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Abstract: The application of a waveguide-ring resonator based on dielectric-loaded 

surface plasmon-polariton waveguides as a temperature sensor is demonstrated in this 

paper and the influence of temperature change to the transmission through the  

waveguide-ring resonator system is comprehensively analyzed. The results show that the 

roundtrip phase change in the ring resonator due to the temperature change is the major 

reason for the transmission variation. The performance of the temperature sensor is also 

discussed and it is shown that for a waveguide-ring resonator with the resonator radius 

around 5 m and waveguide-ring gap of 500 nm which gives a footprint around 140 µm
2
, 

the temperature sensitivity at the order of 10
−2

 K can be achieved with the input power  

of 100 W within the measurement sensitivity limit of a practical optical detector. 

Keywords: temperature sensor; dielectric-loaded surface plasmon-polariton waveguide; 

waveguide-ring resonator 

 

1. Introduction 

Temperature sensing based on optical techniques is promising and remains an area of continuing 

and intensive research interest around the World in recent years due to some advantages compared to 

other temperature measurement techniques, e.g., high sensitivity, large temperature range and the 

stability and immunity of optical signal to the turbulence of the environmental noises [1]. Up till now, 

fiber-optic temperature sensors constitute a major category of the optical temperature sensors, and they 
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mainly employ the principles of fiber Bragg gratings [2] or surface plasmon resonance  

(SPR) [3]. The temperature change will introduce a noticeable shift in the central resonance 

wavelength, thus people can obtain the information for the temperature with high sensitivity by 

monitoring the resonance wavelength change. These fiber-optic temperature sensors can take the 

advantage of the well-developed fiber-optics technique and are very favorable for constructing remote 

distributed sensing networks with low propagation loss in optical fibers and wavelength division 

multiplexing techniques. However, all these fiber-optic temperature sensors are bulky and can hardly 

be used as chip scale temperature sensors. In addition, the measurement of resonance wavelength shift 

needs an optical spectrum analyzer, which is quite expensive and can hardly be integrated into an 

optical integrated circuit chip. 

In this paper, we propose to realize chip scale temperature sensors based on dielectric-loaded 

surface plasmon-polariton waveguide-ring resonators (WRR). Surface plasmons are the surface waves 

due to the coupling of electromagnetic waves to the collective electron oscillations in the metals, and 

they propagate along the interface between the metal and the dielectrics, with the field decaying 

exponentially along the direction perpendicular to the interface [4], providing a new way of 

manipulating light at the nano scale. The light energy of surface plasmons is mainly localized at the 

interface between the metal and the dielectric with the major part in the dielectric, so the propagation 

of surface plasmons is greatly affected by the dielectric properties, which in principle implies that the 

use of surface plasmons in sensing is also quite promising. What’s more, the light field near the 

metal/dielectric is greatly enhanced and this will improve the sensing sensitivity considerably. In the 

literature much effort has been made to investigate the use of surface plasmons for sensing, and while 

some decent results have been reported [5], most of them still rely on SPRs. In the meanwhile, 

plasmonic waveguides have been attracting much attention in recent years owing to their ability to 

spatially confine light below the diffraction limit [6], thereby potentially enabling photonic device 

integration on a scale not accessible with conventional dielectric waveguide-based photonic integrated 

circuits, and this opens up a new avenue for further miniaturization of optical components. To date, 

various plasmonic waveguide structures have been proposed and investigated [7-9] for planar photonic 

integration. But the use of plasmonic waveguides in on-chip sensing has been rarely explored. Among 

those plasmonic waveguides proposed up till now, the dielectric-loaded surface plasmon-polariton 

waveguide (DLSPPW) is quite promising due to its compactness, ease of fabrication and the  

moderate propagation loss of surface plasmons in this waveguide. Some polymers, e.g.,  

Poly-methylmethacrylate (PMMA), are usually employed as the dielectric material in the DLSPPW 

and this makes DLSPPW a good candidate for temperature sensors due to the good thermo-optic 

effects of the polymers. 

Figure 1(a) gives the schematic figure for the cross section of the DLSPPW, showing that a PMMA 

ridge with width 500 nm and height 550 nm is deposited onto a 60 nm thick gold film, which is 

supported by a thin glass substrate. In Figure 1(b) the mode profile for the 1.5m wavelength is also 

shown, from which one can see the tight lateral confinement and that the light is well confined near the 

bottom of the PMMA ridge in the perpendicular direction. One main advantage of the DLSPPW is that 

metal can be used as a negative-permittivity material to support the plasmonic mode, as well as part of 

the electrical circuit, so that both the optical and electrical signals can propagate through the DLSPPW 

at the same time. This can also be employed to heat the polymer ridges by applying some electric 
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current through the metal strip so that the index of the polymer will be changed due to thermo-optical 

effect. As a consequence, the mode effective index of the DLSPPW will also change in both the real 

part and the imaginary part, and these two parameters will determine the power transmission through a 

specific waveguide. The polymer refractive index is also dependent on the environmental temperature; 

then one can analyze the temperature change by monitoring the power transmission. To further 

enhance the sensitivity of the transmission to the index change, a WRR system schematically shown in 

Figure 1(c) is adopted in this paper because of the high sensitivity of the transmission through the bus 

waveguide to the index change in the ring for some wavelengths. In the WRR system, a straight 

DLSPPW is laterally coupled to a ring resonator with a small gap between them and both the two 

components are placed on a thin gold layer. These structures can be easily fabricated with deep 

ultraviolet lithography or electron beam lithography techniques when the polymers can work as both 

the resist and the DLSPPW core material.  

Figure 1. (a) Schematic figure for the cross section of DLSPPW; (b) the mode profile for 

the DLSPPW at the wavelength of 1.5 m; (c) Schematic illustration of WRR with the 

dielectric-loaded surface plasmon waveguide laterally coupled to a ring resonator. 

 

In the following section we will analyze in detail how the temperature change will affect the power 

transmission through the WRR system. Some numerical results will be given in Section 3 to show the 

dependence of power transmission on the temperature and the performance of this temperature sensor 

is also discussed. The whole paper concludes in Section 4. 

2. Principle  

It is well known that the transmission through an all-pass ring resonator schematically shown in 

Figure 1(c) is determined by the following Equation [10]: 
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in which 
"

0exp( 2 )effRk N     is the inner circulation factor describing the internal loss where 

accounts for the pure bending loss and "

effN  is the imaginary part of the mode effective index effN  

( ' "

eff eff effN N jN  ), is the transmission coefficient in the bus waveguide through the waveguide-ring 

interaction region.  is the round trip phase, determined by the ring radius R and the real part of the 

mode effective index '
( )

eff
N   at the free space wavelength  0 2 /k    is the propagation constant in 

free space. 

In Equation (1), the parameters  and are all dependant on polymer index, so they are all 

functions of temperature T when the polymer thermo-optic effect is considered. Note that the thermal 

expansion is not considered here because at room temperature the linear thermal expansion coefficient of 

PMMA, the polymer adopted in our calculation, is about one order of magnitude smaller (3.6 × 10
−5 

/K) 

than the effect of temperature on refractive index (−1.05 × 10
−4

/K) [11]. As for gold, its linear thermal 

expansion coefficient at room temperature is even smaller (1.42 × 10
−5

/K) than that of PMMA, thus we 

don’t take into account in our calculations the thickness change of gold due to thermal expansion. 

Therefore the dimensions, including w, g, R and t, shown in Figure 1 are considered to be irrelevant to 

temperature T. Under this condition rT  can be written as ( ( ), ( ), ( ))
r r

T T T T T   . Then the derivative 

of rT  with respect to T is: 

r r r rdT dT dT dTd d d
A B C

dT d dT d dT d dT

  

  
         (2) 

We will discuss each term of A, B and C separately. Using the expression for α given above one 

obtains:  

" "
0 0

" "

2 2

0 0( 2 ) ( 2 )eff effRk N Rk Neff effr r r
dN dNdT dT dTd dn

A Rk e Rk e
d dT d dT d dn dT

 
   

  

 
        (3)  

The last factor /dn dT  is the thermo optical coefficient of the polymer, 
" /effdN dn  describes how the 

imaginary part of the mode effective index changes as a function of the polymer refractive index n and 

/rdT d  expresses the change in transmission when the propagation loss in the ring changes.  

Transmission coefficient τ will suffer from some change when n changes with temperature since the 

mode property will be affected and the transmission also depends on τ. This all together gives: 

r rdT dTd d dn
B

d dT d dn dT

 

 
     (4)  

When it comes to the last term C, it is related to the change in the accumulated round trip phase θ 

due to variations in the real part of the mode effective index. This in turn affects the interference 

between the ring and the bus waveguide and consequently changes the overall transmission. We cannot 

measure directly how the transmission is affected by change in roundtrip phase, i.e., /rdT d , but we 

know from our experiments how transmission changes with wavelength /rdT d . Note that in this 

paper, we are investigating changes in transmission versus temperature at a certain wavelength 0 . So 

we can get: 
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Since   is a function of '

effN at 0 , the connection between d and '

effdN can be derived 

mathematically. With 2 '4 /effRN   , we obtain that 2 ' ' 24 ( ) /eff effd R dN N d      . Because 

0d   at 
0 , it can be concluded from 2 '4 /effRN   that ' 0effdN  , then we have 

2 ' 2/ 4 /effd d RN     .With the expression for  , we also have 
0

' 2/ 4 /effd dN R     . As for 

the term ' /effdN dT  describing mode effective index change with temperature, we realize it’s not 

possible to calculate it directly, but we can determine how the mode effective index changes with 

polymer change index of refraction n and it’s known how n changes with temperature: 
' '/ ( / )( / )eff effdN dT dN dn dn dT . This together gives the result: 

'

'

effr

eff

dNdT dn
C

d dn dTN




      (6) 

So in principle the polymer index change due to the thermo-optic effect will cause some changes in 

 and or 
' ( )effN  which further lead to the variation of power transmission rT  through the WRR. 

Thus the temperature change can be calculated via the Tr variation. This is the basic idea of the 

temperature sensor based on dielectric-loaded plasmonic waveguide-ring resonators. 

3. Results and Discussion  

In the previous section, we have shown analytically the temperature dependence of the transmission 

output through a WRR system. In this section, we will discuss quantitatively the three terms of A, B 

and C for a specific WRR system. That is, how the changes of  and  due to the change of polymer 

index as a function of temperature will affect the transmission through the WRR. 

We start with a specific example of a WRR with the ring radius R equaling to 5.39 m and 

waveguide-ring gap g being 0.5m, whose transmission spectrum is shown in Figure 2. Here it is 

assumed that the pure bending loss is 0.71 and the transmission coefficient  is 0.66. In the 

calculations of the mode effective index, i.e., 
'

effN  and 
"

effN , effective index method [12] is adopted to 

have a fast and simple calculation over this wavelength range while retaining an acceptable accuracy 

compared to the pure numerical method, e.g., the finite-element method (FEM) based mode solvers. 

We used the 
'

effN  to be –2.52 × 10
5
m

−1
+ 1.6138 and the power propagation length ( )spL  , which is 

defined as 
"( ) / (4 )sp effL N   , to be 71.2− 60.88 µm. Note that the equations for 

'

effN  and ( )spL   

will be dependent on the geometry of the DLSPPW show in Figure 1(a). All the assumptions are 

proven to be valid because they give a good agreement between the experimental transmission result 

and the analytical result from Equation (1) [13]. From Figure 2 one can see that the transmission 

exhibits period dips with extinction ratios above 10 dB and the free spectral range around 45 nm.  
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Figure 2. Transmission spectrum for an all-pass ring resonator based on DLSPPW. 

 

 

With this ring resonator as an example, the specific values of A, B and C in Equation (2) will be 

approximately estimated for some wavelengths. We will start with C first, because it is strongly 

affected by the working wavelength due to the term of dTr/dλ. Taking the derivative of Tr with respect 

to  a maximum of dTr/dλ with the value 7.394 × 10
7
 is found at the wavelength around 1.5 m. 

Assuming the complex refractive index of gold to be the experimental value of 0.53 + 9.51j [14] and 

the PMMA index to be 1.493, using a commercial FEM mode solver of Comsol Multiphysics, the 

mode effective index for the DLSPPW schematically shown in Figure 1(a) is found to be  

1.224 + 0.00384j. For the calculation of 
' /effdN dn , the index of PMMA is changed by a small amount 

∆n and FEM mode solver is used again to find the new value of 
'

effN . The PMMA index change with 

respect to temperature dn/dT is −1.05 × 10
−4 

/K [11]. Then the specific value of C at around 1.5 m is 

estimated to be C = 8.4 × 10
−3

 /K. 

For the calculation of A at 1.5m, first α is found at this wavelength, with which Tr is further 

calculated according to Equation (1). Using a similar approach to that described above,   is changed 

by a small amount ∆ and rT  is calculated again, then /rdT d  is obtained. With respect to 
" /effdN dn  

calculation, FEM mode solver is also used twice with a small change of the PMMA index, then the 

value of A is estimated as A = 9.3 × 10
−6 

/K. The calculation of B is not so straightforward because the 

determination of transmission coefficient usually needs a full wave simulation. To have a rough 

estimation of it, we switch to a simpler method. As is known, the coupling of optical power from one 

straight waveguide to the other straight waveguide is determined by their interaction length l and the 

coupling length Lc between the two waveguides, while the latter is the length over which the power can 

be completely transferred from one waveguide to the other and Lc can be calculated using  

Lc = λ / (2|ne – no|) where ne and no are the mode effective index for the even mode and the odd mode 

respectively for the two-waveguide system, so the transmission coefficient can be roughly obtained 

by cos( / 2 / )cl L    [15]. With the FEM mode solver and having two DLSPPW with a gap g  
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of 500 nm in the structure, both ne and no can be obtained with which Lc can be calculated at 1.5 m. 

Assuming the interaction length between the straight waveguide and the ring resonator to be  

l  = 7.15 m, we can get the transmission coefficient to be about 0.66, which agrees quite well with 

the value of used to generate Figure 2. By changing the PMMA index with a small amount and 

repeating the above procedures, the dependence of on PMMA index /d dn can be calculated. Using 

this method, we can roughly estimate B at the wavelength of 1.5 m to be 42.12 10 /B K   . 

Having a comparison of A, B and C, one can see that A and B are 2 orders and 1 order of magnitude 

smaller than C, respectively, which implies that we can ignore A and B just to simplify the analysis. 

These values are obtained at a wavelength when /rdT d  is large, however. Note that A and B are not 

as sensitive to the wavelength as C is, so we can conclude that /rdT dT  has its maximum when 

/rdT d  is at its maximum.  

C demonstrates the dependence of transmission on the roundtrip phase of the resonator waveguide, 

which is actually the dependence of transmission on the mode effective index. One can easily 

understand why C is much larger than A and B because the transmission through an all-pass resonator 

is actually due to the interference of light through the straight waveguide directly and the light coupled 

to the straight waveguide from the resonator after one roundtrip of propagation. The interference is 

very sensitive to the phase change inside the ring resonator.  

So in principle the temperature sensor is mainly based on the temperature dependence of PMMA 

index, which further determines the mode effective index of the ring waveguide and the roundtrip 

phase of the ring. One may also raise the question about the influence of thermo-optic effect in the 

gold layer to the transmission. This can be estimated using Equations (2 ~ 4) and (6), 

with dndNeff /' , dndNeff /" , dnd / , and dTdn / changed to be Aueff dndN /' , Aueff dndN /" , Audnd / , and 

dTdnAu / , where Aun  is the complex refractive index of gold. Our numerical calculation results show 

that the influence to the transmission through the WRR system due to the thermo-optic effect of gold is 

roughly two orders of magnitude smaller than that due to the thermo-optic effect of PMMA. Here the 

dependence of both of the real and imaginary parts of the complex refractive index of gold is evaluated 

with the temperature dependent Drude model [16]. Then for the sake of simplicity, we can only 

concentrate on the thermo-optic effect of PMMA in this paper.  

From Equation (6), one can see that /rdT d  plays a very important part in the determination of C. 

In order to have an optimum performance for the temperature sensor, one needs to have to have 

/rdT d  as large as possible. /rdT d  can be roughly estimated as max min0.5( ) /r r FWHMT T  where 

maxrT  and minrT are the maximum and minimum transmissions respectively, and FWHM is the bandwidth 

at resonance wavelength m . Since /FWHM m Q  and the quality factor Q is limited by the low 

intrinsic quality factor of the plasmonic ring resonator, we need to have a large difference between 

maxrT  and minrT or in other words a large extinction ratio in order to increase /rdT d . As discussed  

in [17], for plasmonic resonators, the loss in the resonators is relatively large, i.e., is quite small. In 

order to have a coupling close to the critical coupling, the gap between the bus waveguide and the ring 

resonator should be small enough. As for the ring radius, since it determines both the roundtrip 

propagation loss inside the ring and the bending loss and there should be a compromise between the 

two, one needs to design the ring resonators carefully under specific conditions.  
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According to the discussions shown above, the sensitivity of transmission to the temperature is on 

the order of 310 / K . In practice, the minimal detectable temperature change is affected by the optical 

detector sensitivity, and can be described as: 

  
min / ( )r

in loss

dT
dT NEP B P k

dt
      (6) 

where NEP  is the Noise-equivalent power of the optical detector, B is the bandwidth of the detector, 

inP  is the input power from the light source and lossk  characterizes the power loss from the light source 

to the detector, here considered to be fiber-coupled. If we use the NEP to be 1.4 1210 W Hz  and B to 

be 320 kHz, which are the characteristics of a commercially available optical detector from Thorlabs 

(PDA10CS-EC), and assume lossk  to be 3.8 × 10
−2 

[18] and the input power to be 100 µW, we can find 

that the minimal detectable temperature change can be as low as 2.5 × 10
−2

 K with the value of 

/rdT dT  equaling to 38.4 10 / K . The sensitivity can be further increased if a lock-in-amplifier is 

used. In this case B can be replaced with 1/(2τ), where τ is the integration time. For τ equaling to 60 s, 

the sensitivity becomes as low as 4.0 × 10
−6

 K. Note the optical detector for the DLSPPW can also be 

replaced with a power monitor that was proposed for the long range surface plasmon polariton 

waveguides [19], then both the temperature sensor and the power monitor can be integrated on a  

single chip.  

Although the change in power transmission is monitored in this temperature sensor, we can also 

compare the refractive index sensitivity with other temperature sensors measuring the resonance 

wavelength shift. Using the data in Section 3, we can find the refractive index sensitivity to be 
' ' ' '/ / / / / 1090 /eff eff eff effd dn d dN dN dn N dN dn nm RIU       . And note that the sensing part 

alone only has a footprint of around 140 µm
2
 and is quite compact. 

4. Conclusions  

We have demonstrated in this paper the application of a WRR based on DLSPPW as a temperature 

sensor. The temperature dependence of transmission coefficient in the bus waveguide through the 

waveguide-ring interaction region, the intrinsic loss and the roundtrip phase inside the ring, as well as 

the influence of these parameters to the transmission through the WRR are analyzed. Theoretical 

calculations also show that for a WRR with the resonator radius around 5 m and waveguide-ring gap 

of 500 nm, the temperature sensitivity at the order of 10
−2

 K can be achieved with the input power  

of 100 W within the sensitivity limit of a practical photodetector. This temperature sensor is very 

promising as an on-chip sensor of temperature due to the compact size and high sensitivity. We believe 

that it will find broad applications in many areas. 
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