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Abstract: The aim of this study was to investigate the suitability of active infrared 
thermography and thermometry in combination with multivariate statistical partial least 
squares analysis as rapid soil water content detection techniques both in the laboratory and 
the field. Such techniques allow fast soil water content measurements helpful in both 
agricultural and environmental fields. These techniques, based on the theory of heat 
dissipation, were tested by directly measuring temperature dynamic variation of samples 
after heating. For the assessment of temperature dynamic variations data were collected 
during three intervals (3, 6 and 10 s). To account for the presence of specific heats 
differences between water and soil, the analyses were regulated using slopes to linearly 
describe their trends. For all analyses, the best model was achieved for a 10 s slope. Three 
different approaches were considered, two in the laboratory and one in the field. The first 
laboratory-based one was centred on active infrared thermography, considered measurement 
of temperature variation as independent variable and reported r = 0.74. The second 
laboratory–based one was focused on active infrared thermometry, added irradiation as 
independent variable and reported r = 0.76. The in-field experiment was performed by 
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active infrared thermometry, heating bare soil by solar irradiance after exposure due to 
primary tillage. Some meteorological parameters were inserted as independent variables in 
the prediction model, which presented r = 0.61. In order to obtain more general and wide 
estimations in-field a Partial Least Squares Discriminant Analysis on three classes of 
percentage of soil water content was performed obtaining a high correct classification in 
the test (88.89%). The prediction error values were lower in the field with respect to 
laboratory analyses. Both techniques could be used in conjunction with a Geographic 
Information System for obtaining detailed information on soil heterogeneity. 

Keywords: soil moisture; Partial Least Squares; thermography; thermometry; sensor 
techniques; irradiance; heat dissipation 

 

1. Introduction 

Recently, the need to measure in-field the variability of soil characteristics has increased following 
both sensor engineering developments, as well as the necessity to apply innovative crop management 
systems [1]. Changes in soil characteristics such as cation exchange capacity, organic carbon and water 
content may occur as the sampling point changes, even by few cm. A fine analysis carried out with 
conventional methods would require a lot of manual and laboratory work and incur high costs for the 
numerous samplings needed [2]. Researchers have investigated several approaches in order to 
automate these procedures [3] and to overcome the critical aspect of soil management in collecting 
representative samples [4]. For these reasons, methods increasing the acquisition of a high number of 
sample variables at a relatively low cost and time, such as vehicle-mounted optical sensing devices, 
represent promising application perspectives [5]. These multi-devices systems could include mobile 
instruments (i.e., visible-near and near infrared spectrophotometers, infrared thermometers and 
thermocameras). These could be used to measure different surface-layers soil parameters such as 
reflectance, absorbance and temperature. 

An important soil property is the spatial variation of water content measured at a proper depth and 
time [6]. The description of spatiotemporal soil water content (SWC) changes requires understanding 
of both spatial and time variability but results are relevant for many applicative agricultural contexts 
such as for example: trafficability, soil compactness and crop hydric stress [7]. Generally, the most 
common techniques to analyse SWC use punctual, destructive, expensive or time-consuming 
procedures [8,9], mainly based on opto-electronic, gravimetric, nuclear, electromagnetic, tensiometric 
and hygrometric processes [10]. Within the opto-electronic methods, near infrared (NIR) spectroscopy 
is one of the most used to calculate SWC in surface and subsurface layer, but its results show a 
tendency to underestimate values at higher water levels [11-13]. Another similar approach was carried 
out by Maltese et al. [14]. In this work the technological development of imaging sensors acquired in 
the visible (VIS), NIR and thermal infrared (TIR), renewed the research interest in setting up remote 
sensing based techniques aimed at retrieving SWC variability in the soil-plant-atmosphere system 
(SPA). The soil thermal inertia method (soil resistance to surrounding temperature change) is an 
additional method widely used to estimate soil moisture from TIR and VIS bands for bare soil [15,16]. 
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This technique requires readily available soil characteristics such as soil texture and bulk density. 
Among the gravimetric methods, the oven-drying technique is probably the most widely used. This 
method is considered as the standard for the calibration of all other soil moisture determination 
techniques. Nevertheless, it has some disadvantages, being a destructive test requiring sample removal 
and making it impossible to measure the water content at exactly the same point at a later date [17]. 
Another method is neutron scattering. This method obtains a profile of moisture distribution but it has 
some disadvantages such as radiation hazards, insensitivity near soil surface, insensitivity to small 
variations in moisture content at different points, and variation in readings due to soil density 
variations, which may cause an error rate of up to 15% [18]. Among the electromagnetic techniques 
there are those that measure the soil electrical resistivity, obtaining hence its water content. In this 
case, the disadvantages regard the instable calibration over the time affected by ionic concentration and 
the cost of equipment [10]. 

Another widely used method for small spatial scale estimates of SWC is the measurement of  
soil thermal properties such as the heat dissipation technique and the heat pulse technique [19].  
This method, contrary to the other previously reported ones, is non-destructive, and requires a small 
sample size which provides good spatial resolution, it is suitable for laboratory and field applications, 
does not need any calibration and conversely to the known electromagnetic techniques, it does not 
modify the soil’s electric properties. These are over a certain period of time permanently modified 
invalidating future readings [10]. These indirect methods exploit changes in soil thermal properties due 
to variation of SWC. In soil, the driving force which regulates its temperature is the water content, 
being its specific heat (i.e., 1 J/g °C) higher than that of the other substances that make up the soil itself 
(0.19–0.35 J/g °C). In fact, the same amount of heat supplied to certain soil samples with different 
water contents can lead to different temperature differentials. Commercial heat dissipation sensors are 
broadly available. They basically consist in a heat source (usually a heated needle) and temperature 
sensors, immersed in a porous ceramic that equilibrates with the surrounding soil at a given  
water content. The needle is heated and the rate of heat dissipation is measured by the temperature 
sensors [20]. However, sensor use is limited by the need of calibration for any type of soil and by the 
long time to reach hydraulic equilibrium with the surrounding soil. The time required to reach the 
hydraulic equilibrium between heat dissipation sensors and soil depends on both the magnitude of the 
SWC and the hydraulic conductivity. Typically this equilibration time is on the order of minutes or 
tens of minutes [21]. 

In order to overcome the limits of heat dissipation sensors, in this study we propose the use of  
a new technique based on the same underlying theory of the heat dissipation methods. Unlike heat 
dissipation sensors, we propose to directly measure temperature changes of soil samples, after heating, 
by using active infrared thermography and thermometry. The assumption is that these techniques could 
lead to the development of a faster SWC measurement system and could represent informative  
and non-destructive tools to remotely assess the dynamic variation of soil temperature [22,23].  
Moreover, these could be implemented on vehicle-mounted systems to shorten sampling time and the 
amount of soil surveyed. The main principle of these applications concerns the measurement of the 
thermal infrared spectrum of electromagnetic radiation emitted by soil samples depending on their 
temperature [24,25]. For in-field applications this technique should measure surface soil (0–60 cm) 
temperature, that is influenced by soil-atmosphere interactions. This aspect makes unsuitable the use of 
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calibration curves to relate temperature to SWC as physical or empirical relationships, which describe 
all the soil-atmosphere interactions. In fact the general model describing the soil-atmosphere 
interaction is given by the energy balance equation [26]: 

Rn +M − H − λΕ = G (1) 

where Rn is the net radiation at soil surface, M represents the supply of energy to the surface by 
metabolism or absorption of energy by photosynthesis, H is the sensible heat flux, λΕ is the latent heat 
flux by evapotranspiration and G is the soil heat flux. 

Adapting the energy balance Equation (1) to the proposed study and analyzing the water content on 
a bare soil after primary tillage and exposed to soil irradiance, the M becomes negligible and G is 
equal to: 

G = Gs + Gl (2) 

where Gs is the heat variation of soil surface and Gl the heat flux in the soil by contact. The surface 
thermal variation will be related to Gs, H, λΕ  and Gl. In this case, these parameters will be dependent 
on agro-pedological and meteorological parameters such as air temperatures and humidity, SWC, 
irradiance, wind regimes, soil water potential and soil roughness. The deterministic modelling of the 
environmental variables influencing the physical process which is developing in such a short time of 
analysis (few seconds) would have been very complex. 

For the above mentioned reasons the system could be approached in a statistical way and the 
estimation of SWC innovatively implemented by using a multivariate analysis [27,28], taking into 
consideration different soil thermal properties and meteorological parameters as input variables. 
Differently from deterministic models, stochastic ones do not explain the underlying physical 
processes generating the observations and the model randomness. Modeling spatiotemporal distributions, 
resulting from dynamic processes and evolving in both space and time, is critical in hydrology and soil 
science. Statistical spatiotemporal models provide a probabilistic framework for data analysis based on 
joint spatial and temporal dependence among observations [7]. 

In this study, a multivariate statistic approach (Partial Least Squares regression, PLS, and 
Discriminant Analysis, PLSDA) is used to estimate the SWC with active infrared thermal methods by 
warming up and measuring, at different time steps, several non-factorial soil samples with different 
water contents. Three different hypotheses were considered, two in the laboratory and one in the field. 
The laboratory experiments were carried out to determine the best performing one. The latter was then 
chosen in order to be applied in-field. The first one tested in the laboratory is based on active infrared 
thermography, which considers only the measurement of temperature variation as independent 
(observed) variable. The second one examined in the laboratory added the irradiation of soil samples 
as independent variable and it was based on active infrared thermometry. Finally the in-field 
experiment was based on active infrared thermometry and also considered some meteorological 
parameters as independent variables (i.e., air temperature and relative humidity, wind speed and 
irradiance at soil surface). 
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2. Experimental Section 

2.1. Laboratory Analysis 

In order to develop models for the statistical interpretation of the phenomenon, according to the 
previously indicated thermo-physical context, a series of progressive laboratory tests were performed. 
These laboratory tests were developed to highlight the limits and possibilities of the techniques and 
chose among them the most suitable one for an in-field application. 

The experimental laboratory protocol consists in warming up soil samples with different initial 
temperatures and water contents and in measuring for a few seconds the dynamic temperature 
variations. This investigation was carried out in two different steps: the first with an infrared 
thermocamera considering as dependent variable the percentage of water content and as independent 
ones the initial soil temperature and the exposition time at constant irradiance. 

In a second step, an infrared thermometer was used to simplify the measuring system by introducing 
among the independent variables also the irradiance produced by photographic bulbs (200 W and 
2,800 K) to approach in-field applications. In both cases, air temperature and air relative humidity 
were considered as constant. 

2.1.1. Thermographic Analysis 

Soil samples, number of soil samples (N) = 250, were collected from the CRA-ING experimental 
field (Lat. 42°06'11.00"N, Long. 12°37'40.81"E) at a depth of 30 cm. The operative soil status being 
normally unknown, different initial levels of water content and temperature were achieved by 
hydrating, dehydrating, warming up (stove, 40–60 °C; controlled environment, 20–25 °C) and cooling 
down (fridge, 2–4 °C) different plastic trays (20 × 30 cm) previously filled with soil samples.  

The dynamic variation of sampled soil temperature was identified by an operator analyzing a 
specific thermal image area called the Region Of Interest (ROI). The temperature values were 
collected at four different intervals: 0, 3, 6 and 10 s. The water content (%) was expressed 
gravimetrically as percentage of grams (g) of water on g of dry soil (θ g, water g/dry soil g). The water 
content reference measurements of samples were obtained through the official oven-drying gravimetric 
technique [17], by placing the sample in an oven at 105 °C until stabilization of weight.  

The soil surface temperature dynamic variation was acquired using a FLIR (S40) thermocamera 
[Figure 1(A,B)] with the following characteristics: detector type, Focal Plane Array (FPA) uncooled 
microbolometer; Field Of View (FOV), 24° at distance of 1 m the FOV is equal to 0.42 × 0.31 m; 
Instantaneous Field Of View (IFOV), 1.3 mrad (the theoretical FOV of one pixel); image frequency, 
60 Hz; spectral range, 7.5 to 13 µm; focus, automatic or manual; thermal sensitivity 50/60 Hz, 0.08 °C 
at 30 °C; temperature range −40–+120 °C. The emissivity (ε), the capability of an object to adsorb or 
emit the thermal radiation, for the soil was set equal to 0.96 [26]. 
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Figure 1. (A) Thermographic laboratory analysis system. Special photographic bulbs 
heating the soil samples in apposite plastic trays (20 × 30 cm) for the active infrared 
thermographic analysis. (B) Thermocamera FLIR (S40). 

 

2.1.2. Thermometric Analysis 

As in the previous case, soil samples (N = 50) were collected in the CRA-ING experimental field at 
a depth of 30 cm. In addition to different initial levels of water content and temperature, different 
irradiance values were considered for all the samples. Irradiance was measured by a radiation sensor 
whose sensible element is a photodiode that converts incident radiation into a voltage (LP-9021 RAD, 
Delta Ohm, Padova, Italy). The signal is then acquired by a portable microprocessor-controlled 
multifunction quantum-photo-radiometric indicator with LCD indication (HD-9021, Delta Ohm). The 
sensor measures the flux of incident radiation in the spectral region spanning from 450 nm to 950 nm, 
ranging from 0 to 2,000 W/m2 and having a precision of ±3.5%. The portable indicator has a resolution 
of 0.1 W/m2 for values minor than 200 W/m2 and 1 W/m2 for values greater than 200 W/m2. 

Soil surface temperature dynamic variation was measured at four intervals (0, 3, 6 and 10 s) by an 
infrared thermometer measuring the amount of radiant energy emitted by the samples (IRtec P500, 
Eurotron, Milano, Italy). The instrument has a measurement range from −30 °C to 930 °C, a resolution 
of 0.1 °C and an accuracy of ±1% + 1 °C. Also in this case the water content reference measurements 
of samples were obtained through the oven-drying gravimetric technique [11]. 

2.2. In-Field Analysis 

Soil samples (N = 40) were collected in the CRA-ING experimental field facilities during three 
different days and times in order to obtain a high SWC and solar irradiance variability. The samples 
were collected on the surface of bare soil after deep ploughing (60 cm) [Figure 2(A)] and primary 
milling (15 cm) [Figure 2(B)]. The measurements were carried out after ploughing just for practical 
reasons but the models are meant to work in pair with any soil baring system. The temperature 
dynamic variations were measured at four intervals (0, 3, 6 and 10 s) by the infrared thermometer 
[Figure 2(C)] on 40 different surface points of the bare soil. The temperature variation was achieved by 
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solar irradiance and measured with the radiation sensor. At the same time air temperature and relative 
humidity and wind speed were collected with a weather station (Vantage Pro2™, Davis Instruments 
Corp., Hayward, CA, USA). The water content reference measurements were obtained through the 
oven-drying gravimetric technique [17], catching the first 5 cm of the bare analyzed soils and bringing 
them in laboratory after temperature acquisition. 

Figure 2. (A) Soil deep ploughing (60 cm); (B) Soil after primary tillage (15 cm);  
(C) Temperature dynamic variations acquisition through the infrared thermometer. 

 

2.3. Datasets Creation and Statistical Analysis 

For the datasets creation, the temperature dynamic variations were collected at four intervals (0, 3, 6 
and 10 s), named hereafter t0, t3, t6 and t10, respectively. For the presence of different specific heats 
between water and soil, the analyses were regulated with the addition of slopes obtained by 
interpolation values for each interval (t3 slope, t6 slope and t10 slope). The t-slopes were calculated 
from the initial temperature (t0) to the final one, including all the internal steps (i.e., t10 slope was 
calculated from the t0, t3, t6 and t10 values). 

Three different datasets were hence created. The first in the laboratory method based on the active 
infrared thermography considered only the measurement of temperature variation as independent 
(observed) variable. The second laboratory one added the irradiation of soil samples as independent 
variable and it was based on active infrared thermometry. Finally, the in-field experiment was based on 
active infrared thermometry and it also considered as independent variables some meteorological 
parameters (i.e., air temperature and relative humidity, wind speed and irradiance at soil surface). 

The SWC estimation in all the analysis, both in laboratory (i.e., thermographic and thermometric) 
and in the field (i.e., thermometric), was carried out by multivariate PLS regression analysis [29] on 
the basis of thermal data collected at the intervals t3, t3 slope, t6, t6 slope, t10 and t10 slope for the 
thermographic analysis and only at the interval t10 slope for both laboratory and in-field thermometric 
analysis taking a temperature reading every second. For these two last analyses only the t10 slope was 
considered because it performed better than the t3 and t6 ones. This is due to the presence in-field of the 
environmental variables producing noises that can be lowered with a longer acquisition. 

The procedure of PLS [28,30] was elaborated using the PLS Toolbox in MATLAB V7.0 R14 (The 
Math Works, Natick, MA, USA) and included the following steps: (1) extraction of raw thermal data  
(X-block variables); (2) extraction of measured SWC (Y-block variables); (3) data fusion of the two 
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dataset (Y and X-block) in one analysis dataset (AS); (4) the sample set partitioning based on joint x-y 
distances (SPXY) [29-31] separation of the AS into two subsets, one (MS) for the model (85% of AS) 
and one (TS) for the external validation test (15% of AS); (6) application of different pre-processing 
algorithms (Table 1) to X-block and Y; (7) application of chemometric technique (PLS): modeling and 
testing; (8) calculation of efficiency parameter of prediction. 

Table 1. List of the different X and Y pre-processing techniques applied in the analysis. 

Label Description 
None No pre-processing 
Baseline Baseline (Weighted Least Squares) 
Abs Takes the absolute value of the data 
Autoscale Centres columns to zero mean and scales to unit variance 
Detrend Remove a linear trend  
Groupscale Group/block scaling 
mean center Center columns to have zero mean 
median centre Centre columns to have zero median 
Normalize Normalization of the rows 
SNV Standard Normal Deviate 
Centering Multiway Center 

 
The predictive ability of the model is partially dependent on the number of Latent Vectors (LV) 

used and was assessed by the prediction efficiency parameters: Root Mean Square Error (RMSE), 
Standard Error of Prevision (SEP) and correlation coefficient (r) between observed and predicted 
values. Finally, we recorded the Ratio of Percentage Deviation (RPD), which is the ratio of the 
standard deviation of the laboratory measured (reference) data to the RMSE [32]. It is the factor by 
which the prediction accuracy has been increased compared with using the mean of the original data. 
The model chosen was for the number of LV that yielded the highest r, minimum SEP for predicted 
and observed water content and maximum RPD. 

In order to obtain more general and wide (i.e., mapping) estimations of soil water content 
characteristics in the in-field analysis a Partial Least Squares Discriminant Analysis (PLSDA) [33]  
was performed. This model considered three different classes of water content (low < 11%;  
11% < medium < 14% and high > 14%) and calculated a prediction probability and a classification 
threshold for each class modelled. The samples from each class were subdivided in two subsets:  
(i) 75% of samples for the class modelling and validation; (ii) 25% of specimens for the independent 
test, optimally chosen with the Euclidean distances based on the algorithm of Kennard and Stone [34] 
that selects objects without the a priori knowledge of a regression model (the hypothesis of a flat 
distribution of the data is preferable for a regression model). This analysis provided the percentage of 
correct classifications and the modelling efficiency in terms of sensitivity and specificity parameters 
where the first represents the percentage of the samples of a category accepted by the class model and 
the second the percentage of the samples of the categories different from the modelled one, rejected by 
the class model. 
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3. Results 

3.1. Laboratory Results 

3.1.1. Thermographic Results 

Table 2 shows the results of PLS for the prediction of SWC through thermographic analysis for the 
three time intervals (t3, t6 and t10) and for the slopes obtained by value interpolation for each interval (t3 
slope, t6 slope and t10 slope) with maximum r and RPD (calculated to RMSE of test subset) and 
minimum SEP for the calculation of water content. 

Table 2. Partial Least Squares (PLS) results for the prediction of soil water content (SWC) 
obtained with laboratory thermographic analysis for the three time intervals (t3, t6 and t10) 
and for the slopes obtained by values interpolation for each interval (t3 slope, t6 slope and 
t10 slope). The table reports n° of Latent Vectors (LV); first and second pre-processing for 
the X-block and one for the Y-block; the correlation coefficient (r); the Ratio of Percentage 
Deviation (RPD); the Standard Error of Prevision (SEP) and the Root Mean Square Error 
(RMSE) for the model and test. 

Parameters t3 t3 slope t6 t6 slope t10 t10 slope 
MODEL (85%) 
n° LV 3 3 3 2 10 9 
First pre-processing  
X-block autoscale none autoscale autoscale autoscale median 

center 
Second pre-processing  
X-block normalize none none none median 

center none 

Pre-processing  
Y-block 

median 
center autoscale none autoscale none median 

center 
r (observed vs. predicted) 0.3051 0.5765 0.6016 0.6113 0.7524 0.7756 
RPD 1.0476 1.2209 1.209 1.2606 1.5133 1.5804 
SEP 15.093 12.929 13.045 12.37 10.323 9.9083 
RMSE 16.125 12.898 21.675 12.341 10.301 9.8858 
TEST (15%) 
r (observed vs. predicted) 0.2993 0.5198 0.5784 0.542 0.7227 0.7417 
RPD 1.0322 1.1013 1.209 1.129 1.2163 1.4524 
SEP 16.682 15.438 15.407 15.335 14.729 12.314 
RMSE 19.444 15.286 27.478 16.258 26.281 15.512 

3.1.2. Thermometric Results 

Table 3 reports the results of PLS for the prediction of SWC through thermometric analysis only for 
the t10 slope interval, assessed with maximum r and RPD (i.e., calculated to RMSE of test subset) and 
minimum SEP for the calculation of water content. Figure 3 shows the regression between observed 
and predicted values relatively to the prediction for the prediction of SWC through thermometric 
analysis in the independent test for t10 slope. 
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Table 3. Results of Partial Least Squares (PLS) for the prediction of soil water content 
(SWC) obtained with laboratory thermometric analysis for the interval t10 slope. In the 
table are reported: n° of Latent Vectors (LV); first and second pre-processing for the  
X-block and one for the Y-block; the correlation coefficient (r); the Ratio of Percentage 
Deviation (RPD); the Standard Error of Prevision (SEP) and the Root Mean Square Error 
(RMSE) for the model and test. 

Parameters t10 slope 
MODEL (85%) 
n° LV 4 
First pre-processing X-block autoscale 
Second pre-processing X-block none 
Pre-processing Y-block autoscale 
r (observed vs. predicted) 0.7095 
RPD 1.4024 
SEP 2.125 
RMSE 2.1001 
TEST (15%) 
r (observed vs. predicted) 0.7634 
RPD 1.2868 
SEP 4.5316 
RMSE 4.2138 

Figure 3. Regression between observed and predicted values of soil water content for the 
intervals t10 slope in the independent test for the thermometric analysis (i.e., 15% of whole 
sample dataset). 

 

3.2. In-Field Results 

Table 4 reports the results for the prediction of SWC through thermometric analysis performed  
in-field for the only interval t10 slope. Table 5 reports the results of the PLSDA for the prediction of 
SWC through thermometric analysis performed in-field for the only interval t10 slope considering three 
different classes of SWC (low < 11%; 11% < medium < 14% and high > 14%). 
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Table 4. Results of Partial Least Squares (PLS) for the prediction of SWC obtained with 
thermometric analysis performed in field for the interval t10 slope. In the table are reported: 
n° of Latent Vectors (LV); first and second pre-processing for the X-block and one for the 
Y-block; the correlation coefficient (r); the Ratio of Percentage Deviation (RPD); the 
Standard Error of Prevision (SEP) and the Root Mean Square Error (RMSE) for the model 
and test. 

Parameters t10 slope 
MODEL (85%) 
n° LV 5 
First pre-processing X-block mean center 
Second pre-processing X-block baseline 
Pre-processing Y-block autoscale 
r (observed vs. predicted) 0.6383 
RPD 1.2803 
SEP 1.6924 
RMSE 1.6726 
TEST (15%) 
r (observed vs. predicted) 0.6063 
RPD 0.9742 
SEP 3.6123 
RMSE 3.3194 

Table 5. Results of Partial Least Squares Discriminant Analysis (PLSDA) for the  
in-field prediction of SWC obtained with thermometric analysis for the interval t10  
slope considering three different classes of soil water content (SWC) (low < 11%;  
11% < medium < 14% and high > 14%). N is the number of samples; n° units (Y-block) is 
the number of units to be discriminated by the PLSDA; n° LV is the number of latent 
vectors. Random Probability (%) is the probability of random assignment of an individual 
into a unit. 

Parameters t10 slope 
N (Low SWC < 11%) 13 
N (11% < Medium SWC < 14%) 19 
N (High SWC > 14%) 9 
n° units (Y-block) 3 
n° LV 6 
% Cumulated Variance X-block 100 
Mean Specificity (%) 89.033 
Mean Sensitivity (%) 86.667 
Random Probability (%) 33.333 
Mean Classification Error (%) 12.143 
Mean Correct Classification Model (%) 86.349 
Mean Correct Classification Test (%) 88.889 

  



Sensors 2011, 11  
 

 

10125

4. Discussion and Conclusions 

As reported by Bittelli [20], SWC estimation is necessary for different applications, ranging from 
large-scale calibration of global-scale climate models to field monitoring in agricultural and 
horticultural systems. The proposed laboratory and in-field methods concern the development of  
non-destructive and rapid SWC estimations using active infrared thermography and thermometry in 
combination with multivariate statistical analysis (PLS). The main principle of these applications 
regards the measurement of the thermal infrared spectrum of electromagnetic radiation emitted by 
samples depending on their dynamic temperature variation achieved by heating soil [24,25]. In this 
work the statistical modeling based on a variant of the heat dissipation method occurs efficacy in all 
the experimental analysis overcoming the limits of the heat dissipation sensors measuring directly the 
temperature dynamic variation of soil samples after heating. 

Generally among the results shown by both laboratory and in-field applications, the best performing 
models were the t10 slope ones. The laboratory analysis showed that active infrared thermometry 
performed better than thermography, probably due to the variable represented by the irradiance present 
in the statistical model. This latter increased the correlation coefficient (r) in the independent test 
(0.7417 for thermography; 0.7634 for thermometry) but it especially decreased both SEP and RMSE 
(12.314 and 15.512 for thermography; 4.5316 and 4.2138 for thermometry). The RPD values remained 
instead similar (1.4524 for thermography and 1.2868 for thermometry). 

Since the best performing laboratory model was thermometry, we have chosen to use only this 
methodology for the in-field applications in order to measure SWC from the dynamic variation of 
surface temperature after deep ploughing and primary tillage. Both ploughing and tillage were used 
only for practical reasons. This in-field measurement is influenced by soil-atmosphere interactions as 
reported by Campbell and Norman [26]. This makes the use of calibration curves unsuitable 
temperature to SWC as physical or empirical relationships which describe all the soil-atmosphere 
interactions. Moreover, for a correct infrared thermal measurement the estimation of emissivity is very 
important. As reported by Schmugge [35] the rate of soil emissivity is a function of its texture and it is 
greater for lighter sandy and smaller for heavier clayey soils and it is reduced by surface features, such 
as roughness and vegetation cover. In this study, to overcome the heterogeneity of soil in terms of 
surface, temperature and water content we analyzed a great number of diverse non-factorial samples, 
mostly in the laboratory. Adapting the energy balance to the proposed study, this becomes dependent 
by agro-pedological and meteorological parameters such as air temperatures and humidity, SWC, 
irradiance, wind regimes, soil water potential and soil roughness making the system approachable in a 
statistic way instead of deterministic one. Thus, the estimation of SWC was developed by using a 
multivariate analysis by taking into consideration different soil thermal properties and meteorological 
parameters as input variables. This statistical approach provided a probabilistic framework for data 
analysis, as based on joint spatial and temporal dependence among observations [7,27,28]. 

In particular, the proposed in-field method performed worse than the laboratory ones (r = 0.6063 
and RPD = 0.9742), but reported very low prediction error values (SEP = 3.6123 and RMSE = 3.3194). 
In this case, the lower performance could be related to the measurement of thermo-hygrometer 
variables. In fact, the air temperature and relative humidity and wind speed were not punctually 
collected (i.e., we used a weather station). In order to obtain more general and wide (i.e., mapping) 
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estimations of SWC in in-field analysis a PLSDA was performed. In this case three different classes of 
water content (low <11%; 11% < medium < 14% and high >14%) were considered and a prediction 
probability and a classification threshold were calculated for each class modelled. The results showed a 
higher percentage of the mean correct classification both in the model (86.349%) and in the test 
(88.889%) with respect to the PLS. This classificatory model using a multivariate statistical approach 
as shown above can discriminate among close classes of SWC. This proves as such a technique is 
capable of a fine discrimination with respect to a simple linear modelling approach. This in-field gives 
the opportunity to choose properly the best trafficability and soil workability. 

Therefore, relationships between soil water and environmental factors need to be studied over wider 
time- and spatial-scales [36]. However, these could be implemented on vehicle-mounted systems to 
shorten sampling time and amount of soil needed. Moreover, it could be possible to obtain temperature 
mapping and consequently water content directly in field of any particular region of interest with fast 
response times, which is not presently possible with thermocouples or other temperature sensors (i.e., 
these can only measure spot data). In addition the repeatability of these measurements is high and it 
does not require an illumination source, unlike other systems [37]. 

Finally, both thermography and thermometry are of fast execution and could produce highly 
informative results if paired with a Geographic Information System (GIS). Also, as reported by 
Schmidhalter et al. [38], these could be applied on site-specific management tasks, as required in 
precision farming to obtain detailed information about the heterogeneity of soil. Moreover, the 
proposed methodologies resulted very interesting for the limited time of exposure to the heat, needed 
to obtain results on dynamic temperature variation, making these implementable on commercial 
machine systems for very expeditious in-field applications. 

Acknowledgements 

This study is part of the Ph.D. thesis of Francesca Antonucci on “Environmental sciences” (XXIV 
cycle) at the University of Tuscia (Viterbo), Italy. 

References 

1. Castrignanò, A.; Maiorana, M.; Fornaio, F.; Lopez, N. 3D spatial variability of soil strength and 
its change over time in a durum wheat field in Southern Italy. Soil Till. Res. 2002, 65, 95-108. 

2. Hummel, J.W.; Sudduth, K.A.; Hollinger, S.E. Soil moisture and organic matter prediction of 
surface and subsurface soils using an NIR soil sensor. Comput. Elect. Agr. 2001, 32, 149-165. 

3. Sudduth, K.A.; Hummel, J.W. Geographic operating range evaluation of a NIR soil sensor. Trans. 
ASAE 1996, 39, 1599-1604. 

4. Wollenhaupt, N.C.; Mulla, D.J.; Gotway Crawford, C.A. Soil sampling and interpolation techniques 
for mapping spatial variability of soil properties. In The State of Site-Specific Management for 
Agriculture; Pierce, F.T., Sadler, E.J., Eds.; ASA-CSSA-SSSA: Madison, WI, USA, 1997; pp. 19-53. 

5. Committee on Assessing Crop Yield: Site-Specific Farming, Information Systems, and Research 
Opportunities, Board of Agriculture, National Research Council. Precision Agriculture in the 21st 
Century: Geospatial and Information Technologies in Crop Management; National Academy 
Press: Washington, DC, USA, 1997. 



Sensors 2011, 11  
 

 

10127

6. Huisman, J.A.; Snepvangers, J.J.J.C.; Bouten, W.; Heuvelink, G.B.M. Mapping spatial variation 
in surface soil water content: Comparison of ground-penetrating radar and time domain 
reflectometry. J. Hydrol. 2002, 269, 194-207. 

7. Castrignanò, A.; Maiorana, M.; Fornaio, F. Using regionalised variables to assess field-scale 
spatiotemporal variability of soil impedance for different tillage management. Biosyst. Eng. 2003, 
85, 381-392. 

8. Edmeades, D.C.; Wheeler, D.M.; Clinton, O.E. The chemical composition and ionic strength of 
soil solutions from New Zealand topsoils. Aust. J. Soil Res. 1985, 23, 151-165. 

9. Roth, C.H.; Malicki, M.A.; Plagge, R. Empirical evaluation of the relationship between soil 
dielectric constant and volumetric water content as the basis for calibrating soil moisture 
measurements by TDR. J. Soil Sci. 1992, 43, 1-13. 

10. Zazueta, F.S.; Xin, J. Soil Moisture Sensors; Bulletin 292; University of Florida: Gainsville, FL, 
USA, 2004. 

11. Sudduth, K.A.; Hummel, J.W. Portable near-infrared spectrophotometer for rapid soil analysis. 
Trans. ASAE 1993, 36, 185-193. 

12. Sudduth, K.A.; Hummel, J.W. Geographic operating range evaluation of a NIR soil sensor. Trans. 
ASAE 1996, 39, 1599-1604. 

13. Sudduth, K.A.; Drummond, S.T.; Kitchen, N.R. Accuracy issues in electromagnetic induction 
sensing of soil electrical conductivity for precision agriculture. Comput. Elect. Agr. 2001, 31,  
239-264. 

14. Maltese, A.; Minacapilli, M.; Cammalleri, C.; Ciraolo, G.; D’Asaro, F. A thermal inertia model 
for soil water content retrieval using thermal and multispectral images. Proc. SPIE 2010, 7824, 
doi:10.1117/12.864672. 

15. Lu, S.; Ju, Z.; Ren, T.; Horton, R. A general approach to estimate soil water content from thermal 
inertia. Agr. Forest Meteorol. 2009, 149, 1693-1698. 

16. Minacapilli, M.; Iovino, M.; Blanda, F. High resolution remote estimation of soil surface water 
content by a thermal inertia approach. J. Hydrol. 2009, 379, 229-238. 

17. Mckim, H.L.; Walsh, J.E.; Arion, D.N. Review of Techniques for Measuring Soil Moisture  
In Situ; Special Report 80-31; United States Army Corps of Engineers, Cold Regions Research 
and Engineering Lab: Hanover, NH, USA, 1980. 

18. Verstraeten, W.W.; Veroustraete, F.; Feyen, J. Assessment of evapotranspiration and soil moisture 
content across different scales of observation. Sensors 2008, 8, 70-117. 

19. Young, M.H.; Campbell, G.S.; Yina, J. Correcting dual-probe heat-pulse readings for changes in 
ambient temperature. Vadose Zone J. 2008, 7, 22-30. 

20. Bittelli, M. Measuring soil water content: A review. Hort Technol. 2011, 21, 3. 
21. 229 Heat Dissipation Matric Water Potential Sensor; Instruction Manual; Revision 5/09; 

Campbell Scientific, Inc.: Loughborough, UK, 2009. Available online: ftp://ftp.campbellsci.com/ 
pub/csl/outgoing/uk/manuals/229_heat_dissipation.pdf (accessed on 17 October 2011). 

22. Newton, R.W.; Heilman, J.L.; Van Bavel, C.H.M. Integrating passive microwave measurements 
with a soil moisture/heat flow model. Agr. Water Manage. 1983, 7, 379-389. 

23. Maldague, X. Introduction to NDT by Active Infrared Thermography. Mater. Eval. 2002, 6,  
1060-1073. 



Sensors 2011, 11  
 

 

10128

24. Rahkonen, J.; Jokela, H. Infrared radiometry for measuring plant leaf temperature during thermal 
weed control treatment. Biosyst. Eng. 2003, 86, 257-266. 

25. Maldague, X. Non-destructive testing monographs and tracts. In Infrared Methodology and 
Technology; Maldague, X., Ed.; Gordon and Breach: New York, NY, USA, 1994; Volume 7. 

26. Campbell, G.S.; Norman, J.M. An Introduction to Environmental Biophysics, 2nd ed.; Springer: 
New York, NY, USA, 1998; p. 286. 

27. Antonucci, F.; Pallottino, F.; Paglia, G.; Palma, A.; D’Aquino, S.; Menesatti, P. Non-destructive 
estimation of mandarin maturity status through portable VIS-NIR spectrophotometer. Food 
Bioprocess Tech. 2011, 4, 809-813. 

28. Menesatti, P.; Antonucci, F.; Pallottino, F.; Roccuzzo, G.; Allegra, M.; Stagno, F.; Intrigliolo, F. 
Estimation of plant nutritional status by VIS-NIR spectrophotometric analysis on orange leaves 
[Citrus sinensis (L) Osbeck cv Tarocco]. Biosyst. Eng. 2010, 105, 448-454. 

29. Ulissi, V.; Antonucci, F.; Benincasa, P.; Farneselli, M.; Tosti, G.; Guiducci, M.; Tei, F.; Costa, C.; 
Pallottino, F.; Menesatti, P. Nitrogen content estimation on tomato leaves by VIS-NIR non 
destructive spectral reflectance system. Sensors 2011, 11, 6411-6424. 

30. Wold, S.; Sjostrom, M.; Erikssonn, L. PLS-regression: A basic tool of chemometrics. Chemometr. 
Intell. Lab. Syst. 2001, 58, 109-130. 

31. Harrop Galvao, R.K.; Ugulino Araujo, M.C.; Emidio Jose, G.; Coelho Pontes, M.J.;  
Cirino Silva, E.; Bezerra Saldanha, T.C. A method for calibration and validation subset 
partitioning. Talanta 2005, 67, 736-740. 

32. Williams, P.C. Variables affecting near-infrared reflectance spectroscopic analysis. In Near-Infrared 
Technology in the Agricultural and Food Industries; Williams, P., Norris, K., Eds.; American 
Association of Cereal Chemists: St Paul, MN, USA, 1987; pp. 143-166. 

33. Costa, C.; Vandeputte, M.; Antonucci, F.; Boglione, C.; Menesatti, P.; Cenadelli, S.; Parati, K.; 
Chavanne, H.; Chatain, B. Genetic and environmental influences on shape variation in the 
European sea bass (Dicentrarchus labrax). Biol. J. Linn. Soc. 2010, 101, 427-436. 

34. Kennard, R.W.; Stone, L.A. Computer aided design of experiments. Technometrics 1969, 11,  
137-148. 

35. Schmugge, T.J. Applications of passive microwave observations of surface soil moisture.  
J. Hydrol. 1998, 212-213, 188-197. 

36. Owe, M.; Jones, E.B.; Schmugge, T.J. Soil moisture variation patterns observed in Hand county, 
South Dakota. Water Resour. Bull. 1982, 18, 949-954. 

37. Vadivambal, R.; Jayas, D. Applications of thermal imaging in agriculture and food industry—A 
review. Food Bioprocess Tech. 2011, 4, 186-199.  

38. Schmidhalter, U.; Maidl, F.X.; Heuwinkel, H.; Demmel, M.; Auernhammer, H.; Noack, P.; 
Rothmund, M. Precision Farming—Adaptation of land use management to small scale 
heterogeneity. In Perspectives for Agroecosystem Management; Schröder, P., Fadenhauer, J.P., 
Munch, J.C., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 121-199. 

© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution license 
(http://creativecommons.org/licenses/by/3.0/). 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AgencyFB-Bold
    /AgencyFB-Reg
    /AharoniBold
    /Algerian
    /AngsanaNew
    /AngsanaNew-Bold
    /AngsanaNew-BoldItalic
    /AngsanaNew-Italic
    /AngsanaUPC
    /AngsanaUPC-Bold
    /AngsanaUPC-BoldItalic
    /AngsanaUPC-Italic
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialRoundedMTBold
    /ArialUnicodeMS
    /Basemic
    /BaskOldFace
    /Batang
    /BatangChe
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BlackadderITC-Regular
    /BodoniMT
    /BodoniMTBlack
    /BodoniMTBlack-Italic
    /BodoniMT-Bold
    /BodoniMT-BoldItalic
    /BodoniMTCondensed
    /BodoniMTCondensed-Bold
    /BodoniMTCondensed-BoldItalic
    /BodoniMTCondensed-Italic
    /BodoniMT-Italic
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BradleyHandITC
    /BritannicBold
    /Broadway
    /BrowalliaNew
    /BrowalliaNew-Bold
    /BrowalliaNew-BoldItalic
    /BrowalliaNew-Italic
    /BrowalliaUPC
    /BrowalliaUPC-Bold
    /BrowalliaUPC-BoldItalic
    /BrowalliaUPC-Italic
    /BrushScriptMT
    /Calibri
    /Calibri-Bold
    /Calibri-BoldItalic
    /Calibri-Italic
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /CalisMTBol
    /CalistoMT
    /CalistoMT-BoldItalic
    /CalistoMT-Italic
    /Cambria
    /Cambria-Bold
    /Cambria-BoldItalic
    /Cambria-Italic
    /CambriaMath
    /Candara
    /Candara-Bold
    /Candara-BoldItalic
    /Candara-Italic
    /Castellar
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /Consolas
    /Consolas-Bold
    /Consolas-BoldItalic
    /Consolas-Italic
    /Constantia
    /Constantia-Bold
    /Constantia-BoldItalic
    /Constantia-Italic
    /CooperBlack
    /CopperplateGothic-Bold
    /CopperplateGothic-Light
    /Corbel
    /Corbel-Bold
    /Corbel-BoldItalic
    /Corbel-Italic
    /CordiaNew
    /CordiaNew-Bold
    /CordiaNew-BoldItalic
    /CordiaNew-Italic
    /CordiaUPC
    /CordiaUPC-Bold
    /CordiaUPC-BoldItalic
    /CordiaUPC-Italic
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /CurlzMT
    /David-Bold
    /David-Reg
    /DavidTransparent
    /DejaVuSans
    /DejaVuSans-Bold
    /DejaVuSans-BoldOblique
    /DejaVuSansCondensed
    /DejaVuSansCondensed-Bold
    /DejaVuSansCondensed-BoldOblique
    /DejaVuSansCondensed-Oblique
    /DejaVuSans-ExtraLight
    /DejaVuSansMono
    /DejaVuSansMono-Bold
    /DejaVuSansMono-BoldOblique
    /DejaVuSansMono-Oblique
    /DejaVuSans-Oblique
    /DejaVuSerif
    /DejaVuSerif-Bold
    /DejaVuSerif-BoldItalic
    /DejaVuSerifCondensed
    /DejaVuSerifCondensed-Bold
    /DejaVuSerifCondensed-BoldItalic
    /DejaVuSerifCondensed-Italic
    /DejaVuSerif-Italic
    /DilleniaUPC
    /DilleniaUPCBold
    /DilleniaUPCBoldItalic
    /DilleniaUPCItalic
    /Dotum
    /DotumChe
    /EdwardianScriptITC
    /Elephant-Italic
    /Elephant-Regular
    /EngraversMT
    /ErasITC-Bold
    /ErasITC-Demi
    /ErasITC-Light
    /ErasITC-Medium
    /EstrangeloEdessa
    /Euclid
    /Euclid-Bold
    /Euclid-BoldItalic
    /EuclidExtra
    /EuclidExtra-Bold
    /EuclidFraktur
    /EuclidFraktur-Bold
    /Euclid-Italic
    /EuclidMathOne
    /EuclidMathOne-Bold
    /EuclidMathTwo
    /EuclidMathTwo-Bold
    /EuclidSymbol
    /EuclidSymbol-Bold
    /EuclidSymbol-BoldItalic
    /EuclidSymbol-Italic
    /EucrosiaUPC
    /EucrosiaUPCBold
    /EucrosiaUPCBoldItalic
    /EucrosiaUPCItalic
    /FelixTitlingMT
    /FencesPlain
    /FixedMiriamTransparent
    /FootlightMTLight
    /ForteMT
    /FranklinGothic-Book
    /FranklinGothic-BookItalic
    /FranklinGothic-Demi
    /FranklinGothic-DemiCond
    /FranklinGothic-DemiItalic
    /FranklinGothic-Heavy
    /FranklinGothic-HeavyItalic
    /FranklinGothic-Medium
    /FranklinGothic-MediumCond
    /FranklinGothic-MediumItalic
    /FrankRuehl
    /FreesiaUPC
    /FreesiaUPCBold
    /FreesiaUPCBoldItalic
    /FreesiaUPCItalic
    /FreestyleScript-Regular
    /FrenchScriptMT
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /GentiumBasic
    /GentiumBasic-Bold
    /GentiumBasic-BoldItalic
    /GentiumBasic-Italic
    /GentiumBookBasic
    /GentiumBookBasic-Bold
    /GentiumBookBasic-BoldItalic
    /GentiumBookBasic-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Gigi-Regular
    /GillSansMT
    /GillSansMT-Bold
    /GillSansMT-BoldItalic
    /GillSansMT-Condensed
    /GillSansMT-ExtraCondensedBold
    /GillSansMT-Italic
    /GillSans-UltraBold
    /GillSans-UltraBoldCondensed
    /GloucesterMT-ExtraCondensed
    /GoudyOldStyleT-Bold
    /GoudyOldStyleT-Italic
    /GoudyOldStyleT-Regular
    /GoudyStout
    /Gulim
    /GulimChe
    /Gungsuh
    /GungsuhChe
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /ImprintMT-Shadow
    /InformalRoman-Regular
    /IrisUPC
    /IrisUPCBold
    /IrisUPCBoldItalic
    /IrisUPCItalic
    /JasmineUPC
    /JasmineUPC-Bold
    /JasmineUPC-BoldItalic
    /JasmineUPC-Italic
    /Jokerman-Regular
    /JuiceITC-Regular
    /Kartika
    /Kingsoft-Phonetic
    /KodchiangUPC
    /KodchiangUPC-Bold
    /KodchiangUPC-BoldItalic
    /KodchiangUPC-Italic
    /KristenITC-Regular
    /KunstlerScript
    /Latha
    /LatinWide
    /LevenimMT
    /LevenimMTBold
    /LiberationSansNarrow
    /LiberationSansNarrow-Bold
    /LiberationSansNarrow-BoldItalic
    /LiberationSansNarrow-Italic
    /LilyUPC
    /LilyUPCBold
    /LilyUPCBoldItalic
    /LilyUPCItalic
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSans-TypewriterBoldOblique
    /LucidaSans-TypewriterOblique
    /LucidaSansUnicode
    /Magneto-Bold
    /MaiandraGD-Regular
    /Mangal-Regular
    /MaturaMTScriptCapitals
    /MicrosoftSansSerif
    /MingLiU
    /Miriam
    /MiriamFixed
    /MiriamTransparent
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Gothic
    /MS-Mincho
    /MSOutlook
    /MS-PGothic
    /MS-PMincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MS-UIGothic
    /MT-Extra
    /MVBoli
    /Narkisim
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NSimSun
    /OCRAExtended
    /OldEnglishTextMT
    /Onyx
    /OpenSymbol
    /PalaceScriptMT
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Papyrus-Regular
    /Parchment-Regular
    /Perpetua
    /Perpetua-Bold
    /Perpetua-BoldItalic
    /Perpetua-Italic
    /PerpetuaTitlingMT-Bold
    /PerpetuaTitlingMT-Light
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Pristina-Regular
    /Raavi
    /RageItalic
    /Ravie
    /Rockwell
    /Rockwell-Bold
    /Rockwell-BoldItalic
    /Rockwell-Condensed
    /Rockwell-CondensedBold
    /Rockwell-ExtraBold
    /Rockwell-Italic
    /Rod
    /RodTransparent
    /ScriptMTBold
    /SegoeUI
    /SegoeUI-Bold
    /SegoeUI-BoldItalic
    /SegoeUI-Italic
    /ShowcardGothic-Reg
    /Shruti
    /SimHei
    /SimSun
    /SnapITC-Regular
    /Stencil
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /TwCenMT-Bold
    /TwCenMT-BoldItalic
    /TwCenMT-Condensed
    /TwCenMT-CondensedBold
    /TwCenMT-CondensedExtraBold
    /TwCenMT-Italic
    /TwCenMT-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.440 841.680]
>> setpagedevice


