linear Kalman filter in order to estimate the depth 

of the feature. If the sensor movement produces enough parallax, then the feature will be updated with 

the estimated depth, and thus also contributing to the estimation of the sensor location. Very far 

features will not produce parallax, and will remain in the form of a directional vector in the map, but 

contributing to the estimation of sensor orientation. Figure 5 illustrates the concurrent initialization 

process. 
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4.1. Undelayed stage 

 

When a feature is detected for the first time k, it is initialized immediately in the map as a new 

landmark ŷL(i) which is composed by the 3-dimension state vector:  

 TiiiL(i) ,y,xŷ   (20) 

where 

i v

i v

i v

x x

y y

z 

   
      
      

 (21) 

xv, yv, θv are taken directly from the current state x̂v and zθ is the initial bearing measurement. ŷL(i) 

defines a directional vector, expressed in the absolute frame W, which represents the direction of the 

landmark from the sensor, when it was observed for the first time. The covariance matrix P is updated 

in the same manner as Equation 19 but using the proper Jacobian J.  

Figure 5. Concurrent initialization process. 

 

Parallel to the system state (represented by the state vector x̂), a state vector x̂can is used for 

estimating (via an extra linear Kalman Filter) the feature depth of each landmark ŷL. The state x̂can is 

not directly correlated with the map. 

Every time a new feature ŷL(i) is initialized in x̂, the state x̂can is augmented as: 
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1
1

can can_new 2
2

i

ˆ ˆx      x  









 
           

 (22) 

where λi is a 3-dimension vector composed by: 

 i i= , , ' i i     (23) 

For each λi, αi is the estimated parallax, Δαi is the rate of change in parallax and ρi is the estimated 

inverse depth. 

The covariance matrix of x̂can, Pcan, is augmented simply by: 

can
can_ new

c

P 0
P

0 R

 
  
 

 (24) 

The three initial values of λi are set to zero, and the initial values of Rc have been heuristically 

determined as: Rc = diag(.01, .01, 1). 

 

4.2. Delayed stage 

 

While the sensor moves through its environment, it can observe repeatedly a landmark ŷL(i), at each 

iteration generating a new angle measurement z. All these new measurements are successively added 

to the linear Kalman Filter (responsible for estimating x̂can) in order to infer the landmark depth. For 

each new measurement zi of a feature ŷL(i) an iteration of the filter is executed. 

The state transition model for each λi is: 

( 1) ( ) ( )

can_i(k+1) ( 1) ( )

( 1) ( )

ˆ x
i k i k i k

i k i k

i k i k

  
 
 







    
         
      

 (25) 

A process noise wk ~ N(0,Qk) is considered. In experiments: Qk = diag(8e−7, 10e−9) have been used. 

The measurement prediction model is directly obtained from the state. On the other hand, the 

measurements zcan used to update the filter are a function of: (i) the feature ŷL(i), (ii) the sensor state x̂v 

and (iii) the current measurement zi. 

 L(i) vˆ ˆ y , x ,can z i

z
z f z

z




 
  
 

 (26) 

zα and zρ are estimated in the same manner as Equation 13 and Equation 17 respectively. Only note 

that in Equation 16, x1 and y1 are taken from ŷL(i), so x1 = xi and y1 = yi. 

The implicit uncertainties in the estimation of the function fz are used to compose the error 

measurement covariance matrix Rcan: 

t(P ) 'can z zR f f    (27) 

where fz is the Jacobian of fz with respect to zcan. Pt is formed by: 
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All the components of Pt, except σz (the error variance of the bearing sensor) are taken directly from 

the covariance matrix P of the system state x̂. Pxv̂ is the submatrix of P corresponding to the covariance 

of the sensor state x̂v. PŷL(i)
 is the covariance of the feature ŷL(i). P x ̂vŷL(i) and PŷL(i)xv̂

 are the correlations 

between x̂v and ŷL(i).  

Rcan is used in the Kalman update equations for estimating the innovation covariance matrix Si.  

 

4.3. Updating depth 

 

Features expressed in the form of ŷL(i) are very useful to estimate the sensor orientation θv. In [25] a 

visual compass is proposed based in this fact. Besides, the depth of features are needed for estimating 

the sensor location [xv,yv]. For near features ŷL(i), a small sensor translation is enough to produce some 

parallax and thus to infer depth.  

Figure 6. Parallax and depth estimations for a distant and a close feature. 

 

The state x̂can encloses the parallax αi and inverse depth ρi estimations for each feature ŷL(i). Figure 6 

shows the evolution of parameters αi (upper plot) and d = 1/ρi (lower plot) and its uncertainty for the 

feature estimated by the linear Kalman filter, (left plot) feature at a distance of d = 1,000 units and 

(right plot) for a distance of d = 50 units. The boundary uncertainties at 3σ are indicated in blue color. 

The filtered values are depicted in red color. Also note in green color the raw measurements zcan (taken 

from Equation 26). In these graphics it can be clearly appreciated how the estimation of depth d is 

directly influenced by the parallax; for the near feature, about 100 steps are needed to producing 
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parallax and thus d converges rapidly to its real value. Also note that the uncertainty is rapidly 

minimized. On the other hand, the distant feature produces small parallax. For a low parallax the 

sensor noise predominates and therefore produces very fluctuant raw measurements. Even so, after 

several steps, the filter estimates the depth reasonable well with a high related uncertainty. 

A minimum parallax threshold αmin is used for updating a feature ŷL(i) as ŷi. Distant features will not 

produce parallax and therefore will remain expressed as y ̂L(i), but contributing to the estimation of 

sensor orientation θv. 

On the other hand, if αi > αmin then: 

   Ti
T  ,,y,xŷ,y,xŷ iiiiiiiL(i)   (29) 

where ρi is taken directly from x ̂can. The covariance matrix P is transformed by the  

corresponding Jacobian: 

2new

P 0
P '

0
i

J J
q 

 
  

 
  (30) 

being σρ
y the variance of the inverse depth estimation for ŷL(i) and taken from Pcan. The constant q is 

used to increase the initial uncertainty of ρi in order to improve filter consistency. In experiments q is 

set to 100. 

i

L(i)

I 0 0 0

ŷ
0 0 1

ŷ

0 0 I 0

J

 
 

   
 
  

 (31) 

When a feature ŷL(i) is updated as ŷi, then its corresponding values will be removed from the linear 

Kalman filter responsible for estimating the state x̂can. 

 

4.4. Measurement 

 

At any time, the map can include both kind of features ŷL(i) and ŷi. Thus each kind of feature has its 

own measurement prediction model: 

- For features ŷi measurement Equation 7 is used. A value of 2 to 6 times the real error of the 

bearing sensor is considered for the measurement process.  

- Features ŷL(i) are supposed to be very far from the sensor and therefore it is assumed that its 

corresponding bearing measurement zi will remain almost constant. The measurement prediction 

model is simply: 

( )L i i vh     (32) 

- For near features ŷL(i), the bearing measurement zi will change rapidly. Due to this fact the 

standard deviation of the bearing sensor σz for features ŷL(i), (in update Kalman equations) is 
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multiplied by a high value c, (c = 10e10 were used in experiments). An interesting issue, to be 

treated for further work, could be the dynamical estimation of parameter c. 

Both kinds of measurement prediction models must be used together, if several measurements zi are 

made at the same time for both kinds of features. For example, consider that the bearing sensor takes 

measurements of the features ŷL(2) and ŷ3 simultaneously, then: 

2
2 (2) z

2
3 3 z

0
    R=

0
Lz h c

v
z h




    
      
     

 (33) 
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L Lh h

h h

  
    
  
 
   

 (34) 

where v is the innovation, R is the error covariance matrix and H is the Jacobian measurement 

model. 

 

5. Experiments 

 

Several simulations have been executed in order test the performance of the proposed method in 

relation to other approaches. Simulations are extremely helpful when different methods are compared 

among others, because numerous variables (inherent to real environments) are obviated (e.g., data 

association), or become constants (i.e., synthetic map), therefore the cores of the methods are 

compared.  

 

5.1. Initialization process of distant and near features 

 

Figure 7 shows the evolution in the initialization process of two features maps with the concurrent 

initialization: a distant one (600 units of depth) and a near one (50 units of depth). The only 

information given a priori to the system was the scale reference (the three points in yellow) which was 

introduced with an associated uncertainty close to zero in the covariance matrix R. Taking into account 

that there is not an additional sensory input (e.g., odometry), at every step an unknown linear and 

angular acceleration is introduced with zero mean and known-covariance Gaussian processes (Section 

3.1). In this case, aW
x = 4 m/s2, aW

y = 4 m/s2 and aW
θ = 2 rad/s2 were used. The only input sensor of the 

system is a noisy sensor capable of measuring the bearing of features, with a limited field of view of 

110º (emulating a 2-DOF camera). A standard deviation of σ = 1º is considered for the sensor readings. 

At the begin of the sequence (plot a) both features has been initialized as a directional vector ŷL(i), 

defining a ray (in cyan color). Note that three feature points (in yellow color) have been previously 

added to the map as a priori known landmarks in order to define/set the scale of the world. Around  

step 100 (plot b), the small displacement of the sensor to the right produces enough parallax to 

estimating the depth of the near feature. Observe that the near feature ŷL(i) has been transformed to a ŷi 

feature (blue color). Also note that some uncertainty (especially in depth) remains at the moment of the 
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transformation. By the last step, at 250 iterations, (plot c) the uncertainty in the near feature has been 

full minimized, on the other hand, the movement of the sensor has not produced enough parallax and 

therefore, the distant feature remains in the form of ŷL(i) but still contributing to the estimation of the 

sensor orientation.  

Figure 7. Sequence illustrating the concurrent initialization process: (a) beginning of 

initialization; (b) initialization process at step 100; (c) initialization process at step 250. 

 

5.2. Comparative study 

 

In order to show the performance of the Concurrent method proposed in this article, a comparative 

study between the ID-Undelayed method [22] and the ID-Delayed [23] method is presented.  

Figure 8 illustrates the environment setup used in the study. For all the tests, the bearing sensor is 

moved over a semi-cycled U-like shape trajectory, since our main goal is to observe the effect of the 

initialization process of new features in the estimation of both map and sensor location, instead of the 

closing loop problem. About 100 landmarks (in green) simulate the environment of the sensor. Figure 

8 also shows both the map and sensor trajectory estimates after a single run of 2,000 steps of the 

Concurrent method. The features map and their uncertainties are indicated in blue. Note the evolution 

of uncertainty in both sensor and features location. Also note the typical (in SLAM systems) drift in 

both trajectory and map estimations as the sensor moves far away from its initial location.  

The average NEES (normalised estimation error squared [26]) over N Monte Carlo runs of the filter 

was used in order to evaluate the consistency of the methods, as it is proposed in [27]. The NEES is 

estimated as follows: 

1
k|k k|k k|kˆ ˆx x P x x

T

k k k           (35) 

where xk is the true state and the average NEES is computed as: 
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Four different tests were realized to comparing the methods under diverse conditions. Table 2 

shows the values for the linear and angular acceleration (aW
x, aW

y and aW
θ in 4m/s2) and the time 

between “frames” (Δt in seconds) used for each test. In this case, a higher Δt implies bigger 

displacements of the robot from frame to frame and therefore more linearization errors due to large 

changes in parallax.  

Table 2. Setup of the tests. 

Test aW
x aW

y aW
θ Δt 

a 4 4 2 1/30 

b 4 4 2 1/120 

c 6 6 3 1/30 

d 6 6 3 1/120 

 

In experiments ρini = 0.05 and σρ = 0.025 were used for the ID-Undelayed method and αmin = 10º 

were used for both ID-Delayed and Concurrent methods. The NEES was estimated over  

the 3-dimensional robot pose. The average NEES for each method was estimated using N=20 Monte 

Carlo runs. In simulations the sensor was moved 3 meters every Δt = 1 second for the straight sections 

and 4.5 meters every Δt = 1 seconds for the curve sections of the trajectory.  

MATLAB code was run using a 1.73 GHz Pentium M laptop. Table 3 shows the execution time of 

the three methods for conditions Δt = 1/30 and Δt = 1/120. As it would be expected, for Δt = 1/120 the 

execution time was around four times longer than Δt = 1/30, for the same trajectory. Execution time of 

the Concurrent method was estimated using a diagnostic version of the algorithm, marked with an 

asterisk (*) in Table 3. This version uses a 5n Kalman filter (instead of 3n) which estimates two extra 

diagnostic parameters. This means that the real execution time of the Concurrent method should be 

somewhat faster.  

Table 3. Execution time & Failed attempts. 

Method Δt =1/30 Δt 
1/120

a b c d 

ID-Undelayed 76s 302s 2 1 0 2 

ID-Delayed 60s 235s 9 2 11 4 

Concurrent 94s* 376s* 0 0 0 0 

 

For some runs of the algorithms, filter divergence could occur. Table 3 also shows the failed 

attempts, this means the number of times that filter divergence appeared before a method reach N = 20 

positives runs (with convergence), for each test. The average NEES was only estimated using  

positive runs. 
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Figure 8. SLAM simulation using the concurrent initialization method. 

 

Figure 9 shows the evolution of the average NEES (ε ̅k) for tests (a), (b), (c), (d) for each method. 

Note that test (b) and (d) need four times more steps than test (a) and (c) in order to complete the same 

trajectory due to their particular value of Δt.  

As it would be expected, the whole methods become optimistic after a certain time [27]. 

Nevertheless, it can be observed for tests (a), (b) and (c) that ε ̅k achieved for Concurrent method (red) 

tends to be lower than ε ̅ k achieved for both ID-Undelayed (blue) and ID-Delayed (green) methods. 

This behavior is more evident in test (a) and (c), where lower noise is injected into the sensor motion 

model. The difference between (a) and (c) is the time between “frames” (Δt) used for each test. The 

above results suggest, that if adequate noise is injected, then Concurrent method seems to be less 

sensitive to large jumps in parallax (and linearization errors), and therefore could be suitable for 

application where a high “frame-rate” is not available. Regarding to the ID-Undelayed method, it can 

be observed the effect of the parameter Δt over the magnitude of ε ̅k, although its form is somewhat 

similar for all tests.  

In test (a) and  (c) where Δt is higher (1/30), ε ̅k reaches around 600 units, while in test (b) and (d) where 

Δt is lower (1/120) ε ̅k reaches around 200 units. Theoretically the ε ̅k for the ID-Undelayed method 

would be more favorable as Δt→0. At this point, it is important to remember that implementation of 

Concurrent method implies the estimation of an extra linear Kalman filter of dimension 3n, where n is 

the number of features ŷL(i) in the state x̂. On the other hand, the Concurrent method is lees sensitive to 

the parameter Δt. At least for this experimental setup, the average NEES for the Concurrent method, 

when Δt = 1/30 (94 s of execution time), is even lower than the ε ̅k for the ID-Undelayed, when  
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Δt = 1/120 (302 s of execution time). The ID-Delayed method represents the most efficient alternative 

in computational cost with medium performance in average NEES terms. However the ID-Delayed 

method shows to be the least robust method in terms of convergence (Table 3). The problem of 

convergence for the ID-Delayed method is notorious in tests (a) and (c) where Δt is higher (1/30), 

these results indicate a frame-rate dependency of the method. On the other hand, for the realized tests, 

the Concurrent method shows the best results in terms of convergence. 

Figure 9. Comparison of the average NEES for ID-Undelayed, ID-Delayed and  

Concurrent methods. 
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6. Conclusions  

 

This work proposes a novel and robust approach for initializing new features in SLAM systems 

based in bearing sensors. First, an overview of the problem is given and the most relevant related work 

is presented. Most of the methods presented in the literature can be classified into two categories: 

Undelayed and Delayed Methods. In that sense, an analysis of two representative methods of the 

aforementioned taxonomy is also presented. Undelayed methods provide information of orientation 
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since a feature is first detected, on the other hand, Delayed methods await until some depth 

information is gathered, improving convergence. 

The proposed approach in this article, the concurrent initialization method, takes the best of both, 

Undelayed and Delayed approaches. The key is to use two kinds of feature representations 

concurrently for both undelayed and delayed stages of the estimation. The simulations results, based in 

the average NEES test, showed that the Concurrent method can maintain the filter consistency 

satisfactorily. Moreover, observing the percentage of convergence, the Concurrent method appears 

also to be robust.  

It is important to mention that the complexity of the Concurrent method is higher than other 

methods (i.e., ID-Undelayed method) and the additional Kalman filter certainly implies an increase of 

computational requirements per frame. On the other hand, the Concurrent method appears to be less 

sensitive to the linearization errors induced for large jumps in parallax (much time between frames). In 

that sense the Concurrent method could be even more efficient in computational terms than other 

methods because it seems to work properly at low frame rate. This attribute also makes it suitable for 

applications where a high frame rate is not available for different reasons. The concurrent initialization 

method could be a robust alternative to bearing sensor based SLAM systems. 
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