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Abstract: This paper presents a fully-automated method to establish a calibration dataset 

from on-site scans and recalibrate the intrinsic parameters of a spinning multi-beam 3-D 

scanner. The proposed method has been tested on a Velodyne HDL-64E S2 LiDAR 

system, which contains 64 rotating laser rangefinders. By time series analysis, we found 

that the collected range data have random measurement errors of around ±25 mm. In addition, 

the layered misalignment of scans among the rangefinders, which is identified as a systematic 

error, also increases the difficulty to accurately locate planar surfaces. We propose a 

temporal-spatial range data fusion algorithm, along with a robust RANSAC-based plane 

detection algorithm to address these issues. Furthermore, we formulate an alternative 

geometric interpretation of sensory data using linear parameters, which is advantageous for 

the calibration procedure. The linear representation allows the proposed method to be 

generalized to any LiDAR system that follows the rotating beam model. We also 

confirmed in this paper, that given effective calibration datasets, the pre-calibrated factory 

parameters can be further tuned to achieve significantly improved performance. After the 

optimization, the systematic error is noticeable lowered, and evaluation shows that the 

recalibrated parameters outperform the factory parameters with the RMS planar errors 

reduced by up to 49%. 
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1. Introduction 

The need to acquire 3-D information of physical environments has escalated in the last decade. 

With the rapid advances of Light Detection and Ranging (LiDAR) technology, laser-based active 

scanning has become a fast, accurate, and popular measurement tool. Stationary terrestrial LiDAR 

systems in the market such as the Reigl VZ-1000 and Optech ILRIS-3D units, are capable of 

delivering industrial-level accuracy with errors lower than 10 mm. For the real-time acquisition of 

panoramic range information, multiple laser rangefinders are attached to a motor, forming a multi-beam 

LiDAR system. The Velodyne HDL-64E S2, which is equipped with 64 laser emitter-sensor pairs to 

deliver dynamic panoramic point cloud at 10 Hz within the working range from 0.9 to 120 m, is such a 

high-definition LiDAR system. Although the LiDAR system was originally designed for the DARPA 

Grand Challenge and is often used in applications such as mobile navigation and autonomous  

vehicles ([1,2]), which require intermediate accuracy, recent research (e.g., [3–6]) points out that the 

model has the potential to be a promising solution for static 3-D mapping, which requires higher accuracy.  

Figure 1. (a) point cloud of corridor; colour-coded to differentiate laser sources; (b) A close 

look at the marked wall; (c) range data of laser #40 returned in six subsequent spins. 

  
(a) (b) 

  
(c) 

In our experiment, we have found that the tested Velodyne HDL-64E S2 achieves an average RMS 

error of about 2.5 cm. Close examination of the recorded range data has revealed two major problems. 

The first issue is the layered misalignment of scans on planar surfaces, as shown in Figure 1(b). This 

phenomenon is due to the use of inaccurate intrinsic parameters that include the orientation and offset 

of each laser rangefinder for the conversion of raw sensor readings to 3-D point cloud. In addition, we have 

found that the data returned from each range sensor at a fixed rotation angle fluctuates over time within 

an interval, as shown in Figure 1(c). This may be caused by the quantization error of rotation angle, 

random measurement error intrinsic to the time-of-flight data, and motor vibrations. 
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The intrinsic parameters are calibrated by the manufacturer using a plane placed at 25.04 m. The 3-D 

coordinates of a point becomes less accurate as it moves away from this distance. To address the 

aforementioned cause of systematic error, we have to further optimize the parameters for a certain 

range using data acquired in the scanned field. This is known as online or on-site calibration [7]. In this 

work we propose an automatic strategy to perform on-site recalibration of the intrinsic parameters. 

Figure 2 depicts the tasks performed by the proposed method. First, the system records a short 

range data stream of the surroundings. The collected range data are then merged to produce a more 

reliable dataset. Afterward, the range data are segmented and the points that are less likely to be on a plane 

are filtered out. In next stage, we convert the processed range data to 3-D points and apply a robust 

plane detection algorithm on the point cloud to establish the calibration dataset, which is used to improve 

the intrinsic parameters of the LiDAR system. These tasks are detailed in the following sections. 

Figure 2. Process of the proposed automatic on-site recalibration method. 

 

There are two major contributions in this paper. First, we formulate an alternative geometric 

interpretation of sensory data using linear parameters, instead of the nonlinear form specified by the 

manufacturer. The formulated linearly parameterized form has less correlation and achieves lower 

RMS error after calibration, as will be shown by the experiments. Second, and the more important 

contribution, is that we have implemented a framework for automatic on-site calibration using planes 

that exist within the scene. The calibration process can be easily adapted to other types of LiDAR and 

has been proven to achieves an RMS error lower than the factory provided calibration parameters. 

The rest of this paper is organized as follows: in Section 2, related research is surveyed. In Section 3, the 

mathematical models of the conversion of range data to 3-D space and the adjustment of parameters are 

given. In Section 4, we propose a data fusion algorithm and the automatic establishment of calibration 

dataset. Experimental results are discussed in Section 5, and Section 6 concludes this paper. 

2. Related Work 

There has not been a lot of work published in the literature specific to the calibration of the tested 

Velodyne LiDAR system since the device is relatively new. In [3], the sensor is placed in various 

positions with its X-Z or Y-Z planes parallel to a wall. The range data returned by 16 selected 

rangefinders are then used to optimize a part of the laser parameters (the details of these parameters 

will be described in the next section). Although the restricted positional condition simplifies the 

objective function to the variances of 1-D coordinates, the resulting model is not applicable to adjust 

the remaining parameters. These parameters are therefore ignored in their work. 
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The systematic error caused by the inaccurate intrinsic parameters is also examined in [4]. Unlike other 

work, their adjustment does not use factory parameters at all. The scanner is placed in the centre of a 

precisely-made calibration object, and the parameters are initially estimated from a scan of the object. 

The objective function is then minimized using the Levenberg-Marquardt algorithm. In the optimized 

case the measurement error is 1.56 cm. 

In [5], the factory intrinsic parameters are taken as an initial guess and iteratively refined using the 

Gauss-Helmert algorithm. The calibration data are collected from multiple sites, and the Euclidean 

transformations between different scanner locations are taken into account during optimization. 

However, the parameters are optimized against a definition of error that is biased to the distance of 

calibration target. The improvement of 25% in flatness error over factory parameters is reported with 

the final RMS error of 1.3 cm. In a follow-up paper [6], the temporal stability of the LiDAR system is 

analyzed. The authors have also extended the manufacturer-defined geometric model to include the 

error of the rotation angle measurements. 

By referencing previous work, the proposed method also utilizes planar targets for calibration. 

However, we adopt a linear representation of intrinsic parameters. Moreover, instead of conducting 

laboratory calibrations, we deploy an automatic mechanism to establish and process calibration data 

on-site. The proposed method allows the LiDAR system to autonomously adjust its intrinsic parameters 

while operating online. 

3. Optimization Model 

Based on the geometric interpretation of the range data, a non-linear optimization model can be 

derived given some observed scene planes. This section first introduces an alternative model for the 

conversion of range data; then describes the objective function which minimizes plane deviations in 

terms of quadratic error. 

3.1. Conversion of Raw Data to 3-D Cartesian Coordinates 

The Velodyne HDL-64E S2 contains 64 laser emitter-sensor pairs which are rigidly attached to a 

rotating motor, as depicted in Figure 3(a). In this work we define the LiDAR coordinate system to 

rotate about the z-axis and have the y-axis as the initial direction the scanner points. A raw reading is 

denoted by (θ, r), where θ is the rotation angle at which time-of-flight data r is measured. According to 

the documentation [8], for the i-th laser rangefinder, a reading (r, θ) is converted to 3-D coordinates by: 

( )cos (sin cos cos sin ) (cos cos sin sin )

( , ) ( )cos (cos cos sin sin ) (sin cos cos sin )

( )sin
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i i i i i i i i i

i i i i

x m r r x

g r y m r r x

z m r r z

        

         



       
   

       
   
         

 (1) 

where sensor-specific parameters include ∆xi, the horizontal offset; ∆zi, the vertical offset; ∆ri, the 

range offset; θi, the azimuth angle; αi, the elevation angle and mi, the scaling factor are involved. These 

parameters are intrinsic to the sensor and remain fixed throughout the measurement. Their default 

values are calibrated by the manufacturer. 
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Figure 3. (a) coordinate system of the Velodyne LiDAR system; (b) geometric relation of 

laser intrinsic parameters in linear representation, a calibration plane, and the residual. 

  

(a) (b) 

Although it is obvious that the described conversion is not linear, the parameters can actually be 

interpreted in a linear form by the following steps. First, extract the rotation matrix from the right-hand 

side of Equation (1) which gives:  
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  (2)  

Let Rθ 
represent the rotation matrix of rotating by θ degrees about z-axis of the LiDAR coordinate 

system, Equation (2) can be rewritten as: 
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  (3)  

Combining Equations (1) and (3), the 3-D points swept by the i-th laser are, in fact, parameterized 

over a rotating beam: 

   , ·i i ig R r ar      (4)  

where ai and τi are the direction vector and the origin of the beam, respectively. One can verify that the 

metric parameter mi is completely dominated by ||ai|| since ||(cosai sinθi, cosai cosθi, sinai)|| = 1. Thus, 

all six laser-specific parameters are retained by ai and τi. 

We use the derived linear form (ai, τi) instead of the canonical nonlinear parameters to interpret raw 

measures in Cartesian coordinates. From the experiment results we found that by using linear 

representation, the optimization process converges faster, and is able to attain a solution with lower 

error. Furthermore, the evaluation of 3-D coordinates utilizing the linear model is much more 

computational efficient. 
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3.2. Adjustment of Intrinsic Parameters 

A typical calibration of the geometric sensory parameters is based on the observations of particular 

objects with known geometry. These objects are known as the calibration targets. Since it is fairly 

common to find planar objects, such as walls or floors, in both outdoor and indoor environments, plane 

geometry is ideal for the recalibration of Velodyne LiDAR system in this work. 

A 3-D plane that does not pass through the origin can be uniquely defined by a 3-vector n = (nx, ny, nz) 

which denotes the point on the plane closest to the origin, as illustrated in Figure 3(b). In the rest of 

this paper we refer to a plane by its representative vector and vice versa. For each point g, the signed 

orthogonal distance to a plane n is defined by: 

 , ,
n

g n g n
n

    (5)  

where < > and || || are the dot and the 2-norm operators, respectively. It holds that δ(g, n) = 0 if and 

only if the point is contained in the plane. Suppose the parameters are denote by β = {a1, τ1, … a64, τ64, 

n1, n2, …}, then, for the i-th rangefinder, a sub-objective function is defined as: 

      
2

, , ,
1

1
, ,

2

iN

i i i k i k i k
k

g r n 


   



    (6)  

where ρ(i, k) is the index of the calibration plane on which a point   
 

(ri,k, θi,k) is supposed to lie, and 

the plane’s representative vector is denoted by        
 

 According to Equation (6), an objective function 

Φ(β) =              is designed to minimize the systematic error caused by the intrinsic parameters in 

terms of plane deviation. The non-linear problem of minimizing Φ is instantiated by taking into 

account the on-site calibration data (ri,k, θi,k) and        
 

, which are acquired from the scene. Similar 

models can also be found in related work [4–6].  

3.3. Uniqueness of Optimal Solution 

One may notice that the term        
 

 in Equation (6) is also parametrized by β. That is because the 

calibration planes are initially estimated from the point cloud measured by the LiDAR system; hence 

they should be adjusted as   
 

 updates. Since the dependency cannot be removed unless the planes are 

estimated from other data sources, it has been suggested to manipulate the calibration planes as 

adjustable parameters [5,6]. However, deploying the plane-adjustable minimization model also 

introduces trivial solutions to Equation (6). We observed that if the stopping criterion is not carefully 

set, the optimization will eventually reach a global minimum where Φ(β)   0 no matter how the 

parameters are initialized. At a global minimum, all calibration planes are orthogonal to the rotation 

axis and all points are collapsed to the planes, which is obviously an invalid configuration. 

To avoid approaching a trivial solution while maintaining the dependency, we allow the planes to 

be adjusted within a controllable region. To this end, the parameterization of j-th calibration plane jn  

is defined as: 

0

j j jn n n      (7)  
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subject to the constraint 
max

j jn n  , where max0 jn     is the restricted magnitude of the update. 

The value of max

jn  can be determined by the confidence of the estimation of 0

jn . 

Another issue that needs to be dealt with is the fact that the adjustment can be ill-posed under 

certain conditions. For the i-th rangefinder, if all of its calibration planes are parallel to the rotation 

axis (z-axis), then  i iya    and  i iy     will all be zero. As a result, the optimization turns 

into an ill-posed problem, with infinite many solutions. Similarly, when the calibration planes are all 

orthogonal to the rotation axis, the partial derivatives of 
i  with respect to parameters  , , ,ix iz ix iza a    

will be zeros. To summarize the issues in this section for ensuring the uniqueness of the optimal 

solution, the following list provides the problems that should be avoided and how to avoid them  

in calibration: 

• Trivial solutions in optimization—Avoided by only allow the planes to be adjusted within a 

controllable region subject to the constraint 
max

j jn n  . 

• Calibration planes parallel/orthogonal to the rotation axis (z-axis)—Avoided by tilting the 

scanner by a predetermined angle. 

4. Automatic Establishment of Calibration Data 

In this section we describe the establishment and processing of calibration data for the adjustment 

of parameters. In our work, the calibration data are essentially point-plane correspondences that are 

extracted from the on-site scans. In order to precisely detect planes, the preprocessing on range data as 

described in Sections 4.1 and 4.2 are carried out. In Section 4.3 we introduce an automatic plane 

detection algorithm, which is applied to the point cloud constructed from the preprocessed range data. 

The methods presented in this section allow the calibration data to be acquired in a fast, yet precise manner. 

4.1. Spatial-Temporal Sensory Data Fusion 

In the raw measurements, we discovered noticeable temporal instability that causes scattering of range 

data, as shown in Figure 1. The instability is identified in both range and angle measurements. In a static 

scene the deviation of measured ranges is about 2.5 cm over time, which is higher than manufacturer’s 

specification. In addition, a slight quantization error of rotation angle, which is estimated in [5] to be 

around 0.02°, also affects the accuracy of collected data. In addition, the angular interval of measurement is 

not guaranteed to be a constant. For instance, when the system operates at 600 rpm the difference in 

angle between two consecutive measurement can be 0.09°, 0.18°, 0.27°, or any multiple of 0.09°. 

These hardware issues must be addressed before precise calibration data can be established. 

A spatial-temporal data fusion technique is deployed to integrate raw measurements of multiple 

spins into more reliable range data. We intend to use continuous range data instead of data acquired 

from a single spin. The resulting data fusion algorithm is based on the idea of estimating a point using 

a convex combination of adjacent points. The estimated value at point p is given by: 

   
( )

ˆ
q adj p

pq r qr p 
 

    
(8)  
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where 
,p q  is a non-negative weight and 

( )
1

q adj p pq
 

 . In our case, r  is a 2-D spatial-temporal 

structure containing raw distance measured by a laser rangefinder, and the position, p = (θ, t), 

represents the rotation angle and the time of measurement. A similar idea is found in the up-sampling 

algorithm introduced in [9]. 

Since each laser rangefinder operates at a high speed rate of around 20,000 fires per second, the 

computation of Equation (8) could be the performance bottleneck. To facilitate the computation, we 

group all data returned in the same spin and assume that they are measured simultaneously. Although 

the assumption may not be valid in mobile sensing applications, it should be reasonably acceptable if 

the LiDAR system is stationary. 

In this work the weights are determined by the Gaussian distance ωpq =
 
              

. The estimation 

can be efficiently computed using separable 2-D convolution. To exclude the effect of missing data a 

normalization term is added to Equation (8): 

 
  

  

,

,
ˆ ,

Gauss

Gauss

r
R K t

t
M K t













   (9)  

where * is the convolution operator,       
  is the Gaussian kernel of standard deviation σ, R is the raw 

data, and M is the binary function defined as m(θ, t) = 1 if r(θ, t) is valid and m(θ, t) = 0 otherwise. The 

size of       
  and the parameter σ are adjustable to control the number and significance of data used 

for the computation of   (θ, t). Figure 4 shows a result of fused range data obtained from 6 spins. 

Since       
  is a linearly separable kernel, the data fusion algorithm defined by Equation (9) can be 

implemented in real-time using fast 1-D convolution. With the optimized circular data structure and 

the pre-computation of convolution kernels, our CPU-based parallel implementation is able to fuse 

more than 3 million points per second on a 3.0 GHz quad-core processor. The computation rate is 

comparable to the firing speed of the LiDAR system. A higher frame rate is possible for a GPU 

implementation, as illustrated in [9]. 

Figure 4. Kernel-based Range Data Fusion with Various  . 

 

4.2. Range Segmentation 

We apply a derivative-based approach on fused range data to detect points that are continuous and 

thus likely to be in the calibration planes. The approach works as follows. An n-th order Laplacian 
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operator is applied on the fused data. Significant discontinuities are identified by checking the 

derivative at each angle. By taking the discontinuous points as endpoints and connecting them in a 

piece-wise manner, we obtain the segmented range profile. 

The result is further examined to exclude short segments, which are less likely to contain useful 

data for the calibration. As a result of removing these outliers, which are the majority of the acquired 

range data, the detection time of plane is dramatically reduced. Since the segments are detected in the 

angle-range domain, they may be curved in 3-D space. Despite the curvature, these points are still 

useful as long as they are planar points. 

4.3. RANSAC-Based Plane Detection 

Finding planes in a point cloud has been a fundamental problem in the field of 3-D modeling. One 

of the classical solutions is Hough Transform, which searches objects of a particular geometry by 

means of the accumulator in the parameter domain [10]. The exhaustive construction of the 

accumulator is, however, very time consuming. A scan like the one we used for the calibration usually 

contains hundreds of thousands of points. In such case, the time required by Hough Transform could 

be intolerable for the on-line calibration process. Furthermore, the layered misalignment of points also 

makes it more difficult to find concentrated distribution of plane scores in the accumulator. Thus, we 

need a heuristic and robust algorithm to locate the calibration targets efficiently. 

A RANdom SAmpling Consensus (RANSAC) technique that iteratively searches calibration planes 

in a stochastic manner is developed to locate the calibration targets efficiently. In each round, a point 

and some of its neighbors are randomly selected. Based on the selected points a best-fitting plane is 

calculated to minimize residuals in a least-square sense. This plane is then applied to measure its 

fitness in the global scope with respect to whole point cloud. 

For an acceptable estimate, which contains a significant number of points within a tolerable 

deviation  , we refine the plane using the Iterative Closest Point (ICP) technique as follows. Firstly, 

the points that are likely to be in the plane within tolerable deviation are selected. A least-square plane 

is then calculated subject to these points to replace the initial estimate. The refinement repeats until 

termination criteria are met that either the update of the plane is significantly small or the number of 

iterations reaches its limit. Points in the estimated plane are removed from the point cloud, and the new 

estimate is added to the list of detected planes. Figure 5 shows two examples of the detection process. 

Since the selection of point is done in the global scope, some points contribute to the estimate may 

be outliers that are far from the majority. Figure 5(d) shows the inclusion of such outliers. To address 

this issue, we apply Principle Component Analysis (PCA) on the Cartesian coordinates and study the 

distribution of the first two principle components of the selected points. The points that are 

significantly distant from the majority are excluded. In Figure 5(d–f) one can see a portion of the 

points on the smaller wall are taken into account for the initial estimate and excluded in the final result. 

This stochastic process iterates until no more planes can be found or the number of iteration reaches 

its maximum. The pseudo-code of the algorithm is listed in Algorithm 1 and Algorithm 2. The 

established point-plane correspondences (see Figure 6 for an example) are now qualified to be used as 

calibration data for the optimization process described in Section 3. 
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Figure 5. (a) initial estimate; (b) refined estimate using ICP-based algorithm; and  

(c) final result of the detection of floor surface; (d–f) the same process applied to find 

another surface. 

   

(a) (b) (c) 

   

(d) (e) (f) 

Algorithm 1. Algorithm of RANSAC-based plane detection. 

FINDPLANESRANSAC 

Input: Point cloud G , sampling ratio  , positive ratio of acceptance  , error tolerance , 

number of iterations k  

Output: Set of detected planes N  

1 { }N     

2 For 1i   to k  

3  Draw a sample 
ig G  and   samples 

iS G  in the vicinity of 
ig  

4  ( )i iBestFitPlanen S  

5  ( ,{ : ) }i iP p pG n     

6  If iP G   

7   ( , , , )i i iRefinePlaneI PCP n kn  , ( ,{ : ) }i iP p pG n     

8   { }iN N n  , 
iG G P   

9  End If  

10 End For  
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Algorithm 2. Algorithm of ICP-based plane refinement. 

REFINEPLANEICP 

Input: Point cloud G , initial plane 
0n , error tolerance , number of iterations k  

Output: Refined plane 
kn  

1 
0 ( )iBestFitPlanen P  

2 For 1i   to k  

3  
1{ : )( },i ipP p G n     , ( )i iBestFitPlanen P  

4  If 1i in n   is small 

5   
k in n , i k  // early stop 

6  End If 

7 End For 

Figure 6. Established calibration data containing seven planar surfaces. 

 

5. Experimental Results 

5.1. On-Site Data Acquisition 

The range data are collected in an open space to evaluate the proposed method. The selected site, as 

shown in Figure 7, is an outdoor corridor located on the fourth level of a campus building. There are 

eight angled walls and one tiled floor in the scene. We place the LiDAR system in three different 

positions for data acquisition. According to the issues stated in Section 3.3, the scanner is tilted by 30° 

in the second and third positions to ensure the uniqueness of optimal parameters. Three calibration 

datasets are automatically established using the algorithms introduced in Section 4. The parameters 

used to detect planes are set as σ = 1.0, ρ = 0.3, 5 , and k = 100. Summary of these datasets are 

listed in Table 1. The factory parameters are converted to the linear form and optimized using the 

Levenberg-Marquardt method with numerical approximation of first and second order derivatives. The 

adjustment of calibration planes is constrained within a radius of 2.5 cm centering on its initial value. 
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Figure 7. The corridor selected to evaluate the proposed method. 

   

(a) (b) (c) 

Table 1. Established calibration datasets. 

 Raw Points Fused Points Continuous Pts. Final Points. Reduction Planes 

DATASET 1 620,996 219,145 183,501 149,465 76% 8 

DATASET 2 135,228 175,257 139,687 122,884 10% 6 

DATASET 3 510,775 174,263 137,715 104,958 79% 6 

5.2. Evaluation of LiDAR Recalibration 

The residual between each point and the corresponding calibration plane is measured to evaluate the 

performance of parameters. In Figure 8, the errors of parameters recalibrated using all collected 

datasets are compared with the factory parameters. Before the optimization, the RMS and standard 

deviation of calculated residuals are 2.39 cm and 2.37 cm, respectively. The recalibrated parameters 

achieve a RMS of 1.39 cm with a standard deviation of 1.39. The RMS error is decreased by 42% after 

the adjustment. The distributions of point residuals are depicted in Figure 9. A visually observable 

result of the improvement is given in Figure 10, which shows views orthogonal to a scanned wall. As 

can be seen from Figure 10, the layered misalignment among measurements returned by different 

rangefinders is reduced significantly. Please note that for each layer the scattering caused by the 

measurement errors of around ±25 mm still presents. 

Figure 8. Point residuals colour-coded to show calibration planes (a) factory parameters; 

(b) recalibrated parameters. 

  
(a) (b) 
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Figure 9. Distribution of point residuals (a) factory parameters; (b) recalibrated parameters. 

  
(a) (b) 

Figure 10. Scan of a wall (a) before recalibration; (b) after recalibration. 

  

(a) (b) 

Cross validation is also conducted by selecting some subsets of three calibration datasets to perform 

the recalibration, and evaluating the result using datasets that are not used during the optimization. For 

an unused dataset, the planes are re-estimated from the point cloud using the optimized intrinsic 

parameters. The results are given in Table 2. The shaded cells indicate that the corresponding dataset is 

not taken into account to adjust the parameters. The evaluation on these unused datasets usually 

contributes to a slightly higher error, which is still below the baseline. It shows that the result of on-site 

recalibration outperforms manufacturer-calibrated parameters, and the improvement ranges from  

14% to 50%. 

Table 2. RMS Errors and Improvement After Recalibration. 

 Factory 

Parameters 

Parameters Optimized using On-site Range Data 

DATASET 1, 2 DATASET 1, 3 DATASET 2, 3 DATASET 1, 2, 3 

DATASET 1 2.355 cm 1.323 cm (44%) 1.209 cm (49%) 2.014 cm (14%) 1.285 cm (45%) 

DATASET 2 2.426 cm 1.532 cm (36%) 1.776 cm (27%) 1.363 cm (44%) 1.491 cm (39%) 

DATASET 3 2.397 cm 1.733 cm (28%) 1.457 cm (39%) 1.307 cm (45%) 1.412 cm (41%) 

Overall 2.389 cm 1.493 cm (38%) 1.482 cm (38%) 1.663 cm (30%) 1.386 cm (42%) 

5.3. Comparison of Linear and Non-Linear Parameters 

To examine the effects of representing the intrinsic parameters in the linear form derived in  

Section 3.1, we conduct the same experiment using the non-linear representation defined by the 

manufacturer. The traces of RMS error through first 20 iterations of the optimization process are 

shown in Figure 11. In three out of four cases, the linear parameters converge earlier than the non-linear 

ones. In two cases the optimization failed to converge within 100 iterations when the non-linear 



Sensors 2012, 12 13749 

 

 

parameters are adopted. The experimental results also indicate that the optimal solutions obtained 

using the linear representation achieves lower overall error, with the maximal improvement of 35%.  

Figure 11. Convergence of different parameter representations. 

 

Similar to [5], we also provide the correlation matrix of the estimated parameters to examine the 

accuracy of the estimation. The correlation data are obtained by calculating the inverse of the Hessian 

matrix, which is numerically approximated by means of the Jacobian matrix at the optimal solution. 

Tables 3 and 4 tabulate the averaged correlation coefficients of the estimated parameters over all four 

tests. The bold numbers indicate significant correlations. The higher-than-median correlations are 

shaded, and the highly correlated observations are marked with thicker borders. The asymptotic 

standard errors are also listed in the tables to study the certainty of estimation. 

Table 3. Average correlation matrix and estimated error of linear parameters. 

 xa  
ya  za  

x  
y  z  Standard Error 

xa  1.0000 0.0735 0.0598 −0.9196 −0.0721 −0.0545 0.0004 cm 

ya  - 1.0000 0.2100 −0.0687 −0.9575 −0.2599 0.0004 cm 

za  - - 1.0000 −0.0349 −0.2033 −0.9208 0.0003 cm 

x  - - - 1.0000 0.0743 0.0368 0.1170 cm 

y  - - - - 1.0000 0.2702 0.1621 cm 

z  - - - - - 1.0000 0.0769 cm 

Table 4. Average correlation matrix and estimated error of non-linear parameters. 

     m  x  r  z  Standard Error 

  1.0000 −0.0679 0.0766 −0.9542 −0.0784 0.0641 0.0219° 

  - 1.0000 −0.4290 0.0509 0.3168 −0.9570 0.0231° 

m  - - 1.0000 −0.0780 −0.9459 0.5169 0.1765 cm/cm 

x  - - - 1.0000 0.0747 −0.0508 0.1535 cm 

r  - - - - 1.0000 −0.3973 0.1533 cm 

z  - - - - - 1.0000 0.0004 cm 

As we expected, strong correlations are found between the linear parameters (ax, τx), (ay, τy), and (az, τz), 

which are respectively related to the same directions. However, the overall correlation is lower than the 
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canonical parameters. In other words, the behavior of non-linear parameters is less decoupled than that 

of the linear parameters. This may explain the observation that the minimization solver approaches an 

optimal estimate quicker when the linear form is adopted. 

5.4. Effects of Data Fusion 

The fusion of range measurements reduces the amount of computation. To verify how the reduction 

of data affects the result of calibration, we conduct the same test, but this time with all calibration 

datasets established from 894,000 raw measures. The results are compared with the use of fused range 

data consisting of 377,000 points to study the difference. The RMS error of raw range data is higher 

than the results listed in Table 2. However, it is not appropriate to use point-plane residuals for 

evaluation since the range data are not identical. The comparison instead refers to the misalignment of 

adjusted planes. The evaluation estimates the plane-based optimal rigid transformation of the LiDAR 

system between the sites where DATASET 2 and DATASET 3 are collected. The misalignment of planes 

is then measured in terms of angular and distant error, as listed in Table 5. 

The evaluated errors with and without the fusion of range data is barely distinguishable compared to 

the errors of factory parameters. The largest differences are 0.08° in angle and 0.164 cm in distance. 

However, there exists noticeable difference in the running time. The optimization on the fused range data 

finished in 517 s. In contrast, without the fusion the optimization took 3,132 s to converge. The reduction 

of data greatly boosts the process of recalibration while achieving a similar result. Yet another 

observation is that the misalignment of planes is reduced even though it is not explicitly modeled by 

the objective function. 

Table 5. Angular and distance plane misalignment with and without data fusion. 

Plane Factory Calibration Recalibrated with Fusion Recalibrated without Fusion 

Index Angular Err. Distant Err. Angular Err. Distant Err. Angular Err. Distant Err. 

1 0.2062° 0.6559 cm 0.1794° 0.2743 cm 0.2205° 0.1129 cm 

2 0.2249° 1.6283 cm 0.1042° 1.4106 cm 0.1520° 1.4961 cm 

3 0.1659° 0.5163 cm 0.1803° 0.2835 cm 0.0988° 0.2909 cm 

4 0.1257° 0.7623 cm 0.1266° 0.7604 cm 0.1928°  0.8136 cm 

5 0.1334° 0.3600 cm 0.1766° 0.2037 cm 0.1449° 0.1942 cm 

6 0.3623° 0.1985 cm 0.3169° 0.0644 cm 0.2800° 0.0646 cm 

Overall 0.2031° 0.6869 cm 0.1807° 0.4995 cm 0.1815° 0.4954 cm 

6. Conclusions and Future Work 

We present in this work an efficient multi-stage strategy to attain automatic on-site recalibration of 

the Velodyne HDL-64E S2 system. The proposed method is applicable to both range-angle sensory 

space as well as Euclidean space. In the first stage, the range data are merged temporally and spatially 

using a real-time Gaussian-based algorithm. The amount of range data is then reduced by enforcing the 

continuity constraint. Afterward, we carry out a robust RANSAC-based plane detection algorithm to 

locate planes in 3-D space. The estimated planes are refined in an ICP manner before the final 

calibration dataset is established. The intrinsic parameters optimized using the on-site range data 
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achieve an average improvement of 40% over the factory parameters. In the experiment, the plane 

residuals with a RMS error lower than 1.3 cm is attainable, which is an improvement from previous 

work. The implementation of the on-site calibration strategy also allows the LiDAR to be 

automatically calibrated before each acquisition sequence, such that system can use calibration 

parameters that are more adapted to each individual site for obtaining more accurate results. 

A linear form of the parameters is also derived from the range data conversion formula specified by 

the manufacturer. The parameters represented in the linear form are verified to be less correlated and 

achieve lower RMS error quicker than the canonical model. The optimization model defined in this 

paper can be further extended to a LiDAR system that follows the rotating multi-beam model 

described by the linear parameters. The process is designed to be finished on-site so that one can see 

and use the improved interpretation of the range data as quickly as possible. For a calibration dataset 

containing twenty planes with one million points, the whole process (data collection, preprocessing, 

plane detection, and optimization) can be finished within 10 min on a moderate laptop. Similar to 

many computer vision applications, we suggest that the calibration process be performed at the 

beginning of a data acquisition sequence for each different site. For example, calibration is performed 

once at the beginning for the corridor sequence and the acquired parameters are used throughout the 

data acquisition for that site. Since the proposed calibration procedure is quick and simple to perform, 

it is easy to include a calibration before each different range data sequence is taken. 

In future work, we will incorporate image sensors into the system to study simultaneous calibration 

of intrinsic and extrinsic parameters (e.g., [11]). The linear representation of laser parameters also 

allows further reduction of unknowns in the optimization model for integrating image sensors with the 

LiDAR system. Finally, once the image sensors have been integrated with the LiDAR system, we wish 

to investigate the possibility of analysing the laser trajectories from IR images captured by the image 

sensors, such that we may validate the performance of recalibrated parameters and improve upon our 

current results. 
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