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Abstract: Electrostatic-driven microelectromechanical systems devices, in most cases, 
consist of couplings of such energy domains as electromechanics, optical electricity, 
thermoelectricity, and electromagnetism. Their nonlinear working state makes their 
analysis complex and complicated. This article introduces the physical model of pull-in 
voltage, dynamic characteristic analysis, air damping effect, reliability, numerical modeling 
method, and application of electrostatic-driven MEMS devices. 
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1. Introduction 

Micro-Electro-Mechanical Systems (MEMS) are an electromechanical integrated system where the 
feature size of components and the actuating range are within the micro-scale. Unlike traditional 
mechanical processing, manufacturing of MEMS device uses the semiconductor production process, 
which can be compatible with an integrated circuit, and includes surface micromachining and bulk 
micromachining. Due to the increasingly mature process technology, numerous sophisticated micro 
structural and functional modules are currently available. Therefore, greater optimized performance of 
the devices has been developed. Electrostatic-driven MEMS devices have advantages of rapid response, 
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lower power consumption, and integrated circuit standard process compatibility. Among the present 
MEMS devices, many are electrostatic-driven MEMS devices, such as capacitive pressure sensors [1], 
comb drivers [2], micropumps [3], inkjet printer head [4], RF switches [5], and vacuum resonators [6]. 

Due to its simplicity of design and process, as well as convenience of integration with the integrated 
circuit processes to form a single-chip system, the electrostatic principle is commonly employed in 
sensing of MEMS or drive modules. However, due to the interaction between electrostatic force and 
structural behavior, namely the electromechanical coupling effects due to the coupling of multiple 
physical fields, such as stress fields and electrical fields, and since the system is nonlinear, instability 
of the pull-in often results, which leads to failures including stick, wear, dielectric changing, and 
breakdowns. Many studies have focused on common applications of electrostatic principle in MEMS 
devices, including: the instability when pull-in phenomenon occurs [7-37]; the deformation 
characteristic of microstructures subjected to electrostatic loads [18,38-41]; shape and position of drive 
electrodes [42-45]; dynamic response and optimization of electrostatic loads [46-57];  
air damping effect [58-66], analysis method of chaos and bifurcation in electrostatic-driven  
systems [67,68], such as finite element method (FEM), finite difference method (FDM), and finite 
cloud meshless method (FCM) [68-73]; simulation software and systems of simulated dynamic 
behaviors, such as ANSYS, ABAQUS, COULOMB, MEMCAD, and macro models [69,72,74-78]; 
effects of routing parameters (voltage and temperature) on electrostatic force [79]; inherent nonlinear 
stiffness softening effect [70,80-82]; device reliability related failure modes and mechanisms; material 
selection; and reasonable design [8,32,38,83-92]. Without a thorough understanding of the effects of 
electrostatic force in MEMS systems, many practical phenomena, such as instability, nonlinearity and 
reliability, would have no scientific explanation. Thus, it is impossible to effectively explore and use 
the potential of MEMS technology. Under such circumstances, it is important and indispensable to 
study electro-mechanics of a micron scale structure under electrostatic loads.  

Accurate modeling the electrostatic microstructures is very challenging in virtue of the  
mechanical-electrical coupling effect and the nonlinearity of the structure and electrostatic force. 
Effects such as the non-ideal boundary conditions, fringing fields, pre-deformation due to the initial 
stresses, and non-homogeneous structures further complicate the modeling, as shown in Figure 1.  
A review paper [46] provided an overview of the fundamental research on nonlinear behaviors of 
electrostatic-driven microresonators, including direct and parametric resonances, parametric 
amplification, impacts, self-excited oscillations, and collective behaviors, such as localization and 
synchronization, which arise in coupled resonator arrays. Another review paper [56] presented an 
overview of the existing techniques before 2005 applied to the MEMS electrostatic actuation modeling 
and their dynamic behavior of the electromechanical system. A complete idealized model based on 
Euler-Bernoulli beam of an electrostatically actuated uniform beam is presented. Firstly, the energy 
expressions of the corresponding mechanical and electrical energy are derived. The kinetic energy and 
the bending and membrane strain energy are considered in the mechanical model. The fringing field is 
considered in the potential energy of electrostatic model. Two basic damping forces in MEMS, namely 
structural and viscous damping, are considered as well. The structural damping comes from the 
molecular interaction in the material due to deformation while the viscous damping comes from fluid 
that surrounds the moving microstructure. There are two types of viscous damping, namely couette 
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flow damping and squeeze film camping. The governing equations are derived through substituting the 
above energy expressions into Lagrange equation. The static, transient, and oscillatory solutions of the 
model by numerical methods are illustrated respectively. A third review paper [57] presents an 
overview of the existing analytical models before 2007 for electrostatically actuated microdevices. 
General 3-dimensional nonlinear equations of motion for the coupled electromechanical fluid-structure 
interaction problem are outlined first. The microstructure is modeled as a solid elastic body. The air 
gap between the microstructure and fixed electrode is modeled as a homogeneous isotropic dielectric 
from the electric point of view while from the mechanical point of view, it is considered as a 
compressible Newtonian fluid. Deformations of microstructure are stated in Lagrange equation while 
the air gap and electrostatic field are stated in the Eulerian equations. The general 3-dimensional 
nonlinear model is too complicated to solve analytically. Therefore, simplified reduced order 
distributed models are illustrated along with such assumptions as beam and plate theories, squeeze film 
damping, and fringing field models. 

Figure 1. Nonlinear electromechanical coupling systems. 
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The aforementioned three review articles provide complete idealized models based on the 
assumptions of ideal fixed boundaries, homogeneous structures, and without pre-deformations, while 
this work provides models considering the non-ideal boundary conditions, non-homogeneous 
structures, and pre-deformations due to initial stresses. Over the past few decades’ development, 
MEMS technologies are now capable of manufacturing many microsensing or actuating components  
employing standard Complementary-Metal-Oxide-Semiconductor (CMOS) processes, which are the  
so-called CMOS-MEMS. There is a gap between prototype and commercial product that must be filled 
out, namely the reliability testing of MEMS devices. This is exactly what the aforementioned three 
review articles lack. The main benefit of CMOS-MEMS is batch production using the  
well-developed standard CMOS facilities. However, apart from the electrical testing of circuits, the 
MEMS-side still requires the mechanical testing of microsensing or actuating components. The 
performance of microdevices depends on the constitutive properties of the thin-film structural materials 
of which they are made. It is known that thin-film properties can differ from bulk material ones. As a 
result, certain material properties are critical in device performance, which must be monitored in 
manufacturing to ensure the repeatability from device to device and wafer to wafer. However, the 
mechanical property extraction methods available in the literature for MEMS fabrication require 
additional measurement and actuating equipments or complicated test structure designs, which are not 
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compatible with standard CMOS metrology technologies. To be compatible with CMOS metrology 
technologies, the best choice of test and pickup signals are both electrical. In the past decade, the 
mechanical property extraction for MEMS by electrostatic structures was developed. The following 
sections present the quasi-static pull-in physical model of MEMS devices, dynamic response analysis 
of microstructures, air damping effects, breakdown mechanism analysis of the components, numerical 
simulation, and the application on inline mechanical properties extraction of microstructures. 

2. Development of Related Studies on Electro-Mechanics for MEMS Devices 

2.1. Physical Model of Quasi-Static Pull-in Voltage 

As shown in Figure 1, when there is an electrical potential difference between the beam and 
substrate, namely the drive voltage, the electrostatic attractive force will attract the beam downward 
while the elastic restoring force of the beam, namely the spring force, will restore the beam upward. In 
brief, the electrostatic attractive force and the elastic restoring force are kept in an equilibrium state. 
However, the deformation of the beam would cause a distribution change in its surface charges; thus, 
the electric field would redistribute and rework on the beam until a new equilibrium state is achieved. 
Therefore, Figure 1 is a nonlinear electromechanical coupling system. Figure 2 shows the variations of 
electrostatic force and spring force versus to the deformation of the beam.  

Figure 2. The electrical and spring force for voltage-controlled parallel-plate electrostatic 
actuator [93]. 
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The abscissa is the ratio of the beam deformation (g0-g) to the initial gap (g0) between beam and 

substrate while the ordinate is the forces. The spring force is proportional to the deformation of beam 
while the electrostatic force, namely the electrical force, is proportional to the square of the 
deformation. When the drive voltage is weak, the spring force can contend with the electrostatic force 
and keep the system in a stable equilibrium state. However, when the drive voltage achieves a critical 
value, the spring force can no longer contend with the electrostatic fore and throws the beam off 
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balance. The critical value of drive voltage is referred to as pull-in voltage. The system is under an 
unstable equilibrium state at pull-in. The physical model of Figure 1 can be modeled by the analytical 
model shown in Figure 3 which consists of a parallel-plate capacitor suspended by a spring. The  
pull-in occurs when the deformation exceeds the one third of the initial gap of the parallel-plate. Thus, 
the key of analyzing electro-mechanics for MEMS devices is the study of the quasi-static pull-in properties. 

Figure 3. A discrete model of an equivalent spring and a parallel-plate capacitor [80]. 

 

From 1994 to 1997 Senturia et al. published a series of research findings on  
electro-mechanics for MEMS devices. In 1994, Senturia [94] simulated a microbridge-shaped beam 
driven by electrostatic force as a lumped model of an equivalent spring and a parallel plate capacitor 
(Figure 3) in order to achieve the fundamental function forms of pull-in voltage, geometric dimension, 
and material parameters. Then in 1997, they proposed M-Test [8] technology, using semiconductor 
process technology to create three different micro test structures, namely, the microcantilever, the 
microbridge-shaped beam, and the microsector plate. They also produced micro- beams of different 
lengths to measure their pull-in voltage, respectively, in order to generalize the correcting factors based 
on those measured data and simulated numbers, and eventually modified the functional form based on 
the discrete model. In 2002, Pamidighantam et al. [19] simulated the system as a discrete system of an 
equivalent spring and a parallel plate capacitor. The stiffness of the equivalent spring and equivalent 
area of the parallel plate capacitor were obtained by CoventorWare, a commercial simulation software, 
in order to gain the pull-in voltage relation of the micro-bridge-shaped beams; however, the deviation 
was as high as 18%. In 2003, O'Mahony et al. [22] also analyzed the microbridge-shaped beams 
subjected to electrostatic loads using CoventorWare, and inferred the numerical solution of the 
microbridge-shaped beams by taking fringing capacitance effect, the efficiency of the plate-like 
phenomenon, and different boundaries into consideration. In 2005, Lishchynska et al. [95] derived the 
numerical solution of the pull-in voltage of cantilever beams, using the CoventorWare simulation 
software, and achieved an error within 4%. From 2004 to 2008, Krylov et al. published a series of 
research findings [7,12-14] on pull-in behavior of microstructures. In 2004, Krylov et al. [14] studied 
the transient nonlinear dynamics of microbeams subjected to electrostatic force, and developed a model 
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based on the Galerkin procedure with normal modes which considered the effects about the distributed 
nonlinear electrostatic forces, nonlinear squeezed film damping, and rotational inertia of a mass carried 
by the beam. In 2006, Krylov et al. [13] developed simple expressions for electrostatic pressure with 
higher order corrections, mainly related to the curvature and slope of the electrode by using the 
perturbation theory. The results showed that tuning the ratio of the mechanical pressure, the string was 
with different pull-in behavior. In small initial pre-stress case, bistability of the string occurred. In 
2008, Krylov et al. [7,12] reported on theoretical and experimental investigation of a multistability 
phenomenon in initially curved clamped-clamped microbeams subjected to a distributed electrostatic 
force. The results showed that the pull-in voltage of  
clamped-clamped with initially curved flexible was lower than a straight beam. From 2006 to 2009, Hu 
and co-workers proposed an approximate analytical model, taking into consideration such elements as 
initial stress, fringing capacitance effect, and elasticity boundaries [29,34,35,96,97]. For example, 
reference [34] presented an approximate analytical model to the pull-in voltage of a microbridge with 
elastic boundaries. The elasticity boundaries of the microbridge can be treated as a beam with torsional 
spring at both ends, and the conceptual diagram of a microbridge is shown in Figure 4.  

Figure 4. (a) Physical model, (b) Analytical model [34]. 
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The beam is with length L, anchor height La, width b, thickness h, and initial gap g, which subjected 
to a driving voltage V, resulted in a position-dependent deflection w(x). The equivalent torsional spring 
constant k can be expressed by the following equation [34]: 
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where I denoted the area moment of inertia, the subscript a denoted the anchor, and E denoted Young’s 
modulus. The reactive bending moment M, and the rotation angle θ were derived from a frame 
subjected to a uniform distributed load P0, as shown in Figure 5: 
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Figure 5. (a) Frame subjected to distributed load P0, (b) Free body diagram [34]. 
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Based on the Euler’s beam model and minimum energy method, the pull-in voltage PIV  of a  
micro-bridge was [34]: 
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where 0σ  denoted the initial stress, and φ  was first natural mode of a beam having torsional spring at 

both ends given by [132]: 
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Equation (4) shows an obvious physical meaning. The first term shows that the pull-in voltage was 
dependent on initial residual stress, the second one was dependent on beam flexibility, and the third 
one was dependent on elastic boundary condition. The findings had greater physical significance than 
the previous studies we motioned above, which employed numerical methods in studies of  
electro-mechanics for MEMS Devices. 
 
2.2. Microstructure Dynamic Response Analysis  
 

In the movement process, beams are affected by the interaction between electrostatic force,  
elasticity-restoring force, and damping force. As a result, the equation of motion in coupling is often a 
simultaneous partial differential equation of an electrostatic force equation, an Euler beam equation, 
and an air-damping equation, which explain the dynamic actions of the devices in all three spatial 
dimensions. It would be very difficult to solve this equation using only a numerical method. Therefore, 
mathematical operations, such as state-variable analysis and basic function expansion methods, are 
usually employed to translate a partial differential equation of infinite dimensions into a system of 
ordinary differential equations of finite dimensions. This is known as the reduced order method [75,98]. 
Younis et al. [75] presented a reduced-order model to analyze the behavior of microbeams actuated by 
electrostatic force. The model was obtained by discretizing the distributed-parameter system using 
Galerkin procedure into a finite-degree-of-freedom system, which considered the effects about 
moderately large deflections, dynamic loads, linear and nonlinear elastic restoring forces, the nonlinear 
electrostatic force generated by the capacitors, and the coupling between the mechanical and 
electrostatic force. However, under the reduced order method, it would be very difficult to analyze the 
dynamic actions of the devices when air damping is taken into consideration; while other related 
parameters are still obtained through the numerical method, thus, analysis efficiency has not been 
improved. To solve this problem, Clark [99] determined an effective method for analyzing the dynamic 
actions of MEMS devices, by which the complicated system is divided into several basic structural 
units, and then the equivalent circuit model, consisting of those basic structures, is built using the 
simulation protocols between similar systems. Wen [100] employed a model analysis method based on 
linear disposal near the bias point in order to analyze the AC small signal in frequency domain of 
beams. Zhang [101] set an electrostatic-driven cantilever beam equivalent to a  
single-degree-of-freedom model to conduct its analytical form, and used a feedback mechanism to 
realize the coupling. Time and frequency domain analyses were conducted. In the time domain 
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analysis, stronger driving voltage leads to more obvious beams overshoot. In the frequency domain 
analysis, the natural frequency of the cantilever beams would gradually reduce with an increase of 
voltage. Hu [80] established an analysis model for dynamic characteristics and stability of electrostatic-
driven devices, and found that the stiffness of a microstructure will be softened periodically with the 
frequency of applied voltage. The variation of stiffness increases with the magnitude of applied voltage 
(Figure 6).  
 

Figure 6. The first modal stiffness variation [80]. 

 

The dynamical pull-in voltage may be lower than the static one (Figure 7).  

Figure 7. Comparison between dynamic instability and static pull-in [80]. 
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Furthermore, the instable regions of the dynamical pull-in expand with the increasing of applied 
voltage, as shown in the dot-area of Figure 8. If the structure acts in small deformation condition, the 
beam can be considered as linear. On the contrary, for large deformations, non-linear structural effects 
have to be considered. For solving the non-linearity problem, one can use the finite element analysis 
(FEA) to obtain a non-linear cubic term. Moreover, it would be helpful to predict non-linear 
mechanical stiffness behavior [71,72,102,103]. The governing equation of a vibrating system with 
cubic stiffness non-linearity can be written as [50]: 

3
1 3 ( )mx k x k x cx f υ+ + + =   (8)  

where c, f(v), m, k1, k3, and x represent the equivalent damping coefficient, the equivalent external 
periodical force depending on drive voltage v, the equivalent mass, the equivalent linear stiffness 
coefficient, the equivalent non-linear stiffness coefficient, and the deformation respectively. 

Figure 8. Dynamical instable region of a microcantilever subjected to an AC voltage [80]. 

 

2.3. Air Damping Effect  

Microstructures, which move relatively along a vertical direction, are widely used in MEMS 
devices, such as microaccelerometers [104,105]. During movement, the structure would be affected by 
the air damping between device and substrates. When the devices are in greater working amplitude 
vibration, the air damping force would be obviously strengthened. Thus, it is critical to establish an air 
damping model of components under movement. Blech [63] analyzed seismic accelerometers, and 
treated them as a damping device consisting of two plates with squeeze film of gas between them. 
Besides, the squeeze film damping cutoff frequencies can be solved analytically from the lowest 
eigenvalue of the Helmholtz equation. Andrews [106] employed the theoretical model to predict the 
frequency response of isolated rectangular plates oscillating normal to each other and the prediction 
results agreed well with the experimental data. Darling [107] presented an analytical method based 
upon a Green's function solution to linearize Reynolds equation, and allowed the forces from 
compressible squeeze film damping to be rapidly calculated for arbitrary acoustic venting conditions 



Sensors 2010, 10                            
 

 

6159 

along the edges of a moveable structure. For laminar flows under relatively high pressure or relatively 
large space between the plates, Reynolds equations are used for analysis. The air flow can be treated as 
a continuum media. The degree of rarefaction depends on the so-called Knudsen number, Kn, defined 
as [108], where d is the gap distance and l the mean-free-path: 

nk
d
λ

=  (9)  

Veijola [59] utilized the circuit model to calculate the effective viscosity in a narrow gap between 
the moving surfaces. The damping coefficient was obtained by using Blech model [63], and the spring 
constant was estimated by curve fitting experimental measurements. Besides, he used an effective 
coefficient ηeff of viscosity for accounting for the slip-flow condition, where η0 is the coefficient of 
viscosity under atmospheric pressure: 

0
1.1591 9.658eff
nK

ηη =
+

 (10)  

In 1999, Li et al. [109] studied the damping effects of beams in a resonance state. In 2001,  
Yang [110] analyzed the relation between the air damping effects of MEMS devices and their working 
efficiency. In 2005, Zhang[70] suggested a simplified electrostatic-driven cantilever beam model, 
which considers nonlinear air damping and could be used to study the relationship between resonance 
response parameters and nonlinear dynamics. In the same year, Wang [60], took squeezed gas effects 
into consideration, and established an air damping model of a microplate structure in order to obtain a 
characteristic change of a pressed film within a resonance pressed cycle of motion through the finite 
difference method. The study showed that squeezed air effects must be taken into consideration in a 
theoretical analysis model; otherwise, the air damping effects would be over measured. The increased 
plate dimension of microstructures would increase the damping force, and the increasing speed of 
damping force is greater than that of the size of the microstructures. In addition, the increased 
resonance frequency would increase the air damping effect. In 2007, Wang [111] further established a 
nonlinear dynamics model of a microresonator by taking slip boundaries and squeezed air effects into 
consideration. Also in 2007, Zhu [112] developed an analytical formula of air damping force and the 
damping coefficient of a microplate structure by converting the governing equation along a vertical 
direction into the Fourier series. The study showed that the air damping coefficient is inversely 
proportional to the third power of the thickness of the air gap between the two plates.  

2.4. Numerical/CAD Methods  

The development process of a MEMS system is complicated, involving product design, 
manufacturing, packing and systemic integration. Like an IC circuit and its common mechanical 
structures, MEMS devices can use computer aided design (CAD) to facilitate their performance, 
reliability, reduce the development cycle and costs. The main difference is that MEMS CAD is still a 
work in progress. For electronic products design, the technology of electronic design automation 
(EDA) serves as a platform to enable circuit designers to design and analyze, with the help of a 
computer and model libraries provided by foundries and related design kits, in order to complete the 
design, development, and testing of devices in the most economic and efficient method. SPICE, 
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SABER, and Simulink are software commonly used. For mechanical products design, MDA 
(Mechanical Design Automation) has numerous and large-scale common software to aid design, 
manufacturing, and analysis, such as IDEAS, UGII, and ProPEngineer. A linking device between EDA 
and MDA is required for MEMS CAD to determine multiple physical coupling effects, which increases 
the development difficulties of MEMS CAD. Numerical simulation of MEMS devices mainly uses 
numerical methods, such as the finite element method, the boundary element method, and can simulate 
the actions of various structural components with high accuracy. Its drawbacks are high computation 
complexity and low analysis efficiency. Therefore, related studies have explored how to reduce the 
large amount of computations. Hung [113] examined the methods to define grids, which are able to 
generate the most effective reduced model during the process of devices’ working. Stewart [114] 
developed a set of simulation methods, which can be used for microstructures in small vibraction 
situation. Swart [115] invented a computer-aided software, named AutoMM, which can automatically 
produce dynamic models for microstructures. Commercial FEA/BEA tools usually used for the MEMS 
design, like ANSYS, ABAQUS, Maxwell, CoventorWare, CFDRC, IntelliCAD, CAEMEMS, 
SESES ,and SOLIDIS. For example, Figure 9 shows the SEM of a gyroscope and its lumped model. 

Figure 9. SEM of a gyroscope (a) and its lumped model (b) [50]. 

 
 
The suspended MEMS devices can always be treated as linear lumped model under the assumption 

of small displacement. The whole structure can be considered as linear massless springs (flexures parts) 
connected to the rigid mass (the proof mass).Then, one can use the FEA tools to obtain the spring 
constants and the equivalent mass [118]. Besides, one can use these tools to solve the governing 
equations with given boundary conditions to know the mode shape of microstructures (Figure 10). 
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Figure 10. SEM of a microbeam resonator (a) and its 1st modal shape simulated by 
CoventorWare (b) [50]. 

 

2.5. Breakdown Mechanism Analysis of Microstructures 

The breakdown of MEMS devices means that the devices are unable to achieve their expected 
functions. Zhang [117] discussed major breakdown modes and breakdown mechanisms of various 
MEMS devices, such as microswitches, micromotors, and comb drivers [118-124].  
Mariani [87-92] studied the breakdown mechanism of multi-scale structures subjected to drop impacts 
using a finite element method. Komvopoulos [125] proposed that the major breakdown modes of 
MEMS devices are friction, wear, and stick (Figure 11), which should be avoided to improve the 
reliability of the devices.  

Figure 11. Tribology issues during micromotor operation [38]. 

 

In 1992, Bart [126] proposed a dynamic model that involved analysis of kinetic friction, and found 
that the roughness of the surface has great impact on the friction force of the devices. Tai [127] 
established a model for friction movement to calculate the static friction coefficient of the devices, and 
suggested that due to the narrow gap between the rotor and the hub, contact wear is easily produced. 
Gabriel [122] found that the hub would be dramatically corroded or deformed at high speeds as the 
wear shortens the life span of the devices and limits their performance; however, a bracing structure 
could be adopted to avoid wear. Stick between the contact faces could prevent the devices from 
repeated operation or even working. Spengen [118] reported that the surface roughness of devices is a 
critical element that affects stick. Ren et al. [128] employed self-assembled monolayers (SAMs) to reduce 
the stick of devices surfaces. 
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3. Extracting the Mechanical Properties Utilizing Electromechanical Behavior of the 
Microstructures 

Electrostatic-driven MEMS devices have been widely used in various sensing and actuating, and 
can be used in biosensors or to extract mechanical properties of thin film materials. In the past decade, 
all the important discoveries on the technology of calculated mechanical properties of thin film 
materials came from the research team of Senturia [8] at MIT. The key point is to generalize the 
threshold voltage of devices and the experimental formula of MEMS mechanical properties. The 
advantage of this technology is the simplicity of the measurement of the threshold voltage; while the 
disadvantage is that the experimental formula must be used in conjunction with certain test micro 
structures. If the devices changes, then the formula has to change as well. It is also difficult to use the 
experimental formula in non-ideal boundaries, such as with pre-deformation or non-homogenous 
sections. Different from Senturia, Hu [29,30,34,35,96,97,129-131] proposed a nonlinear mechanical 
and electrical coupling system of a micro structure for a pull-in voltage approximate analytical model, 
which involves non-ideal boundaries, fringing capacitance effect, and residual stresses. Hu also 
developed a fully electrical signal testing method for the measurement of the mechanical properties of 
thin film materials, which can be used in wafer-level tests to examine the Young’s modulus and 
residual stresses of micro structures. Reference [131] presented a formula about the relationship 
between Young’s modulus, residual stress and pull-in voltage of micro test beams which considered 
the effects about fringing field capacitance, the distributed characteristics of micro test beams, and the 
electromechanical coupling effect: 
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where PIη  denoted the value of η  at pull-in state which can be expressed as: 
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Equation (12) can be solved by numerical method. Substituting the value of ηPI into equation (11), 
than we can obtain to the correlation between the pull-in voltage VPI and the structural material 
parameters σ0 and E: 

2
0 PIVBES =+σ  (13)  

where the parameters S and B depend on the geometrical parameters of micro test beam and are given as: 
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where b, E, h, I, L, and 0σ  represent the beam width, Young’s modulus, thickness, area inertia moment 
of beam cross section, beam length, and the initial stress, and φ  was first natural mode of a fixed-fixed 
beam given by [132]. Therefore, one can extract Young’s modulus and residual stress easily by 
substituting the measured pull-in voltages of the two test beams with different length: 

















=









−

2
2

2
1

1

22

110

PI

PI

V
V

BS
BS

E
σ

 (16)  

The testing technology is able to conduct inline measurements and monitoring of wafer fabrication, 
and uses existing semiconductor measurement equipment, as they are adequate for semiconductor and 
MEMS processes. 

4. Conclusions 

Analysis of the electro-mechanics of electrostatic-driven MEMS devices is complex due to the 
coupling of several energy domains. Besides, the electromechanical coupling effects will cause the 
pull-in instability, nonlinear response, reliability issues during the system operation. This article has 
reviewed related literature on electrostatic-driven MEMS devices, including a physical model of  
quasi-static pull-in voltage about how the physical quantities, like residual stress, elastic boundary, 
structural flexibility, fringing field capacitance to affect pull-in voltage, dynamic characteristic analysis 
about the dynamic behavior when system operates, air damping effects about the relation between air 
damping coefficient and geometry of structure, reliability about the failure mode and failure 
mechanisms of various devices, numerical modeling method about how to generate the most effective 
reduced model to fit the real system, and application. By the further understanding of the interaction 
mechanisms of these significant topics, it is helpful for developing the optimization techniques and 
applications in MEMS field. 
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