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Abstract: Nanostructured plasmonic metamaterials, including optical nanoantenna arrays, 
are important for advanced optical sensing and imaging applications including  
surface-enhanced fluorescence, chemiluminescence, and Raman scattering. Although 
designs typically use ideally smooth geometries, realistic nanoantennas have nonzero 
roughness, which typically results in a modified enhancement factor that should be 
involved in their design. Herein we aim to treat roughness by introducing a realistic 
roughened geometry into the finite element (FE) model. Even if the roughness does not 
result in significant loss, it does result in a spectral shift and inhomogeneous broadening of 
the resonance, which could be critical when fitting the FE simulations of plasmonic 
nanoantennas to experiments. Moreover, the proposed approach could be applied to any 
model, whether mechanical, acoustic, electromagnetic, thermal, etc, in order to simulate a 
given roughness-generated physical phenomenon. 

Keywords: optical sensing; plasmonic nanoantenna; plasmonic metamaterials; surface 
roughness; moving mesh; finite element method 

 

1. Introduction 

Optical metamaterials arranged of plasmonic nanoantennas are important for a broad variety of 
applications, including near-field scanning optical microscopy (NSOM), enhanced Raman scattering, 
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biosensors, sub-wavelength resolution imaging, and nano-scale optical lithography [1-8]. Nanoantennas 
rely on field enhancement due to plasmon coupling between paired metal nanostructures, such as  
bow-ties or paired ellipses [3,6,9-13], strips [8,14,15], rods [1,5,16-18], and other structures. The field 
enhancement is a key parameter for sensing applications. It is affected by the material quality and 
nanostructure geometry, including the non-ideality of both. In order to properly design these structures 
for a specific performance, and for post-fabrication retrieval of optical properties, simulations are 
normally used, including finite element methods [8,12,19]. Note that plasmon coupling between 
particles in quasi-regular network assembled with DNA and used for cancer cell profiling [20] is based 
on similar physics and also must be designed with a realistic set of material parameters and geometry.  

Absorption (loss) in a nanoantenna system comes from a variety of sources, typically including 
internal grain boundaries in the metal antennas [21], chemical interface effect, and surface roughness. 
All of these factors could be size dependent [22]. A single “loss factor” [19] is sufficient to match most 
experimental results, but does not distinguish between these effects, nor convey the relative 
importance of each. By simulating both ideal (smooth) and rough antennas with otherwise identical 
material properties, we may observe the role which roughness plays on nanoantenna performance and 
loss. The goal is to separate the effect of geometrical roughness from metal permittivity changes due to 
internal grain boundaries and size effects. This modeling will help to compare the effect of shape 
changes for each particle with the changes in the gap size between two particles of a nanoantenna. 
Also, a methodology for statistically defined roughness modeling has been developed here. Overall 
this method will make nanoantenna designs and simulations more predictive.  

Note that the effect of roughness on surface plasmon polariton propagation along a large area 
interface [23], as well as on the plasmon resonance of single spherical [24] and nanorod particles [25], 
has been studied experimentally and through modeling. Here, nanostructures based on an interparticle 
plasmon coupling are under study. It was shown earlier that the roughness in such systems affect the 
performance of nanoantennas [21] and metamagnetics [22]. The roughness geometry was modeled 
similar to the electron microscopy images of real samples [21]. The complete 3D surface roughness 
approach used here is more realistic than earlier works using simplified 2D cases. We analyze the 
effect of surface roughness using a statistically defined distortion of a nanoantenna geometry. By using 
a moving 3D finite-element method (FEM) mesh, we preserve the degrees of freedom (DOF) number 
of the original “smooth” model and simply morph the structure of the mesh to accommodate the 
moving boundary. A typical set-up for the nanoantenna array simulation using FEM is depicted in 
Figure 1. Hence, the specific aim of the paper is to show the efficiency of this approach based on a 
moving mesh in FEM nanoantenna models.  

In general, the moving mesh models (MMM) of roughness entail a mapping from ideally smooth 
interfaces between the domains of elemental materials in an initial (ideal) space to an irregularly 
shaped interface in realistic physical space. This is done by connecting the discrete points of physical 
interfaces with corresponding discrete points of ideally smooth boundaries, while the interior of both 
the physical and the ideal domains are covered with an appropriate 3D FE mesh, which in our 
particular case, are suitable for the solution of monochromatic 3D Maxwell’s equations. 
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then, averaging of the far-field spectral optical responses is necessary. In particular, we have used 
RMS averaging of the spectra within each set of equivalent realizations. 

Using the above components, a comparison of the resulting simulated transmission and reflection 
spectra for smooth nanoantennas versus roughened nanoantennas is presented and examined. 

2. Results and Discussion 

2.1. Method 

This study, first applies a moving mesh model in order to map a statistically defined roughness onto 
the surface of the nanoantennas in a user-controlled manner. In our case specifically, the mesh on the 
flat surfaces of the nanoantennas are displaced using 48 2D-Gaussian bumps with a defined amplitude 
of either positive (bump out) or negative (bump in) values, and a defined full-width half-max 
(FWHM). There are an equal number of “in” and “out” bumps to preserve the original volume of the 
nanoantenna, although they are spread randomly over the surface. A moving mesh solver is initially 
used, leading to a model with roughened surfaces. Both the original “smooth” mesh, and the displaced 
“rough” mesh are saved and loaded into a separate electromagnetics model. Rearranging the bump 
profiles over the surface of the nanoantenna is done simply by indexing the array of bump amplitudes 
or “rotating” the bumps, leading to different roughness profiles, but with the same statistical qualities. 

Nanoantenna FEM models are typically meshed using a “normal” quality free-mesh. In this study 
we use a mapped mesh on the nanoantenna surface so that when the bumps are rearranged to different 
locations, each bump will maintain the same profile regardless of its “rotated” or rearranged position. 
A free mesh, which is nonuniform over the surface, would cause a single bump with a constant 
definition to appear different depending on the mesh where it is placed. This approach allows us to 
properly model the effect of surface roughness on nanoantenna performance. 

Due the symmetry of a smooth nanoantenna unit cell, typically only a quarter unit-cell is simulated, 
however our model uses a full unit cell. This is done so that separate roughness profiles may be placed 
on each particle of the nanoantenna pair in order to prevent symmetric peak resonances across the gap. 

A typical smooth nanoantenna array unit cell is shown in Figure 1, where the surface of the 
nanoantennas use a mapped mesh, and materials and simulation boundary conditions are labeled. The 
grid size of the mapped mesh is defined by setting a maximum element size for each edge, and is set to 
be one-quarter of the bump FWHM. This mesh size was sufficient to capture the salient features of 
each bump and gives an accurate modified gap spacing due to each roughness feature. Test simulations 
with a further reduction in the mesh size did not result in statistically significant differences, while 
greatly increasing the simulation time due to the increased number of degrees of freedom in the model. 
Free meshes are used for the air and glass regions. 

Examples of the resulting roughened nanoantennas are shown in Figures 2 and 3 for two different 
roughness arrangements. In the example shown here, nanoantennas were modeled with a unit cell size 
of 400 nm by 400 nm. Their x, y dimensions are 108 nm by 102 nm respectively with a thickness of  
36 nm. The gap between the two nanoantennas is 28 nm. The nanoantennas material permittivity is 
modeled using a Drude-Lorentz model [19] for gold with a loss factor of 1.3. To understand the effect 
of roughness on the electromagnetic response of these nanoantennas, roughness profiles with 
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Table 1. Metrics for the primary (P) and secondary (S) polarization spectra. Resonance 
wavelength (peak) and full-width half-max (width) in nanometers. 

(nm) Smooth ±5 nm ±10 nm 
P-peak 720 (±3) 724 (±4) 738 (±4) 
P-width 48 (±3) 52 (±5) 54 (±5) 
S-peak 638 (±3) 646 (±4) 647 (±4) 
S-width 35 (±3) 33 (±10) 43 (±3) 

3. Conclusions 

Optical plasmonic nanoantennas are important for advanced optical sensing and imaging 
applications including surface-enhanced fluorescence, chemiluminescence, and Raman scattering. 
Realistic nanoantennas have nonzero surface roughness and are different from bulk metal quality, 
which will affect the resulting enhancement factor. These issues should be accurately accounted for in 
the nanoantenna design. To the best of our knowledge, this work is the very first attempt to directly 
model the effect of realistic 3D surface roughness in nanoantenna arrays. Instead of regenerating the 
mesh for each roughness realization, a moving mesh is used to apply roughness, therefore preserving 
the total number of elements. In the case we consider, the introduction of roughness into the 
nanoantenna model does not result in significant loss, but does result in a shift in the resonance 
wavelength. This result can be critical when fitting simulations to experiments. Nanoantennas designed 
for a narrow resonance wavelength, and a particular sensor application, may need to account for  
this realistic fabrication induced shift away from the ideal geometric performance, in order to optimize 
the design. The proposed method has much wider applications that go beyond numerical modeling of 
the optical responses of nanoantenna arrays or plasmonic metamaterials. Most physical models make 
assumptions that surfaces are smooth; however the actual roughness may have a significant effect on 
the simulated physical processes and therefore on the accuracy of the modeling results. This method 
may be applied to any model, whether mechanical, acoustic, electromagnetic, thermal, etc., in order to 
model the effects of roughness on the results and simulate a roughness-generated physical phenomenon. 
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