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Abstract: This paper describes a robust and simple algorithm for an attitude and heading 

reference system (AHRS) based on low-cost MEMS inertial and magnetic sensors. The 

proposed approach relies on a gain-scheduled complementary filter, augmented by an 

acceleration-based switching architecture to yield robust performance, even when the 

vehicle is subject to strong accelerations. Experimental results are provided for a road 

captive test during which the vehicle dynamics are in high-acceleration mode and the 

performance of the proposed filter is evaluated against the output from a conventional 

linear complementary filter. 
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1. Introduction 

Aircraft, especially autonomous Unmanned Aerial Vehicles (UAVs), need to know their pose 

estimation for the lowest control and stabilization loops. When cost or weight is an issue, a low-cost 

Attitude and Heading Reference System (AHRS)—relying on MEMS inertial (gyroscopes and 

accelerometers) and magnetic sensors—plays an important role providing the vehicle’s orientation 

information relative to the inertial frame. In this respect, it has been of interest to develop robust and 
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simple algorithms for reliable MEMS AHRS for the small scale embedded processors used in UAV 

avionic systems [1-9].  

The two methods that are commonly used are Extended Kalman Filtering (EKF) or some form of 

constant gain state observer, often termed a complementary filter due to its frequency filtering 

properties for linear systems. Extended Kalman Filtering has been studied for a range of aerospace 

applications. Such filters, however, are computationally demanding and difficult to apply robustly [1-3]. 

In practice, many applications use simple linear single-input single-output (SISO) complementary 

filters. In recent work, a number of authors have developed nonlinear analogs of SISO filters for 

attitude estimation [4-9]. They approximate the accelerometer measurements via the measurement of 

gravity, so that a ‘weak acceleration’ assumption is made. Such fusion may allow obtaining a more 

accurate and less noisy attitude and heading estimation thanks to the sensor’s complementary 

characteristics. The filter fails, however, when vehicle dynamics are sufficiently high enough that the 

accelerometer output no longer provides a good estimate of the gravitational direction. This is 

particularly so when a UAV is circling for an extended period since the accelerometer, in this case, 

will detect not only gravitational acceleration but also centrifugal forces, resulting in an incorrect 

attitude determination [10]. 

In this paper, to cope with these situations, a gain-scheduled complementary filter, augmented by an 

acceleration-based switching architecture is proposed that yields robust performance, even when the 

vehicle is subject to strong acceleration. The gains of the proposed scheme are automatically tuned 

based on the system dynamic mode (non-acceleration, low-acceleration, and high acceleration mode) 

sensed by the accelerometers. Hence the system produces robust estimates of vehicle attitude and 

heading and removes the gyros bias that is a common source of drift error for both dynamic and 

stationary modes [11,12]. The ADIS16405 MEMS IMU (Inertial Measurement Unit) with magnetic 

sensors [13] from Analog Devices Inc. was selected for this research. The AHRS with a resulting  

filter structure is implemented in a real-time DSP (Digital Signal Processor) within a  

5 cm × 4 cm × 3 cm size unit. Measurements of inertial sensors’ output obtained during the 

experimental road captive test are used for implementation of the estimation scheme. The estimation 

results were compared with the measurements from the on-board high-precision vertical gyro as it was 

used as the reference standard or ‘truth model’ for this analysis. This comparison explicitly 

demonstrates that more accurate AHRS performance can be achieved through the proposed switching 

architecture based integrated filtering estimator, even though low-cost MEMS inertial and magnetic 

sensors are used. 

2. Attitude and Heading Determination from Inertial and Magnetic Sensors 

2.1. Experimental Road Captive Test Data 

During the entire scheme investigation process in this paper, a set of road captive test data is used. 

As shown in Figure 1, the test runs were performed in a spiral structured parking building and the test 

scenario comprised the following procedures: (1) start (to induce linear acceleration), (2) spiral up 

(centrifugal acceleration), (3) forward (linear acceleration), (4) backward (linear acceleration),  

(5) spiral down (centrifugal acceleration), (6) forward (linear acceleration), and stop. 
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The commercial off-the-shelf IMU ADIS16405 used in the experiment is composed of  

three accelerometers, three gyros and three magnetometers with digital interface outputs. This inertial 

unit provides measurements of linear accelerations, angular rates, and the Earth’s magnetic fields for 

each body axis. Table 1 summarizes the basic specifications of each sensor. An AHRS prototype 

(Figure 2) was made using a DSP processor for the proposed estimator algorithm. The data acquisition 

was performed through a RS-232 communication serial port.  

Figure 1. Test Scenario. 

 

Figure 2. ADIS16405 DSP Module. 

 

Table 1. System Specifications (ADIS16405). 

 
Gyro Accelerometer Magnetometer 

Range : X , Y , Z   350(deg/s)  18(g)  3.5(gauss) 

Sensitivity 0.05(°/sec/LSB) 3.33(mg/LSB) 0.5(mgauss/LSB) 

Bias Stability 35(deg/h) - - 

Angle/Velocity Random Walk 2.0(deg/s/ hr ) 0.2(m/s/ hr ) - 

 

The measurements of accelerations ( zyx aaa ,, ), angular rates (p, q, r), and magnetic fields 

( zyx mmm ,, ) during the road captive test are shown in Figure 3. The reference attitude and heading 

angles for this analysis obtained from the on-board vertical gyro are shown in Figure 4.  
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Figure 3. Raw data from ADIS16405. 

 

Figure 4. Attitude and heading angles from the on-board vertical gyro (reference standard). 

 

2.2. Attitude and Heading Determination from Open-Loop Gyros 

The roll, pitch and yaw rate (p, q, and r respectively) of the vehicle are measured using rate gyros 

with respect to its body axis system. The relationship between rate gyro output and time rate of the 

Euler angles can be described using the direction cosine matrices as follows: 
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(1)  

where  is roll angle,  is pitch angle, and ψ is yaw angle.  
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As a physical instrument, the rate gyro device also carries some errors such as axis misalignment, 

fixed bias, drift bias, fixed scale factor errors, asymmetric scale factor errors, and so on. The bias drift 

is one of the most serious errors deteriorating the accuracy of an AHRS. The bias drift, which shows 

normally nonlinear characteristics, causes the integration result to drift-off from the true attitude as a 

function of time and rapidly renders any calculations useless. 

Euler angles obtained from the open-loop integration process of Equation (1) using first order Euler 

method of integration are illustrated in Figure 5. This result shows that without correction the bias 

errors creating wandering attitude angles and the gradual instability of the integration drifting.  

Figure 5. Attitude and heading determination from gyro measurement only.  

 

2.3. Attitude Determination from Open-Loop Accelerometers  

Attitude angles  and  can also be obtained from a vehicle’s gravity vector. The following equation 

dictates a vehicle’s equation of motion in terms of specific forces ( xf , yf and zf ), which are the 

accelerometers reading in the body axes: 
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(2)  

where, (u , v , w ) and ( xl , yl , zl ) are linear velocity components and accelerometer’s coordinates along 

each axis in the body frame with its origin at the center of gravity, respectively. When all of the 

parameters of Equation (2), ( xf , yf , zf , u , v , w , u , v , w , p, q, r), are measured in flight, near-true 

attitude angles can be determined. Normally, however, it is hard for a low-cost UAV to measure (v, w), 

and their time derivatives. Thus, with reduced sensor fit in the UAV, it is not easy to obtain true 

attitude measurements from accelerometers. Assuming that the UAV is driving steady-level states, 

linear acceleration terms integrate to zero over time and (p, q, r) can be neglected. With this 

simplification, Equation (2) may be simplified as follows: 
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),2(atan,),2(atan
22

zyxzy fffff    (3)  

It should be noted that the attitude determination using Equation (3) is true only for specific 

dynamic conditions such as steady level flight. If an aircraft is circling for an extended period, the 

accelerometer will not only detect gravitational acceleration, but also centrifugal forces, resulting in an 

incorrect attitude determination. In addition, the change in transient forward acceleration is another 

possible error source. This means that the attitude calculation from accelerometers is not valid under 

all dynamic conditions. 

The attitude angles obtained from Equation (3) are illustrated in Figure 6 and compared with the 

reference from the vertical gyros. These results represent that the attitude from accelerometers tends to 

approximately follow the vertical gyro output in a steady level state, but shows large errors with noises 

and loose reliability under transient and high dynamic conditions. 

Figure 6. Attitude determination from accelerometer measurement only.  

 

2.4. Heading Determination from Open-Loop Magnetometers 

A standard three-axis magnetometer reads the magnetic field in an aircraft’s body axis system as 

(
xm , 

ym and 
zm ). The magnetometer readings in relation to the Earth’s magnetic field vectors  

(
Nm , 

Em and 
Dm ) arranged in North, East and Down are as follows: 

























































D

E

N

z

y

x

m

m

m

m

m

m







coscoscossinsinsincossinsincossincos

cossincoscossinsinsinsincoscossinsin

sinsincoscoscos
 

(4)  

Equation (4) shows how , θ, and ψ are related to a magnetometer’s reading and geomagnetic field 

vectors toward North, East and Down. The yaw angle  refers to true magnetic north can be produced 

after going through a certain calculation provided the results of attitude estimations,  and θ. 

Resolving the geomagnetic vector onto a local tangent plane where the x-axis towards the North 

Pole will put the geomagnetic vector toward East is equal to zero. Hence, Equation (4) can be 

rearranged as: 
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hence, the division of first and second row gives: 

),2(atan hh XY  (6)  

where, cosNh mX  and sinNh mY   represent the earth’s horizontal magnetic field components. 

Preserving the sign of the numerator and denominator of Equation (6) and using the appropriate logical 

expressions will give heading angle information for all conditions of attitude and magnetometer 

readings from 0 to 2π. 

The heading angles obtained from Equation (6) with the actual reading of magnetic vector 

(
xm ,

ym and 
zm ) and the vertical gyro information of  and θ are illustrated in Figure 7. These results 

represent that the heading angle information from magnetometer tends to follow the reference output 

approximately in all test scenarios. However, the phase loss in high dynamic situations and the noisy 

conditions are shown in Figure 7 of the expanded scale.  

Figure 7. Heading angles calculated from magnetometer measurements.  

 

3. Conventional Linear Complementary Filter 

To observe and compensate for gyro drift, a process called augmentation, termed a complementary 

filter due to its frequency filtering properties, is used. The basic idea of the complementary filtering 

AHRS is: (1) to combine the outputs of gyro and accelerometer (for attitude estimate  and θ), and  

(2) to combine the outputs of the gyro and magnetometer (for heading estimate ψ) to obtain a good 

estimate of the orientation, and thereby compensating for the drift of the rate gyro and for the slow 

dynamics of the accelerometer and magnetometer. To fuse the signal, we designed conventional 

complementary filters for the heading and attitude estimation, respectively. After having identified the 

dynamics of all sensors, we tried several complementary filters and could select the best one for 

heading estimation. However, it is shown that the limitation of the accelerometer (see Section 2.3) 

renders the conventional linear complementary filter alone unsuitable for the estimate of the attitude of 

the UAV. 
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3.1. Filtering Structure 

Figure 8 shows the conventional filtering estimator block diagram for the roll axis channel. A 

similar block diagram could also apply to the pitch and heading channel. The role of the estimator is to 

compare attitude (or heading) angles resulting from the integration of the gyros with the attitude angle 

products from the accelerometers (or with heading angle products from magnetometer). The error 

between m and a  is fed-back through a proportional and integral controller with a pair of estimator 

gains pK  and iK . 

Figure 8. Conventional filtering estimator block diagram for roll axis channel.  
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The mathematical relation of the estimated attitude ( m ), the attitude products from the 

accelerometers ( a ), and the attitude rate products from the gyros ( g
 ) in the Laplace form (with 

Laplace operator s) are as follows: 
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The error equation of the estimated attitude yields: 
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Applying the final value theorem to Equation (8), we can see that the estimated attitude error 

converges to the error of the angle calculated from accelerometer: 

am
t

 


lim  
(9)  

The controller gains, pK and iK , are chosen by relating them to the cut-off frequency ( ) and 

damping ratio ( ) of the estimator as: 

2iK , 2pK  (10)  

During the investigation, the damping ratio   is fixed to a suitable value of 0.707 to provide a good 

transient response. Hence: 

2pK  (11)  

Therefore, the system is only characterized by the cut-off frequency, and this should be chosen 

appropriately to optimize the process.  
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3.2. Design of the Complementary Filter for Heading Estimate 

As noted in Section 2.4, the magnetometer shows phase loss under a high dynamic condition. Thus, 

the basic requirements for the filter are: (1) to exhibit constant amplification and small phase loss up to 

frequencies well above the cut-off frequency of the magnetometer and (2) to use magnetometer in the 

widest possible ranges of frequencies in order to keep the sensitivity to offset of the rate gyro at  

a minimum.  

To decouple the effectiveness of the heading filter with attitude ones, the attitude information  

( and θ) that is needed to go through a certain calculation of Equation (5) is provided by the reference 

vertical gyro. After having identified the dynamics of all sensors, we tried several complementary 

filters and could select the best one. The estimator’s cut-off frequency had been set at 0.1 rad/s. The 

heading angles obtained from the filtering estimator

 

is illustrated in Figure 9. These results represent 

that the heading estimates tend to follow the reference output satisfactorily in all conditions, showing 

the noises and phase losses of magnetometer are minimized.  

Figure 9. Heading angles from the filtering estimator. 

 

3.3. Problems of the Linear Complementary Filter for Attitude Estimate 

Variations in the estimator’s cut-off frequency (natural frequency) had been tested at 1 rad/s and 

0.05 rad/s. The estimation results are compared with the vertical gyro outputs in Figure 10. When the 

cut-off frequency is 1 rad/s (a relatively high frequency), the estimation angles converge well at the 

steady state, but not well during high dynamic motion. Though the cut-off frequency is set to a lower 

frequency, 0.05 rad/s, the estimation results are not improved on the whole.  
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Figure 10. Effects of estimation filter cut-off frequency on estimated attitude angles.  

(a) When cut-off frequency = 1 rad/s. (b) when cut-off frequency = 0.05 rad/s. 

 

(a) 

 

(b) 

 

As the cut-off frequency goes lower, the high frequency dynamic characteristic of the filter becomes 

better, but the low frequency one becomes worse. So, there should be an optimization problem of 

selecting a cut-off frequency value to improve the performance of the estimation filter over a wide range 

of dynamic conditions. However, it seems quite difficult to achieve acceptable performance under all 

dynamic conditions using this fixed gains linear filtering structure, especially with low-cost (high bias 

drift) MEMS sensors. To surmount these typical problems and drawbacks, it is necessary to expand the 

current attitude estimation algorithm so as to have an adaptive function under varying flight dynamics. 

4. Gain-Scheduled Complementary Filter for Attitude Estimate  

To overcome the typical problems and drawbacks of the fixed gain filtering structure for the attitude 

estimate presented in Section 3.3, a gain-scheduled complementary filter is considered. By using 

switching architecture inference, each parameter of the filtering estimator of the pitch and roll channels 

is determined adaptively under varying flight dynamics. For this solution, switching logics are based 

on system dynamics sensed by the accelerometers to yield optimal performance. 
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4.1. Tuning of Parameters Based on Switching Logic 

Figure 11 shows a block diagram for the gain-scheduled attitude filtering estimator augmented by 

switching logic for roll axis channel. The same block diagram could also apply to the pitch axis 

channel. The approach taken here is to exploit switching logic to generate proper parameters of the 

filtering estimator according to varying dynamic conditions. As seen earlier in Equations (10) and (11), 

the parameters are determined only by the cut-off frequency. Using simulation study results, the 

nominal cut-off frequencies are set at 0.05 rad/s and 0.01 rad/s for roll and pitch channel, respectively. 

In the proposed scheme, the cut-off frequency is switched to the predetermined value according to 

the acceleration levels (non-acceleration, low-acceleration, and high-acceleration mode) determined by 

the scalar dynamic acceleration )(k , defined as:  

gkfkfkfk zyx  222 )()()()(  (12)  

Figure 11. Gain-scheduled complementary filter for attitude estimate. 

 

 

The threshold values of the scalar dynamic acceleration )(k to identify the acceleration level are 

extracted experimentally based on the characteristics of gyros and accelerometers and the design 

requirements of the applications. The switching logic for the filter gain has the following scenarios: 

 Non-acceleration mode: In this mode, α(k) < 0.015 g, the accelerometer measurement of the 

gravity has observability and yield good estimates of the attitude. To assign more weighting to 

accelerometers, the cut-off frequency is set at 0.1 rad/s for both roll and pitch axes. 

 Low-acceleration mode: In this mode, 0.015 g < α(k) < 5 g, the uncertainty of the acceleration 

for the attitude estimation should be considered. The nominal cut-off frequencies are set at  

0.05 rad/s and 0.01 rad/s for roll and pitch channel, respectively. 

 High-acceleration mode: In this mode, 5 g > α(k), the system is in high dynamics, and the 

attitude estimation based on accelerometer measures of the gravity is far from accurate. 

Therefore, the cut-off frequency is set to 0 such that the accelerometer feedback was turned off; 

hence the weighting is fully imposed to the gyros. 
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4.2. Experimental Result 

The proposed acceleration based switching architecture has been tested in the same situations with 

conventional estimator in Section 2. The measurements of low-cost MEMS inertial and magnetic 

sensors output obtained during the experimental road captive test are used for the implementation of 

the estimation scheme. The time responses for roll, pitch, and heading estimates are plotted in  

Figure 12. The results obtained from the high-precision vertical gyro are also presented for 

comparison. The error between reference and filtering is provided in Figure 13.  

Figure 12. Response of the acceleration based switching architecture AHRS. 

 

Figure 13. The error between reference and filtering. 
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It is obvious that these results are much better than the conventional filtering estimator results 

shown in Figure 9. In order to verify the effectiveness of the estimation, the levels of agreement 

between the ‘truth model’ and the scheme results are calculated. The calculated errors based upon a 

simple root mean square (RMS) method are 0.2214, 0.6720, 2.0788 deg for roll, pitch, and heading, 

respectively. These performances are very encouraging since the estimation process was performed 

with low-cost MEMS inertial and magnetic sensors with a simple gain-scheduled complementary 

filter. Figure 14 shows the gains switched online as a function of the scalar dynamic acceleration )(k . 

Figure 14. Gains switched online as a function of the scalar dynamic acceleration ).(k  

 

5. Conclusions 

This paper describes a robust and simple algorithm for an attitude and heading reference system 

(AHRS) based on low-cost MEMS inertial and magnetic sensors. The proposed AHRS scheme uses 

acceleration based switch rules and reasoning to determine the filtering estimator parameters by 

adjusting the cut-off frequency. Although a rule of thumb for choosing the ranges for )(k  identifying 

acceleration level is obtained experimentally, it is still possible to make further performance 

improvements by fine tuning the ranges as well as by adjusting cut-off frequencies for each level. The 

proposed scheme has shown a good damping characteristic for the drift errors from the gyro 

measurement as well as the noise corruption from the accelerometer measurement in all dynamic 

conditions. The scheme gave an accuracy of better than 0.2214 deg in roll, 0.6720 deg in pitch and 

2.0788 deg in heading compared to the ‘truth model’ of the vertical gyro reading. This performance is 

very encouraging since this indicates that the high accuracy AHRS should be possible with low-cost 

MEMS inertial and magnetic sensors with innovative computational methods. 
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