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Abstract: Volatile organic compounds (VOCs) in cut onions (Allium cepa L.) were 
continuously measured by PTR-MS during the first 120 min after cutting. The headspace 
composition changed rapidly due to the very reactive volatile sulfurous compounds emitted 
from onion tissue after cell disruption. Mass spectral signals corresponding to propanethial 
S-oxide (the lachrymatory factor) and breakdown products of this compound dominated  
0–10 min after cutting. Subsequently, propanethiol and dipropyl disulfide predominantly 
appeared, together with traces of thiosulfinates. The concentrations of these compounds 
reached a maximum at 60 min after cutting. Propanethiol was present in highest 
concentrations and had an odor activity value 20 times higher than dipropyl disulfide. 
Thus, propanethiol is suggested to be the main source of the characteristic onion odor. 
Monitoring the rapid changes of VOCs in the headspace of cut onion necessitates a high 
time resolution, and PTR-MS is demonstrated to be a very suitable method for monitoring 
the headspace of freshly cut onions directly after cutting without extraction or  
pre-concentration. 
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1. Introduction 

Different species of Allium are used worldwide as a common food or food ingredient. Freshly cut 
onion (Allium cepa L.) immediately brings tears to our eyes, and during cutting, a distinct onion odor 
develops. The tears and the odor are caused by very volatile and reactive sulfur compounds released 
after rupture of the onion cell structure.  

When onions are cut and the tissue is damaged, chemical reactions occurs giving rise to the 
characteristic sulfurous note of the onion odor [1–3]. Different sulfur compounds are formed when 
species of Allium are analyzed, as shown in Figure 1.  

Figure 1. Allium cepa chemistry occurring after cutting [1–3]. LFS: lachrymatory factor synthase.  
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Upon rupture of the cell wall the alliinase enzyme is mixed with the aroma precursors; the cysteine 
sulfoxides, where the substituent is a methyl- ethyl-, propyl-, 1-propenyl-, or 2-propenyl-group 
(trivially named methiin, ethiin, propiin, isoalliin, and alliin, respectively). The structure and content of 
the sulfoxides is responsible for the flavor and odor of different Allium species like onion, garlic and 
leek [4–6]. The products of the enzymatic reaction between alliinase and cysteine sulfoxides are 
pyruvate, ammonia and various sulfenic acids depending on the S-attached substituents present in the 
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cysteine sulfoxide. In onion the major sulfoxide is 1-propenyl cysteine sulfoxide [7,8]. The 1-propenyl 
sulfenic acid is primarily transformed into propanethial S-oxide, the onion lachrymatory factor (LF) [9], 
by LF synthase (LFS) [10]. LF seems to be present immediately after cutting with almost complete 
disappearance after 30 min [11,12]. In the presence of water, LF is degraded into propanal [3,8,13]. 
The other sulfenic acids condense into thiosulfinates, which are suggested to be responsible for the 
odor of freshly cut onions [1,11]. Thiosulfinates are relatively unstable and rearrange into polysulfides, 
thiosulfonates and other compounds [1,7,8].  

The time-aspect is very important for the analysis of the volatile profile emitted from freshly cut 
onions. Immediately after cutting, LF is the major compound, but after 30 min it may no longer be 
detected, while other compounds are formed [7,12]. LF can easily be trapped by solid-phase 
microextraction (SPME) and measured by gas chromatography (GC) [8,11–13]. It seems that the LF is 
stable during GC analysis. In contrast, thiosulfinates easily degrade during trapping and GC-analysis, 
however, they are trapped in minor amounts by cold-trapping followed by high performance liquid 
chromatography coupled to mass spectrometry (HPLC-MS) [13] or by direct injection of a diethyl 
ether extract on a GC-MS [8,11]. Recently, Kubec et al. [14] used real time-mass spectrometry 
(DART-MS) for direct analysis of volatile organic compounds (VOCs) emitted from different species 
of Allium. In this experiment, a capillary was used to puncture the plant material, and the capillary was 
then positioned in the sampling position. The measurement started 1–2 s after cell rupture,  
and by this method mainly LF was detected, along with small amounts of thiosulfinates. When  
SPME or thermal desorption tubes are used for volatile analysis only LF and polysulfides are  
detected [3,7,8,11–13], supposedly due to degradation of thiosulfinates into polysulfides during sampling 
and GC analysis [11,14,15].  

Consequently, the dynamics in the emission of volatiles from freshly cut onions call for a 
continuous analysis method with a simple sampling method that does not imply a potentially 
degrading pre-concentration step. Proton-transfer reaction-mass spectrometry (PTR-MS) is a relatively 
new technique for trace gas analysis of VOCs [16]. The method is based on chemical ionization by 
protonated water (H3O+) and has high selectivity and sensitivity and a fast response time [16–18].  
Gas from the headspace is continuously drawn directly into the drift tube of the instrument, where 
volatiles with a proton affinity higher than water are ionized, and the ions are hereafter led to the 
detector. PTR-MS has been used for detection of volatiles from fruits and vegetables i.e.,  
apples [17,19], berry fruit [20–22] and broccoli [23]. The advantage of real-time monitoring and high 
time resolution makes PTR-MS an interesting choice for measuring VOCs emitted from freshly  
cut onion.  

The aim of this research was to explore the applicability of using PTR-MS to determine volatile 
sulfur compounds emitted from freshly cut onions during the first 120 min after cutting. The dynamic 
PTR-MS results were compared with discrete detection on a GC equipped with a sulfur specific 
detection (GC-SCD) as a reference method. Odor Threshold Values (OTVs) were used to evaluate the 
impact of the analyzed volatile sulfur compounds for onion odor.  
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2. Experimental Section  

2.1. Chemicals  

All chemicals and authentic reference compounds were obtained from Aldrich or Fluka  
(Sigma-Aldrich A/S, Brøndby, Denmark) and were of analytical grade. The reference compounds 
hydrogen sulfide and methanethiol were gaseous standards at 5.06 ppm and 5.20 ppm, respectively, 
diluted in nitrogen (BOC, Surrey, UK). Dimethyl, dipropyl and diallyl thiosulfinate were synthesized 
by oxidation of the corresponding disulfide with peracetic acid according to the method of Moore and 
O’Connor [24]. The thiosulfinates were stored at −80 °C until analysis 6 days later.  

2.2. Experimental Setup  

In order to detect the volatiles immediately after cutting of an onion a food processor (Kenwood 
FP250 multipro compact food processor, 2.1 L, 750W; Kenwood, Hampshire, UK) was modified and 
used as a combined cutter and sample compartment for the headspace analysis (Figure 2). Two holes 
was introduced in the lid and connected to Teflon tubes for inlet and outlet flow. The build in hole for 
insertion of material to the compartment was closed by duct tape, and besides this no attempts were 
done to make the sample compartment airtight. Instead the inlet flow was much higher than the outlet 
flow ensuring a minor positive pressure in the sample compartment, thus, potential leakages were 
acceptable. The inlet flow of dry zero-air (produced from pressurized air by using a cold trap with 
obtained dew point: ~−30 °C and a charcoal filter) into the sample compartment was set to  
100 mL/min. The outlet flow was diluted with dry zero-air at a ratio of 1:11. The dilution factor was 
controlled by the flow rate of the dry zero-air (200 mL/min for PTR-MS and 179 mL/min for  
GC-SCD) and the flow rate drawn by the instrument (220 mL/min for PTR-MS) or by a pump through 
the sample loop (199 mL/min for GC-SCD) (Figure 2). The flow rates of dry zero-air were controlled 
by mass flow controllers (El-flow, Bronkhorst, Ruurlo, The Netherlands). All connections were made 
with Teflon tubes and the measurements were performed at room temperature.  

Figure 2. Experimental setup of sampling for PTR-MS or GC-SCD.  
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One yellow onion (Allium cepa L.) for each experiment was peeled and carefully trimmed by 
removing the outer layers to a size of 50–70 g in order to ensure that the onion fitted into the sample 
container. The trimming was performed 5–10 min before the onset of the VOC sampling. Background 
measurements were performed. Then an onion was introduced into the sample compartment, and the lid 
was closed. The cutting was performed at maximum speed for 10 s and the emitted volatiles were analyzed 
for up to 120 min after cutting. The sizes of the onion pieces were 2–10 mm. The measurements on 
PTR-MS and GC-SCD were done in triplicates using one onion for each experiment.  

2.3. PTR-MS  

2.3.1. Settings  

A PTR-MS instrument (HS-PTRMS, IONICON Analytic Gmbh, Innsbruck, Austria) was used at 
the following drift tube conditions: pressure of 2.1–2.2 mbar, temperature of 60 °C, and voltage at  
600 V, corresponding to an E/N-value of ~137 Td. Mass spectrometric data were collected over a mass 
range of m/z 21–200 using a dwell time of 0.2 s. The PTR-MS was setup for continuous acquisition of 
mass scans, and the measurement interval was ~36 s. A mass dependent transmission curve based on a 
standard mixture of VOCs in concentrations close to 100 ppb (±10%; Restek, P/N 344423-PI) was 
used as a part of the quantification procedures.  

The limit of detection (LOD, calculated as three times the standard deviation on blank samples) of 
our PTR-MS system with respect to volatile organic sulfur compounds is typically in the range of 
0.02–0.15 ppb [25–27], which is lower than LOD of some alternative methods, e.g., GC-PFPD (pulsed 
flame photometric detector) (0.5–2.4 ppb, three times the standard deviation) [28] and GC-ASD 
(amperometric sulfur detector) (around 5 ppb) [29]. However, the LOD of the PTR-MS used in this 
study is higher than found for GC-ToF-MS (0.122 ppt, three times the standard deviation of the 
background noise) [30], and the method detection limit (MDL) is often expected to be much higher 
than the LOD [30]. 

2.3.2. Identification and Quantification of VOCs  

Identification of VOCs was based on commercially available or synthesized reference compounds. 
Mass spectra for identification were obtained by adding a few drops of reference compounds to a 2 mL 
glass vial closed with a polypropylene cap with PTFE/silicone septa (Varian, Palo Alto, CA, USA).  
A 1 mm hole was introduced into the septum with a medical needle. This vial was placed in a 100 mL 
blue cap flask with inlet and outlet tubing for PTR-MS measurements. To calculate concentrations in 
Section 3.5, the proton transfer reaction rate coefficients reported in Table 1 were used. For all other 
Figures, a coefficient of 2 × 10−9 cm3/s was used to provide concentration levels [16]. The reference 
spectra were used to calculate the relation between the protonated parent ion and all the fragments in 
the reference spectra, e.g., for propanal: [m/z 59]/calibration factor. The concentration of hydrogen 
sulfide shown in Section 3.5 below was determined based on a humidity-dependent calibration as 
described in [25,26]. Before data analysis, a background spectrum was subtracted.  
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2.3.3. Investigation of Fragmentation Pattern at Different E/N-Values 

In order to investigate the fragmentation pattern during the first 20 min after cutting, the E/N 
number was changed by changing the voltage in separate experiments. The investigated voltages were 
600, 550, 500, 480, 460, and 440 V giving E/N-values of approximately 137, 127, 115, 111, 106, and 
102 Td, respectively. Separate experiments with onions were conducted for each E/N number. The 
voltage was changed to the set-value and background scans were measured. Then an onion was 
introduced to the sample compartment and cut as described in Section 2.2. Hereafter, the volatile 
profile was followed for 20 min after cutting at the specified E/N values. The fragmentation pattern of 
propanethiol was investigated at the same E/N values by diluting propanethiol into a 10 L tedlar bag 
(CEL Scientific Corp., Santa Fe Springs, CA, USA) filled with dry zero air. 

2.4. GC-SCD and GC-MS  

A gas chromatograph equipped with a sulfur chemiluminescence detector (GC-SCD, GC 7890 A 
and SCD 355, Agilent Technologies A/S, Hørsholm, Denmark) was used to measure the compounds 
emitted 1, 30, 60, 90, and 120 min after cutting. The GC-SCD was equipped with a 1.0 mL sample 
loop which was continuously flushed with diluted sample air during the experiment. At sampling, the air 
in the loop was led into the inlet of the GC. The gas chromatograph was equipped with a capillary 
column with a stationary phase of dimethylpolysiloxane (DB-1, Agilent Technologies A/S). The column 
had a length of 60 m, an inner diameter of 0.53 mm, and a stationary phase of 5 μm. The helium 
carrier gas flow rate was set to 10 mL·min−1. The GC oven temperature was held for 4 min at 40 °C 
and ramped to 200 °C at 10 °C·min−1. The analysis was performed in triplicates. Propanethiol and 
dipropyl disulfide was identified using authentic standards diluted into a 10 L tedlar bag (CEL 
Scientific Corp.) filled with dry zero air. The LOD for GC-SCD is around 1–2 ppb (estimated as 3 times 
the baseline noise) [27], which is higher than the detection limit of PTR-MS [25–27]. Thermal 
desorption GC-MS (TD-GC-MS) analysis of onion odor was performed in initial experiments with an 
instrumentation as described in [26] and compound tentative identification was based on mass spectra 
matching in the standard NIST-98/Wiley library. 

2.5. Data Analysis  

The data from the continuous PTR-MS analysis were explored by principal component analysis 
(PCA) using the calculated concentrations in ppb. The PCA analysis is an unsupervised  
dimension-reducing method enabling visual exploration of correlations and patterns in data [31].  
The significant intrinsic variation could be simplified by reducing the complexity of the data sets into 
two principal components. PCA was calculated using the PLS_Toolbox 6.2 (Eigenvector Research Inc., 
Wenatchee, WA, USA) in Matlab. In the analysis, pareto scaling [32] was used for pre-processing of 
the data. The continuous mass spectra were corrected for minor fluctuations in flow rate driven by the 
instrument by the water cluster signal at m/z 37. 
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3. Results and Discussion 

3.1. Real Time PTR-MS of Freshly Cut Onion Volatiles 

Real time PTR-MS was applied to follow the very rapid development of onion odor emitted from 
freshly cut onions. In general, the VOC emission increased immediately after cutting when the volatiles 
were enzymatically formed by disruption of the physical barriers between enzymes and precursors.  

A PCA of the data was performed in order to capture the main variations in the mass spectra over 
time, and the scores and loadings are shown in Figure 3. The scores plot shows the variation in the 
mass spectra during the first 120 min after cutting (Figure 3(A)), and each point in the scores plot 
represents a mass spectrum. The variation can be described as a movement between three time points; 
(1) the first initial minutes; (2) 10 min after cutting; and (3) a stable period 60–120 min after cutting. 
During the first initial minutes, the scores were positioned low on PC1 and PC2, and during the first  
10 min the scores quickly moved up PC2 and hereafter the scores slowly moved to the right. After  
60 min the scores moved slightly down PC2 until the measurement stopped 120 min after cutting. The 
PCA showed that the VOC composition changed fast during the initial 10 min after cutting, changed 
some 10–60 min after cutting, and changed less towards the end of the sampling period.  

Figure 3. (A) Scores plot and (B) loadings plot of VOC masses emitted from freshly cut 
onions during the first 120 min after cutting.  

 

The loadings plot (Figure 3(B)) describes how the different masses contribute to the variation in the 
scores plot (Figure 3(A)). The masses close to the middle of the loadings plot do not contribute to the 
variation, while masses positioned further away from the middle do contribute to the variation  
(Figure 3(B)). The variation along the x-axis, the PC1, mainly explained variation in m/z 41, 43, and 
45, but also in m/z 33, 39, 49, 77, and 151. The variation along the y-axis, the PC2, explains variation 
in m/z 59 and 91, but also in m/z 31, 149, and 151. In the first minutes, m/z 91 is high, and then m/z 31 
and 59 rise. The last two masses are placed on the same line from the middle of the loadings plot 
(Figure 3(B)), indicating that they are co-emitting and that m/z 31 could be a fragment of m/z 59, or 
that m/z 31 and 59 could be fragments of the same compound. At 60 min, the m/z 41, 43 and 45 
dominated (Figure 3(B)) and the points hereafter are placed close to each other (Figure 3(A)), which 
indicate that the volatile profile did not change considerably from 60 to 120 min after cutting.  
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Full scan mass spectra of the headspace 1, 10 and 60 min after cutting are presented in Figure 4. 
The composition of the headspace volatiles differed at the three time points, as was expected. One min 
after cutting, the headspace was dominated by m/z 45, 59, 73, and 91 (Figure 4(A)). After 10 min,  
m/z 73 and 91 were almost disappeared, and especially m/z 59 was high (Figure 4(B)). After 60 min, 
many masses were present in the headspace sample e.g., m/z 33, 39, 41, 43, 45, 49, 59, 151  
(Figure 4(C)).  

Figure 4. PTR-MS spectra of freshly cut onion volatiles (A) 1 min; (B) 10 min and  
(C) 60 min after cutting. Data are presented as the averages of three consecutive scans and 
are corrected for the dilution factor. Water clusters, oxygen (O2

+), and isotopic masses of 
these are not included. 

 

3.2. Identification of VOCs by PTR-MS 

In order to assign onion compounds to the masses, a range of reference mass spectra were measured 
(Table 1). For most of the compounds in Table 1, the protonated molecular ion (MH+) is the most 
abundant ion, and many of the compounds show a high degree of fragmentation. The gas phase  
ion-molecule reactions happening in the drift tube are thought to consist of several discrete steps [32]. 
No further try to formulate the complex fragmentation mechanisms was done. 1-Propenyl (isoallyl) 
compounds were not available, and instead 2-propenyl (allyl) thiosulfinate was synthetized. This 
compound fragmented considerably (Table 1). It is presumed that the 1-propenyl thiosulfinate will 
fragment as well. For compounds with no or very little fragmentation of the protonated form, the MH+ 
can be used for quantification. For the remaining compounds, the most abundant m/z will normally be 
used for quantification [32]. However, certain ions e.g., m/z 41 and 43 appear as main fragments in 
many of the compounds in Table 1 and can therefore not be used for quantification of VOCs from 
freshly cut onions. The same observation with these ions has been done in other complex mixtures of 
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spectra was used as a calibration factor. It is possible to use a GC-ToF-MS method with a lower LOD 
than PTR-MS [30], however, the PTR-MS has the advantage of continuous measurements and thereby 
detection of rapid changes in volatile composition.  
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Table 1. Reference mass spectra of compounds used for identification of VOCs from 
freshly cut onions. Proton transfer reaction rate constants (kc) used for calculations of 
relative amounts are listed. 

Reference 
compounds 

Mw kc (×10−9 cm3/s) Fragments m/z (Relative intensity) 

Methanol 32 2 a 33(100 MH+) 
Hydrogen sulfide 34 - b 35(100 MH+) 

Acetaldehyde 44 2 a 45(100 MH+) 
Methanethiol 48 2.10 c 49(100 MH+) 

Acetone 58 2 a 59(100 MH+) 
Propanal 58 2.86 c 59(100 MH+), 31(25), 41(16)  

Propanethiol 76 2.16 c 41(100), 43(60), 39(45), 77(10 MH+), 151(1) 
Dimethyl disulfide 94 2.45 c 95(100 MH+), 79(32), 97(10), 96(4) 

Dimethyl 
thiosulfinate d 110 2 a 111(100 MH+), 65(18), 61(17), 43(10), 113(8), 112(4) 

Dipropyl disulfide 150 2.87 c 151(100 MH+), 41(37), 43(33), 109(14), 39(9), 
152(8), 153(8), 75(4) 

Di-2-propenyl 
disulfide 

146 2 a 
73(100), 105(48), 147(39 MH+), 45(29), 115(9), 

81(8), 75(5), 74(4) 
Di-2-propenyl 
thiosulfinate d 162 2 a 41(100), 43(70), 57(45), 39(21) 

Dipropyl 
thiosulfinate d 166 2 a 167(100 MH+), 41(13), 43(12), 169(10), 168(7), 

61(6), 57(5), 73(5)  
a Standard proton transfer reaction rate constant. b Concentration calculated as described in [25,26]. c Proton 
transfer reaction rate constant calculated after [35] using constants found in NIST. d Synthesized by the 
method of Moore and O’Connor [24].  

3.3. Volatile Compounds Detected by GC 

In order to supplement the compound identification, GC-SCD measurements were carried out. In the 
GC-SCD measurement only sulfurous compounds were detected with an equimolar response 
(according to the number of sulfur atoms in the molecules, the signal from dipropyldisulfide was 
therefore corrected according to this) and the inlet of the instrument was designed to be inert to 
sulfurous compounds. The composition and temporal variation of volatile sulfurous compounds  
(Table 2) agreed very well with the findings from the PTR-MS in Figures 3 and 4. The sampling 1 min 
after cutting showed one large peak, this was tentatively assigned to the LF, and it did not appear in the 
chromatogram 30 min after cutting. At this time propanethiol dominated the headspace followed by 
dipropyl disulfide. Minor amounts of hydrogen sulfide and methanethiol were also detected. The 
concentration of hydrogen sulfide continued to increase through the experiment, and the content of 
methanethiol and propanethiol increased until 60 min after cutting and then decreased. The content of 
dipropyl disulfide peaked at 30 min after cutting and decreased hereafter. Hydrogen sulfide, 
methanethiol, propanethiol, and dipropyl disulfide are all compounds with low odor threshold values 
(OTV) (Table 2).  
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Table 2. Volatile compounds found in headspace from freshly cut onions by GC-SCD. 

Compound 
Minutes after start of cutting (area%) d 

RT a ID b OTV c 1 30 60 90 120
Hydrogen sulfide 1.76 A 1.9 1 4 10 17 22
Methanethiol 2.65 A 0.07 4 7 8 9
Propanethiol 7.02 A 2.18 1 61 62 57 53
LF 10.90 B - 97  
Dipropyl disulfide 18.25 A 21.2 1 13 8 7 6

a Retention time in min. b A, retention time agree with standard; B, tentative assignment according to 
comparison of time after cutting with literature review. c Odor threshold values (OTV) (ppb) were based on 
reported detection threshold values [38]. d Average of three replicates.  

Initial experiments showed that TD-GC-MS analysis of samples collected on adsorbent tubes 
resulted in large amounts of dipropyl disulfide and only small amounts of propanethiol (data not 
shown), which has also been seen in other records with similar instrumentation [3,7,8,11–13]. Since 
both PTR-MS and GC-SCD measurements clearly show a higher concentration of propanethiol, this 
demonstrates that dipropyl disulfide measured by TD-GC-MS is partly a product of the oxidation and 
dimerization of propanethiol during sampling and analysis, as has been reported before for 
methanethiol [36,37]. This emphasizes the importance of being aware of artifact compounds when 
volatile sulfur compounds are trapped for GC-analysis.  

3.4. Dynamics in VOC Emission during the First 10 min after Cutting 

The mass m/z 91 was high from the beginning of the measurement, and during the first few minutes 
and then decreased (Figures 3(B), 4(A), and 5(A)). Similar trends were seen for m/z 45 and 73  
(Figures 4(A) and 5(A)). This corresponds to the findings by GC-SCD of a sulfur compound present 1 
min after cutting at retention time 10.9 min, which was not present 30 min after cutting (Table 2). 
Since the LF has a molecular weight of 90 g/mol, the m/z 91 and its possible fragments, m/z 45 and 73, 
are tentatively assigned to LF. Propenyl sulfenic acid (Figure 1) could be an alternative as it has the 
same molecular weight as LF. Considering that other records find the LF in high concentrations in the 
first minutes after cutting [2,11,14], LF is found to be the most plausible assignment to m/z 45, 73 and 
91. When m/z 91 disappeared after 10 min, m/z 45 and 73 continue to appear (Figures 3(B), 4(B) and 5(A)). 
These ions must therefore also be fragments or MH+ of other compounds than the LF. The ion m/z 73 is 
very likely a fragment of m/z 91 as a loss of a neutral water molecule reduces m/z 91 to m/z 73.  

One way of testing if a signal is due to a fragment or a protonated parent compound, is to lower the 
specific energy input associated with proton transfer (E/N number). At lower E/N, fragmentation will 
be less pronounced and parent m/z signals will be correspondingly higher. Tests of the first 10 min 
after cutting at different E/N values confirmed that m/z 45 and 73 most likely are fragments of m/z 91, 
as the fragmentation ratio decreased at lower E/N values (Figure 5(B)).  
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Figure 5. (A) Masses associated with the LF emitted 0–10 min after cutting at E/N value 
137 Td. (B) Ratios m/z 45/91 and 73/91 2 min after cutting in experiments at different  
E/N values. (C) Masses associated with propanal emitted 0–10 min after cutting at  
E/N value 137 Td. (D) Ratios m/z 31/59 and 41/59 5 min after cutting in experiments at 
different E/N values.  

 

 

No further lowering of the fragmentation ratio m/z 45/91 was seen below E/N 115 Td (Figure 5(B)) 
indicating that some of the signal of m/z 45 originated from a MH+ and not only a fragment. The 
identification of fragments in this case is complicated by the temporal changes in abundance of ions 
(Figure 5(A)). This means that only the signal ratios can be evaluated (Figure 5(B)). However, the 
systematic variation of signal ratios with E/N is a strong indication that these m/z 45 and m/z 73 to a 
large degree are fragments of m/z 91. Furthermore, m/z 45 continued to increase during the 
measurement and no other masses co-emitted along with the m/z 45 after 10 min. Due to this result, 
m/z 45 remaining after 10 min may very well be assigned to acetaldehyde (Table 2). It is well known 
that acetaldehyde and ethanol form from anaerobic respiration in response to low oxygen 
concentrations [39], but in the present study the cut onions were kept at atmospheric air. Consequently, 
further studies are needed to verify if acetaldehyde is emitted in considerable amounts from freshly cut 
onions at atmospheric oxygen concentrations.  

As the LF disappears, m/z 59 increases and reaches a maximum around 10 min after cutting 
(Figures 3(B), 4(B), and 5(C)). The m/z 59 is usually assigned to either acetone or propanal, and the 
fragmentation pattern with m/z 31, 41 and 59 corresponds very well with that of propanal [32]  
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(Table 2). Propanal has been reported as breakdown product of LF in water [1,3]. The fragmentation 
ratios of m/z 31/59 and 41/59 calculated from data 5 min after cutting decreased at lowered E/N value 
(Figure 5(D)), indicating the m/z 31 and 41 are fragments and m/z 59 is a MH+. However, m/z 41 is 
also a fragment of other compounds occurring in the headspace of freshly cut onions e.g. propanethiol 
and dipropyl disulfide (Table 1). 

3.5. Dynamics in VOC emission 10–120 min after Cutting  

Between 10–60 min, m/z 39, 41, 43, 77 and 151 appeared in the spectra (Figures 4(C) and 6(A)), 
and these masses continued to rise until 60 min after cutting and decreased slightly hereafter (Figure 6(A)), 
however, m/z 41 and 43 continued to dominate until the end of the measurement after 120 min.  

Figure 6. (A) Masses associated with propanethiol (m/z 39, 41, 43, 77) and dipropyl 
disulfide (m/z 39, 41, 43, 151). Corrected for dilution. (B) Ratio m/z 43/77 at different E/N 
values from onion 20 min after cutting and from propanethiol. 

 

Propanethiol and dipropyl disulfide can be assigned to respectively m/z 77 and 151. Both 
compounds, and especially propanethiol, fragmented into m/z 41 and 43 (Table 1). The fragmentation 
ratio of m/z 43/77 20 min after cutting measured at different E/N values corresponds very well with the 
fragmentation ratio of propanethiol (Figure 5(B)), which indicate that the majority of m/z 43 originates 
from propanethiol.  

From the fragmentation pattern of propanthiol, dipropyldisulfide, and propanal approximate 
concentrations were calculated (Figure 7(A)). Using this method of quantification it is clear that 
propanethiol is the main volatile organic compound emitted from of freshly cut onions 60 min after 
cutting, which also was the result from the GC-SCD (Table 2). From the sampling of the propanethiol 
reference compound minor amounts of dipropyl disulfide were obtained (Table 1).  

It is possible that some of the measured dipropyl disulfide is a result of dimerization of 
propanethiol, but the measured concentration of dipropyl disulfide is substantially higher than what 
would be expected from dimerization of propanethiol during the measurement. Propanal showed a 
maximum at 10–20 min after cutting. In accordance with the results of the GC-SCD analysis (Table 2), 
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hydrogen sulfide (m/z 35, Table 1) and methanethiol (m/z 49, Table 1) was found to increase from 10 
min after cutting, but at lower concentrations than propanethiol and dipropyl disulfide (Table 2 and 
Figure 7(A)). Overall, the time of emission of the different compounds and the relation between the 
compounds was alike in the three repetitions, however, the concentration level varied from experiment 
to experiment, which can be ascribed to biological variation from onion to onion.  

Figure 7. (A) Concentration of volatile organic compounds in ppm emitted from freshly 
cut onions determined by PTR-MS 0–120 min after cutting. The concentration of hydrogen 
sulfide was corrected for the water content as described in [25] and [26]. (B) Concentration 
in ppb of thiosulfinates emitted from freshly cut onions determined by PTR-MS 0–120 min 
after cutting. Proton transfer reaction rate constants reported in Table 1 were used for the 
calculations. 

 

 

The measurements of pure compounds demonstrated that thiosulfinates can be detected by PTR-MS 
(Table 1). For onion samples, dimethyl thiosulfinate (m/z 111) was detected with a maximum 60 min 
after cutting (Figure 7(B)), but the concentration was very low (ppb) compared with the other sulfur 
compounds (ppm) (Figure 7(A)). Trace amounts of other thiosulfinates were detected in the headspace  
(Figure 6(B)). Likewise, in the GC-SCD analysis no substantial peaks appeared that could be assigned 
to thiosulfinates.  

Given the odor threshold values (OTVs) of the sulfur compounds emitted from freshly cut onions 
(Table 2) and the relative concentrations of those compounds (Figure 7(A)) odor activity values 
(OAVs) can be calculated. OAV is a measure of the importance of a specific compound to the odor 
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and is the ratio between the concentration in the sample and the OTV. At 60 min after cutting the OAV 
of propanethiol is approximately 20 times the OAV of dipropyl disulfide (approximately 28,000 for 
propanethiol and 1,400 for dipropyldisulfide). This point to that propanethiol is the main compound 
responsible for onion odor.  

Propanethiol from cut onions has only been reported in minor amounts before [7,12] and is 
therefore not indicated in published schemes of the degradation of sulfoxides [1–3,14]. The timing  
30–60 min after cutting and the co-emission with dipropyl disulfide indicate that propanethiol could 
also result from a reduction of thiosulfinates and sulfenic acids occurring in the onion. Further 
investigations are needed to determine the pathway of the formation of propanethiol. Thiosulfinates 
have been associated with “real” onion odor [11], however, the concentration of thiosulfinates was low 
in our study (Figure 7(B)). 

Furthermore, the results indicate that the synthesis of volatile compounds in freshly cut onions is a 
dynamic process and that important information may be lost by the use of discrete sampling techniques 
in aroma analysis. These findings suggest that the time from cutting to serving of cut onions is 
important for sensory perception. It is likely that other vegetables show similar dynamics in the 
emission of volatiles, as is seen in a recent study of broccoli [23] and based on the current study;  
PTR-MS will be a very useful tool for investigating such dynamics.  

4. Conclusions 

The investigation by PTR-MS revealed the dynamics of the emission of volatiles and detected the 
emitted volatile sulfurous compounds and not only the oxidation products created during trapping.  
By means of PTR-MS, an estimate of the concentrations of different compounds in the headspace of 
freshly cut onions was achieved. The results demonstrate that PTR-MS is a powerful tool in 
investigating dynamics in the emissions of VOCs from freshly cut fruits and vegetables. The time from 
cutting until measurement can have an enormous effect on the results from measuring volatiles and 
thereby flavor of freshly cut vegetables and this should be taken into account when aroma profiles  
are investigated.  

Acknowledgments 

The Aarhus University Research Foundation is acknowledged for financial support through project 
number F-2012-FLS 2-19 together with the Danish Ministry of Science, Technology and Innovation 
and the Danish Agency for Science, Technology and Innovation through the Innovation consortium 
(Innovationskonsortium-Produkttilpasset pakning af frisk frugt og grønt) project number 08-034100.  

References 

1. Block, E. The organosulfur chemistry of the genus Allium—Implications for the organic-chemistry 
of sulfur. Angew. Chem. Int. Ed. 1992, 31, 1135–1178. 

2. Eady, C.C.; Kamoi, T.; Kato, M.; Porter, N.G.; Davis, S.; Shaw, M.; Kamoi, A.; Imai, S. 
Silencing onion lachrymatory factor synthase causes a significant change in the sulfur secondary 
metabolite profile. Plant Physiol. 2008, 147, 2096–2106. 



Sensors 2012, 12 16074 
 

 

3. Nielsen, G.S.; Larsen, L.M.; Poll, L. Formation of aroma compounds and lipoxygenase.  
(EC 1.13.11.12) activity in unblanched leek (Allium ampeloprasum Var. Bulga) slices during  
long-term frozen storage. J. Agric. Food Chem. 2003, 51, 1970–1976. 

4. Fritsch, R.M.; Keusgen, M. Occurrence and taxonomic significance of cysteine sulphoxides in the 
genus Allium L. (Alliaceae). Phytochemistry 2006, 67, 1127–1135. 

5. Lanzotti, V. The analysis of onion and garlic. J. Chromatogr. A 2006, 1112, 3–22. 
6. Kubec, R.; Svobodova, M.; Velisek, J. Distribution of S-alk(en)ylcysteine sulfoxides in some 

Allium species. Identification of a new flavor precursor: S-ethylcysteine sulfoxide (ethiin).  
J. Agric. Food Chem. 2000, 48, 428–433. 

7. Storsberg, J.; Schulz, H.; Keusgen, M.; Tannous, F.; Dehmer, K.J.; Keller, E.R.J. Chemical 
characterization of interspecific hybrids between Allium cepa L. and Allium kermesinum Rchb.  
J. Agric. Food Chem. 2004, 52, 5499–5505. 

8. Mondy, N.; Duplat, D.; Christides, J.P.; Arnault, I.; Auger, J. Aroma analysis of fresh and 
preserved onions and leek by dual solid-phase microextraction-liquid extraction and gas 
chromatography-mass spectrometry. J. Chromatogr. A 2002, 963, 89–93. 

9. Brodnitz, M.H.; Pascale, J.V. Thiopropanal S-Oxide—Lachrymatory factor in onions. J. Agric. 
Food Chem. 1971, 19, 269–272. 

10. Imai, S.; Tsuge, N.; Tomotake, M.; Nagatome, Y.; Sawada, H.; Nagata, T.; Kumagai, H.  
An onion enzyme that makes the eyes water—A flavoursome, user-friendly bulb would give no 
cause for tears when chopped up. Nature 2002, 419, 685. 

11. Arnault, I.; Mondy, N.; Cadoux, F.; Auger, J. Possible interest of various sample transfer 
techniques for fast gas chromatography-mass spectrometric analysis of true onion volatiles.  
J. Chromatogr. A 2000, 896, 117–124. 

12. Järvenpää, E.P.; Zhang, Z.Y.; Huopalahti, R.; King, J.W. Determination of fresh onion  
(Allium cepa L.) volatiles by solid phase microextraction combined with gas chromatography 
mass spectrometry. Z. Lebensm. Unters. Forsch. 1998, 207, 39–43. 

13. Ferary, S.; Auger, J. What is the true odour of cut Allium? Complementarity of various 
hyphenated methods: Gas chromatography mass spectrometry and high-performance liquid 
chromatography mass spectrometry with particle beam and atmospheric pressure ionization 
interfaces in sulphenic acids rearrangement components discrimination. J. Chromatogr. A 1996, 
750, 63–74. 

14. Kubec, R.; Cody, R.B.; Dane, A.J.; Musah, R.A.; Schraml, J.; Vattekkatte, A.; Block, E. 
Applications of direct analysis in real time-mass spectrometry (DART-MS) in Allium chemistry. 
(Z)-Butanethial S-oxide and 1-butenyl thiosulfinates and their S-(E)-1-butenylcysteine S-oxide 
precursor from Allium siculum. J. Agric. Food Chem. 2010, 58, 1121–1128. 

15. Block, E.; Putman, D.; Zhao, S.H. Allium chemistry—GC-MS analysis of thiosulfinates and 
related compounds from onion, leek, scallion, shallot, chive, and chinese chive. J. Agric. Food 
Chem. 1992, 40, 2431–2438. 

16. Lindinger, W.; Hansel, A.; Jordan, A. Proton-transfer-reaction mass spectrometry (PTR-MS):  
On-line monitoring of volatile organic compounds at ppt levels. Chem. Soc. Rev. 1998, 27,  
347–354. 



Sensors 2012, 12 16075 
 

 

17. Boamfa, E.I.; Steeghs, M.M.L.; Cristescu, S.M.; Harren, F.J.M. Trace gas detection from 
fermentation processes in apples: An intercomparison study between proton-transfer-reaction 
mass spectrometry and laser photoacoustics. Int. J. Mass Spectrom. 2004, 239, 193–201. 

18. Blake, R.S.; Monks, P.S.; Ellis, A.M. Proton-transfer reaction mass spectrometry. Chem. Rev. 
2009, 109, 861–896. 

19. Zini, E.; Biasioli, F.; Gasperi, F.; Mott, D.; Aprea, E.; Mark, T.D.; Patocchi, A.; Gessler, C.; 
Komjanc, M. QTL mapping of volatile compounds in ripe apples detected by proton transfer 
reaction-mass spectrometry. Euphytica 2005, 145, 269–279. 

20. Aprea, E.; Biasioli, F.; Carlin, S.; Endrizzi, I.; Gasperi, F. Investigation of volatile compounds  
in two raspberry cultivars by two headspace techniques: Solid-phase microextraction/gas 
chromatography-mass spectrometry (SPME/GC-MS) and proton-transfer reaction-mass 
spectrometry (PTR-MS). J. Agric. Food Chem. 2009, 57, 4011–4018. 

21. Carbone, F.; Mourgues, F.; Biasioli, F.; Gasperi, F.; Mark, T.D.; Rosati, C.; Perrotta, G. 
Development of molecular and biochemical tools to investigate fruit quality traits in strawberry 
elite genotypes. Mol. Breed. 2006, 18, 127–142. 

22. Boschetti, A.; Biasioli, F.; van Opbergen, M.; Warneke, C.; Jordan, A.; Holzinger, R.; Prazeller, P.; 
Karl, T.; Hansel, A.; Lindinger, W.; Iannotta, S. PTR-MS real time monitoring of the emission of 
volatile organic compounds during postharvest aging of berryfruit. Postharvest Biol. Technol. 
1999, 17, 143–151. 

23. Raseetha, S.; Heenan, S.P.; Oey, I.; Burritt, D.J.; Hamid, N. A new strategy to assess the quality 
of broccoli (Brassica oleracea L.) based on enzymatic changes and volatile mass ion profile using 
proton transfer reaction mass spectrometry (PTR-MS). Innov. Food Sci. Emerg. 2011, 12,  
197–205. 

24. Moore, T.L.; O’Connor, D.E. Reaction of methanesulfenyl chloride with alkoxides and alcohols. 
Preparation of aliphatic sulfenate and sulfinate esters. J. Org. Chem. 1966, 31, 3587–3592. 

25. Feilberg, A.; Liu, D.Z.; Adamsen, A.P.S.; Hansen, M.J.; Jonassen, K.E.N. Odorant emissions 
from intensive pig production measured by online proton-transfer-reaction mass spectrometry. 
Environ. Sci. Technol. 2010, 44, 5894–5900. 

26. Hansen, M.J.; Liu, D.Z.; Guldberg, L.B.; Feilberg, A. Application of proton-transfer-reaction 
mass spectrometry to the assessment of odorant removal in a biological air cleaner for pig 
production. J. Agric. Food Chem. 2012, 60, 2599–2606. 

27. Hansen, M.J.; Toda, K.; Obata, T.; Adamsen, A.P.S.; Feilberg, A. Evaluation of single column 
trapping/separation and chemiluminescence detection for measurement of methanethiol and 
dimethyl sulfide from pig production. J. Anal. Method. Chem. 2012, 2012, doi:10.1155/2012/489239. 

28. Kim, K.H. Performance characterization of the GC/PFPD for H2S, CH3SH, DMS, and DMDS in 
air. Atmos. Environ. 2005, 39, 2235–2242. 

29. Hansen, M.J.; Adamsen, A.P.S.; Feilberg, A.; Jonassen, K.E.N. Stability of odorants from pig 
production in sampling bags for olfactometry. J. Environ. Qual. 2011, 40, 1096–1102. 

30. Kim, Y.-H.; Kim, K.H. Ultimate detectability of volatile organic compounds: How much further 
can we reduce their ambient air sample volumes for analysis? Anal. Chem. 2012, 84, 8284–8293. 

31. Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemometr. Intell. Lab. 1987, 
2, 37–52. 



Sensors 2012, 12 16076 
 

 

32. Eriksson, L.; Johansson, E.; Kettaneh-Wold, N.; Wold, S. Centering and Scaling. Multi-and 
Megavariate Data Analysis: Principles and Applications; Umetrics: Umeå, Sweden, 2001;  
pp. 207–219. 

33. Schwarz, K.; Filipiak, W.; Amann, A. Determining concentration patterns of volatile compounds 
in exhaled breath by PTR-MS. J. Breath Res. 2009, 3, doi:10.1088/1752-7155/3/2/027002. 

34. Tasin, M.; Cappellin, L.; Biasioli, F. Fast direct injection mass-spectrometric characterization of 
stimuli for insect electrophysiology by proton transfer reaction-time of flight mass-spectrometry 
(PTR-ToF-MS). Sensors 2012, 12, 4091–4104. 

35. Cappellin, L.; Probst, M.; Limtrakul, J.; Biasioli, F.; Schuhfried, E.; Soukoulis, C.; Mark, T.D.; 
Gasperi, F. Proton transfer reaction rate coefficients between H3O+ and some sulphur compounds. 
Int. J. Mass Spectrom. 2010, 295, 43–48. 

36. Lestremau, F.; Andersson, F.A.T.; Desauziers, V. Investigation of artefact formation during 
analysis of volatile sulphur compounds using solid phase microextraction (SPME). Chromatographia 
2004, 59, 607–613. 

37. Andersen, K.B.; Hansen, M.J.; Feilberg, A. Minimisation of artefact formation of dimethyl 
disulphide during sampling and analysis of methanethiol in air using solid sorbent materials.  
J. Chromatogr. A 2012, 1245, 24–31. 

38. Van Gemert, L. Compilations of Odour Threshold Values in Air, Water and Other Media; 
Boelens Aroma Chemical Information Service: Huizen, The Netherlands, 2003. 

39. Hansen, M.E.; Sørensen, H.; Cantwell, M. Changes in acetaldehyde, ethanol and amino acid 
concentrations in broccoli florets during air and controlled atmosphere storage. Postharvest Biol. 
Technol. 2001, 22, 227–237. 

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution license 
(http://creativecommons.org/licenses/by/3.0/). 


